首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drug delivery》2013,20(1):46-53
To develop a novel flurbiprofen-loaded solid dispersion without crystalline change, various flurbiprofen-loaded solid dispersions were prepared with water, sodium carboxylmethyl cellulose (Na-CMC), and Tween 80. The effect of Na-CMC and Tween 80 on aqueous solubility of flurbiprofen was investigated. The physicochemical properties of solid dispersions were investigated using SEM, DSC, and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared to commercial product. Unlike conventional solid dispersion systems, the flurbiprofen-loaded solid dispersion gave a relatively rough surface and changed no crystalline form of drug. These solid dispersions were formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in changing the hydrophobic drug to hydrophilic form. Furthermore, the flurbiprofen-loaded solid dispersion at the weight ratio of flurbiprofen/Na-CMC/Tween 80 of 6/2.5/0.5 improved ~ 60-fold drug solubility. It gave higher AUC, Tmax, and Cmax compared to commercial product. The solid dispersion improved almost 1.5-fold bioavailability of drug compared to commercial product in rats. Thus, the flurbiprofen-loaded solid dispersion would be useful to deliver poorly water-soluble flurbiprofen with enhanced bioavailability without crystalline change.  相似文献   

2.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.  相似文献   

3.
The purpose of this study was to develop a raloxifene-loaded solid dispersion with enhanced dissolution rate and bioavailability via spray-drying technique. Solid dispersions of raloxifene (RXF) were prepared with PVP K30 at weight ratios of 1:4, 1:6 and 1:8 using a spray-drying method, and characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and solubility and dissolution tests. The bioavailability of the solid dispersion in rats was also evaluated compared to those of RXF powder and commercial product. Results showed that the RXF-loaded solid dispersion was in amorphous form with increased solubility and dissolution rate. The absorption of RXF from solid dispersion resulted in approximately 2.6-fold enhanced bioavailability compared to pure drug. Moreover, RXF-loaded solid dispersion gave similar AUC, Cmax and Tmax values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. These findings suggest that an amorphous solid dispersion of RXF could be a viable option for enhancing the oral bioavailability of RXF.  相似文献   

4.
To develop a novel itraconazole-loaded solid dispersion without crystalline change with improved bioavailability, various itraconazole-loaded solid dispersions were prepared with water, polyvinylpyrroline, poloxamer and citric acid. The effect of carriers on aqueous solubility of itraconazole was investigated. Their physicochemical properties were investigated using SEM, DSC, and powder X-ray diffraction. The dissolution, bioavailability in rats and stability of solid dispersions were evaluated. Unlike conventional solid dispersion system, the itraconazole-loaded solid dispersion with relatively rough surface did not change crystalline form of drug. Our DSC and powder X-ray diffraction results suggested that this solid dispersion was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in conversion of the hydrophobic drug to hydrophilic form. The itraconazole-loaded solid dispersion at the weight ratio of itraconazole/polyvinylpyrroline/poloxamer of 10/2/0.5 gave maximum drug solubility of about 20 μg/mL. It did not change the crystalline form of drug for at least 6 months, indicating that it was physically stable. It gave higher AUC, Cmax and Tmax compared to itraconazole powder and similar values to the commercial product, suggesting that it was bioequivalent to commercial product in rats. Thus, it would be useful to deliver a poorly water-soluble itraconazole without crystalline change with improved bioavailability.  相似文献   

5.
Abstract

A surface-attached silymarin-loaded solid dispersion with improved dissolution profile and enhanced oral bioavailability was formulated using silymarin, polyvinylpyrrolidone (PVP) and Tween 80 in water. In this solid dispersion, hydrophilic PVP was adhered onto the surface of crystalline drug rendering silymarin hydrophilic without changing its crystallinity. The drug solubility from the optimised solid dispersion prepared with silymarin/PVP/Tween 80 at the weight ratio of 5/2.5/2.5 increased by almost 650-fold compared to drug powder. The drug was physically and chemically stable in the solid dispersion for at least 6 months. Moreover, the solid dispersion enhanced the oral bioavailability of the drug in rats by almost 3-fold compared to the commercial product. The silymarin-loaded solid dispersion also exhibited advanced hepatoprotective bioactivity against CCl4-induced liver damage compared to silymarin or the commercial product. Thus, this silymarin-loaded solid dispersion would be useful for the enhancement of oral bioavailability and hepatoprotective activity of poorly water-soluble silymarin.  相似文献   

6.
The purpose of this study was to develop a novel clopidogrel napadisilate-loaded solid dispersion with improved stability and bioequivalence to the clopidogrel bisulphate-loaded commercial product. Clopidogrel napadisilate prepared in this study appeared as a white crystalline powder unlike clopidogrel base. However, this salt did not improve the solubility of clopidogrel, even with improved stability compared to clopidogrel bisulphate. To improve the solubility of clopidogrel napadisilate, a novel clopidogrel napadisilate-loaded solid dispersion was prepared by the spray-drying technique using HPMC and colloidal silica, and the physicochemical properties, dissolution and bioavailability in beagle dogs were evaluated compared to the clopidogrel bisulphate-loaded commercial product. The solid dispersion composed of clopidogrel napadisilate, HPMC and colloidal silica at a weight ratio of 11.069/3/3.5 improved solubility by 6.5-fold compared to clopidogrel napadisilate, even if it did not improve drug solubility compared to clopidogrel bisulphate. However, unlike clopidogrel bisulphate, this formulation improved the stability of clopidogrel. Furthermore, the clopidogrel napadisilate solid dispersion-loaded tablet showed similar dissolution to the clopidogrel bisulphate-loaded commercial product and was bioequivalent to the commercial product in beagle dogs. Thus, this clopidogrel napadisilate-loaded solid dispersion could be a promising candidate for improving the stability and bioavailability of clopidogrel.  相似文献   

7.
With the aim of developing a novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes, various valsartan-loaded solid dispersions were prepared with water, hydroxypropyl methylcellulose (HPMC) and sodium lauryl sulphate (SLS). Effects of the weight ratios of SLS/HPMC and carrier/drug on both the aqueous solubility of valsartan and the drug-release profiles of solid dispersions were investigated. The physicochemical properties of solid dispersions were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The bioavailability of the solid dispersions in rats was evaluated compared to valsartan powder and a commercial product (Diovan). Unlike the conventional solid dispersion system, the valsartan-loaded solid dispersion had a relatively rough surface and did not change the crystalline form of the drug. It was suggested that the solid dispersions were formed by attaching hydrophilic carriers to the surface of the drug, thus changing from a hydrophobic to a hydrophilic form without changing the crystalline form. The drug-loaded solid dispersion composed of valsartan/HPMC/SLS at a weight ratio of 3/1.5/0.75 improved the drug solubility by about 43-fold. It gave a higher AUC, C(max) and shorter T(max) compared to valsartan powder and the commercial product. The solid dispersion improved the bioavailability of the drug in rats by about 2.2 and 1.7-fold in comparison with valsartan powder and the commercial product, respectively. Thus, the valsartan-loaded solid dispersion would be useful for delivering poorly water-soluble valsartan with enhanced bioavailability and no crystalline changes.  相似文献   

8.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability, various ibuprofen-loaded solid dispersions were prepared with water, HPMC and poloxamer. The effect of HPMC and poloxamer on aqueous solubility of ibuprofen was investigated. The dissolution and bioavailability of solid dispersion in rats were then evaluated compared to ibuprofen powder. When the amount of carrier increased with a decreased in HPMC/poloxamer ratio, the aqueous solubility of ibuprofen was elevated. The solid dispersion composed of ibuprofen/HPMC/poloxamer at the weight ratio of 10:3:2 improved the drug solubility approximately 4 fold. It gave significantly higher initial plasma concentration, AUC and Cmax of drug than did ibuprofen powder in rats. The solid dispersion improved the bioavailability of drug about 4-fold compared to ibuprofen powder. Thus, this ibuprofen-loaded solid dispersion with water, HPMC and poloxamer was a more effective oral dosage form for improving the bioavailability of poor water-soluble ibuprofen.  相似文献   

9.
The purpose of this research was to develop a novel revaprazan-loaded surface-modified solid dispersion (SMSD) with improved drug solubility and oral bioavailability. The impact of carriers on aqueous solubility of revaprazan was investigated. HPMC and Cremophor A25 were selected as an appropriate polymer and surfactant, respectively, due to their high drug solubility. Numerous SMSDs were prepared with various concentrations of carriers, using distilled water, and the drug solubility of each was assessed. Moreover, the physicochemical properties, dissolution and pharmacokinetics of selected SMSD in rats were assessed in comparison to revaprazan powder. Of the SMSDs assessed, the SMSD composed of revaprazan/HPMC/Cremophor A25 at the weight ratio of 1:0.28:1.12 had the most enhanced drug solubility (~6000-fold). It was characterized by particles with a relatively rough surface, suggesting that the carriers were attached onto the surface of the unchanged crystalline revaprazan powder. It had a significantly higher dissolution rate, AUC and Cmax, and a faster Tmax value in comparison to revaprazan powder, with a 5.3-fold improvement in oral bioavailability of revaprazan. Therefore, from an environmental perspective, this SMSD system prepared with water, and without organic solvents, should be recommended as a revaprazan-loaded oral pharmaceutical alternative.  相似文献   

10.
In order to investigate the effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in a solid self-nanoemulsifying drug delivery system (solid SNEDDS), different solid SNEDDS formulations were prepared by spray-drying the solutions containing liquid SNEDDS and various carriers. The liquid SNEDDS, composed of Labrafil M 1944 CS/Labrasol/Trasncutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100 nm. Silicon dioxide, a hydrophobic solid carrier, produced an excellent conventional solid SNEDDS with a nanoemulsion droplet size of less than 100 nm, similar to the liquid SNEDDS and smaller than the other solid SNEDDS formulations. The drug was in an amorphous state in this solid SNEDDS. Furthermore, it greatly improved the dissolution rate and oral bioavailability of flurbiprofen in rats because it allowed the spontaneous formation of an interface between the oil droplets and the water. Magnesium stearate, a hydrophobic carrier, produced a solid SNEDDS with the largest diameter. However, it greatly enhanced the dissolution rate and oral bioavailability due to the formation of a simple eutectic mixture. The hydrophilic carriers such as polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (Na-CMC) and hydroxypropyl-β-cyclodextrantrin (HP-β-CD) did not form a solid SNEDDS but rather a solid dispersion (or microcapsule). HP-β-CD improved the dissolution rate but did not improve the oral bioavailability as much as the hydrophobic polymers. PVA and Na-CMC hardly improved the dissolution rate but maintained constantly high plasma levels in rats for a long period. Thus, the selection of carrier is an important factor in the development of solid SNEDDS, since the carriers had significant effects on the crystalline properties, dissolution and oral bioavailability of flurbiprofen and on the formation of solid SNEDDS.  相似文献   

11.
To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability.  相似文献   

12.
Tranilast (TL) is an anti-allergic agent and widely used in the clinical treatment of bronchial asthma, atopic rhinitis, atopic dermatitis and keloids. However, therapeutic potential of TL could be partly limited because of its poor solubility, bioavailability, and photostability. To overcome these drawbacks, crystalline solid dispersion of TL (CSD/TL) was prepared by wet-milling technique with aim of improving physicochemical and pharmacokinetic properties. Physicochemical properties of the formulations prepared were characterized by laser diffraction and dynamic light scattering for particle size analysis, scanning electron microscope for morphological analysis, and powder X-ray diffraction and differential scanning calorimetry for crystallinity assessment. TL particles in CSD/TL appeared to be crystalline with diameter of 122 nm, and CSD/TL exhibited marked improvement in the dissolution behavior as compared to crystalline TL. Under irradiation of UVA/B (250 W/m2), solution and amorphous solid dispersion of TL were found to be highly photodegradable, whereas high photochemical stability was seen in CSD/TL. After oral administration of CSD/TL, enhanced TL exposure was observed with increase of Cmax and AUC by 60- and 32-fold, respectively, as compared to crystalline TL. According to these observations, taken together with dissolution and pharmacokinetic behaviors, crystalline solid dispersion strategy would be efficacious to enhance bioavailability of TL with high photochemical stability.  相似文献   

13.
A unique flurbiprofen-loaded nanoemulsion was listed earlier using a Shirasu porous glass (SPG) membrane emulsification technique, which gave constant emulsion droplets with a thin size distribution. In this study, a flurbiprofen-loaded nanoemulsion was developed further into a solid form using polyvinylpyrrolidone (PVP) as a carrier by a spray-drying technique. The flurbiprofen-loaded nanoparticles with a weight ratio of flurbiprofen/PVP/surfactant mixture of 1/8/2 were connected with about 130?000-fold enhanced drug solubility and had a mean size of about 70?nm. In these nanoparticles, flurbiprofen was found in an altered amorphous state. Additionally, the nanoparticles gave significantly shorter Tmax, and greater AUC and Cmax compared to the commercially available product. Specially, the AUC of the drug from the nanoparticles was about 10-fold greater compared to the commercially available product. Therefore, these flurbiprofen-loaded nanoparticles can be convenient for distributing a poorly water-soluble flurbiprofen with improved bioavailability using uniform nano-sized particles.  相似文献   

14.
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.  相似文献   

15.
To develop a hyaluronic microsphere with the improved oral bioavailability of poorly water-soluble cyclosporin A (CsA), the microspheres were prepared with varying ratios of sodium hyaluronate (HA)/sodium lauryl sulfate (SLS)/CsA using a spray-drying technique. The effects of HA and SLS on the dissolution and solubility of CsA in microspheres were investigated. The CsA-microsphere prepared with HA/SLS/CsA at the ratio of 4/2/1 gave the highest solubility and dissolution rate of CsA among those formulae tested. As solubility and dissolution rate of CsA were increased about 17- and 2-fold compared to CsA powder, respectively, this CsA-microsphere was selected as an optimal formula for oral delivery in rats. The CsA-microsphere and Sandimmun neoral sol gave significantly higher blood levels compared with CsA powder alone. Moreover, the AUC, T(max) and C(max) values of CsA in CsA-microsphere were not significantly different from those in Sandimmun neoral sol in rats, indicating that CsA-microsphere was bioequivalent to the commercial product in rats. Our results demonstrated that the CsA-microsphere prepared with HA and SLS, with improved bioavailability of CsA, might have been useful to deliver a poorly water-soluble CsA.  相似文献   

16.
Ketorolac, is a non-steroidal anti-inflammatory drug, with strong analgesic activity. It is practically insoluble in water and has been implicated in causing gastrointestinal ulceration. This study describes the formulation of solid dispersions of ketorolac using hydroxypropyl beta-cyclodextrin (HPbeta-CyD) and beta-cyclodextin (beta-CyD) as carriers, to improve the aqueous solubility of the drug, thus enhancing its bioavailability. Also, reduction in ulcerogenicity was anticipated. Differential scanning calorimetry and X-ray diffraction studies indicated loss of crystalline nature of the drug, in the dispersions prepared with HPbeta-CyD. NMR studies revealed a strong interaction between drug and HPbeta-CyD. Solid dispersions of drug with beta-CyD retained the crystalline nature of the drug. All the solid dispersions showed a remarkable improvement in the rate and extent of dissolution of ketorolac. The kneaded dispersion with HPbeta-CyD prepared using a 1:1 alcohol-water mixture showed promise in reducing the ulcer-inducing effect of ketorolac in rats. Oral administration of this dispersion was found to inhibit carrageenan-induced paw oedema in rats to a significantly greater extent compared with ketorolac or its trometamol salt. Though beta-CyD as a carrier for ketorolac gave faster release of the poorly soluble drug, HPbeta-CyD proved to be superior to beta-CyD, as a carrier in the kneaded dispersion prepared using 1:1 alcohol-water mixture. These results suggest that solid dispersions of ketorolac with HPbeta-CyD aid in faster dissolution and better bioavailability of the drug. The higher solubility of the drug in the presence of HPbeta-CyD also reduces local gastrointestinal side-effects of the drug.  相似文献   

17.
Objectives Rebamipide, a novel anti‐ulcer agent, is listed in biopharmaceutics classification class IV because of its low aqueous solubility and permeability. Consequently, the bioavailability of rebamipide is under 10% in humans. The aim of this study was to increase the solubility and determine the effect of solubility enhancement on the bioavailability and efficacy of rebamipide (RBM). Methods After taking into account the physiochemical properties of RBM (solubility, melting point, dosage etc.), solid dispersion was chosen as the solubility enhancement method. A rebamipide solid dispersion system containing the drug, l ‐lysine, PVP‐VA 64 and poloxamer 407 was obtained from a spray‐drying method. Solubility enhancement of RBM from the solid dispersion was determined by a dissolution test in 900 ml at pH 1.2. The bioavailability and efficacy of RBM solid dispersion were evaluated in a rat model. Key findings The aqueous solubility of RBM was improved 62.17 times by solid dispersion. The oral bioavailability of the drug was also increased 1.74‐fold from solid dispersion compared with the reference product in a rat model. With regard to the anti‐ulcer effect, the percentage inhibition of the solid dispersion was 2.71 times higher than that of the reference product in the ulcer‐induced rat model. Conclusions A solid dispersion of rebamipide was successfully formulated using the spray‐drying method. Bioavailability and efficacy of rebamipide were increased significantly by solubility enhancement of the drug.  相似文献   

18.
The purpose of this study was to develop the immediate release stomach-specific spray-dried formulation of valsartan (VAL) using Eudragit® E PO (EPO) as the carrier for enhancing dissolution rate in a gastric environment. Enhanced solubility and dissolution in gastric pH was achieved by formulating the solid dispersion using a spray drying technique. Different combinations of drug–polymer–surfactant were dissolved in 10% ethanol solution and spray-dried in order to obtain solid dispersion microparticles. Use of the VAL–EPO solid dispersion microparticles resulted in significant improvement of the dissolution rate of the drug at pH 1.2 and pH 4.0, compared to the free drug powder and the commercial product. A hard gelatin capsule was filled with the VAL–EPO solid dispersion powder prior to the dissolution test. The increased dissolution of VAL from solid dispersion microparticles in gastric pH was attributed to the effect of EPO and most importantly the transformation of crystalline drugs to amorphous solid dispersion powder, which was clearly shown by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD) studies. Thus, VAL, a potential antihypertensive drug in the form of a solid dispersion microparticulate powder, can be effectively delivered in the immediate release dosage form for stomach-specific drug delivery.  相似文献   

19.
Objectives The aim of this study was to develop a novel itraconazole‐loaded gelatin microcapsule without ethanol with enhanced oral bioavailability. Methods Various gelatin microcapsules were prepared using a spray‐drying technique. Their physicochemical properties, dissolution, characteristics and pharmacokinetics in rats were evaluated and compared with those of a commercial product. Key findings The gelatin microcapsule at a weight ratio for itraconazole/gelatin/citric acid of 1 : 3 : 0.3 was spherical in shape with a smooth surface and inner hole, and gave a maximum drug solubility of about 700 μg/ml. The gelatin microcapsule dramatically increased the initial dissolution rate of itraconazole compared with a commercial product in simulated gastric fluids (pH 1.2). Moreover, at the same dose as the commercial product, it gave significantly higher initial plasma concentrations, Cmax and AUC of itraconazole in rats than did the commercial product, indicating that providing the drug in the gelatin microcapsule caused enhanced absorption in rats. At half dose, it gave similar AUC, Cmax and Tmax values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. Conclusions The itraconazole‐loaded gelatin microcapsule without ethanol developed using a spray‐drying technique at half the dose of the commercial product can deliver itraconazole in a pattern that allows fast absorption in the initial phase, making it bioequivalent to the commercial product.  相似文献   

20.
Sparingly water-soluble drugs such as candesartan cilexetil offer challenges in developing a drug product with adequate bioavailability. The objective of the present study was to develop a tablet dosage form of candesartan cilexetil incorporating drug nanoparticles to increase its saturation solubility and dissolution rate for enhancing bioavailability while reducing variability in systemic exposure. The bioavailability of candesartan cilexetil is dissolution limited following oral administration. To enhance bioavailability and overcome variability in systemic exposure, a nanoparticle formulation of candesartan cilexetil was developed. Candesartan cilexetil nanoparticles were prepared using a wet bead milling technique. The milled nanosuspension was converted into solid intermediate using a spray drying process. The nanosuspensions were characterized for particle size before and after spray drying. The spray dried nanoparticles were blended with excipients for tableting. The saturation solubility and dissolution characteristics of the nanoparticle formulation were investigated and compared with commercial candesartan cilexetil formulation. The drug nanoparticles were evaluated for solid-state transitions before and after milling. This study demonstrated that tablet formulation incorporating drug nanoparticles showed significantly faster rate of drug dissolution in a discriminating dissolution medium as compared to commercially available tablet formulation. Systemic exposure studies in rats indicated a significant increase in the rate and extent of drug absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号