首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, there has been considerable interest in determining the function of synaptic vesicle protein 2A and its role as a target for antiepileptic drugs. Although it is known that synaptic vesicle protein 2A is involved in normal synaptic vesicle function, its participation in synaptic vesicle cycling and neurotransmitter release in normal and pathological conditions is unclear. However, the experimental evidence suggests that synaptic vesicle protein 2A could be a vesicular transporter, regulate synaptic exocytosis as a gel matrix, or modulate synaptotagmin‐1 activity. This review describes and discusses the participation of synaptic vesicle protein 2A in synaptic modulation in normal and pathological conditions.  相似文献   

2.
Complexins are presynaptic proteins whose functional roles in synaptic transmission are still unclear. In cultured rat hippocampal neurons, complexins are distributed throughout the cell bodies, dendrites and axons, whereas synaptotagmin I and synaptobrevin/VAMP-2, essential proteins for neurotransmitter release, accumulated in the synaptic-releasing sites as early as 1 week in culture. With a maturation of synapses in vitro, complexins also accumulated in the synaptic release sites and co-localized with synaptotagmin I and synaptobrevin/VAMP-2 after 3–4 weeks in culture. Complexins I and II were expressed in more than 90 and 70% of the cultured neurons, respectively; however, they were largely distributed in different populations of synaptic terminals. In the developing rat brain, complexins were distributed in neuronal cell bodies in the early stage of postnatal development, but gradually accumulated in the synapse-enriched regions with development. In mature presynaptic neurons of Aplysia buccal ganglia, injection of anticomplexin II antibody caused a stimulation of neurotransmitter release. Injection of recombinant complexin II and αSNAP caused depression and facilitation of neurotransmitter release from nerve terminals, respectively. The effect of complexin was reversed by a subsequent injection of recombinant αSNAP, and vice versa. These results suggest that complexins are not essential but have some regulatory roles in neurotransmitter release from presynaptic terminals of mature neurons.  相似文献   

3.
Synaptic vesicles (SVs) assemble at the presynaptic compartment through a clathrin-dependent mechanism that involves one or more assembly proteins (APs). The assembly protein AP180 is especially efficient at facilitating clathrin cage formation, but its precise ultrastructural localization in neurons is unknown. Using immunoelectron microscopy, we demonstrate the presynaptic localization of AP180 in axon terminals of rat cerebellar neurons. In contrast, the assembly protein AP2 was associated with both the presynaptic plasma membrane and the cytosolic side of the membrane at postsynaptic and extrasynaptic sites. Furthermore, ultrastructural analysis of primate retina showed that AP180 immunoreactivity was preferentially and highly enriched at ribbon synapses, where glutamate is released tonically at high levels and rapid vesicle turnover is essential. To maintain functional synaptic transmission, neurotransmitter-filled SVs must be readily available, and this requires proper reassembly of new vesicles. The expression of AP180, in addition to AP-2, in the clathrin-mediated endocytic pathway might add another level of control to SV reformation for efficient assembly of clathrin, effectively controlling the size of assembled vesicles and faithfully recovering SV-specific components.  相似文献   

4.
Serial sections of frog cutaneous pectoris neuromuscular junctions were examined to determine if isolated coated vesicles in one section are connected to infoldings of the presynaptic membrane in adjacent sections or are truly pinched off from the plasmalemma. Twenty percent of the coated vesicles examined serially were isolated from plasmalemma. In addition, two populations of coated vesicles were observed: those the size of synaptic vesicles and a smaller population (8% of total) of larger diameter (100 nm).  相似文献   

5.
The difficulty in developing successful treatments to facilitate nerve regeneration has prompted a number of new in vitro experimental methods. We have recently shown that functional presynaptic boutons can be formed when neuronal cells are cocultured with surface-modified artificial substrates including poly(d-lysine)-coated beads and supported lipid bilayer-coated beads (Lucido(2009) J. Neurosci.29, 12449-12466; Gopalakrishnan(2010) ACS Chem. Neurosci.1, 86-94). We demonstrate here, using confocal microscopy combined with immunocytochemistry, that it is possible to isolate such in vitro presynaptic endings in an exclusive fashion onto glass substrates through a simple "sandwich/lift-off" technique (Perez(2006) Adv. Funct. Mater.16, 306-312). Isolated presynaptic complexes are capable of releasing and recycling neurotransmitter in response to an external chemical trigger. These bead-presynaptic complexes are facile to prepare and are readily dispersible in solution. They are thus compatible with many experimental methods whose focus is the study of the neuronal presynaptic compartment.  相似文献   

6.
The uptake of horseradish peroxidase (HRP) into isolated nerve terminals (synaptosomes) has been studied by using a spectrophotometric method to determine the enzyme activity. HRP is rapidly taken up by synaptosomes, it is not removed by multiple washes in iso-osmotic medium but is lost if the particles are ruptured by hypo-osmotic conditions. The uptake is not affected by metabolic poisons, is reduced at lower temperature and is not with any significant release of cytoplasmic lactate dehydrogenase suggesting an endocytotic mechanism. Intra-synaptosomal HRP can be released by a process that is similar to uptake and also not accompanied by any loss of synaptosomal lactate dehydrogenase exocytosis. Depolarization of synaptosomes (by high potassium concentrations) was found to release [14C]ACh but to have no effect on HRP uptake either simultaneouly or after recovery in an non-depolarizing medium. Absence of Ca2+ prevented depolarization evoked release of [14C]ACh but had no effect on the uptake of HRP. The release of HRP was not increased by depolarization even though [14C]choline taken up during the same period wasreleased as [14C]ACh. It is concluded that the endo-exocytotic cycle that transport HRP across the synaptosomal membrane is unrelated to tranmitter release. A discrete vesicular localization of HRP reaction product was only occasionally in the EM nor could consistent differences resulting from depolarization be observed. However, nthe untrastructural localization was found to be unreliable because glutaradehyde fixation irreversiy inactivated 80–90% of the HRP even when it was sequestered within synaptosomes and the insoluble reaction product precipitated from a supersaturated solution onto membranes.  相似文献   

7.
The synaptic vesicle protein, synaptotagmin, has been hypothesized to mediate several functions in neurotransmitter release including calcium sensing, vesicle recycling, and synaptic vesicle docking. These hypotheses are based on evidence from in vitro binding assays, peptide and antibody injection experiments, and genetic knockout studies. Synaptotagmin contains two domains that are homologous to the calcium ion (Ca(2+))-binding C2 domain of protein kinase C. The two C2 domains of synaptotagmin have broadly differing ligand-binding properties. We have focused on the second C2 domain (C2B) of synaptotagmin I, in particular, on a series of conserved lysine residues on beta-strand 4 of C2B. This polylysine motif binds clathrin-adapter protein AP-2, neuronal calcium channels, and inositol high polyphosphates. It also mediates Ca(2+)-dependent oligomerization. To investigate the importance of these lysine residues in synaptic transmission, we have introduced synaptotagmin I (syt) transgenes harboring specific polylysine motif mutations into flies otherwise lacking the synaptotagmin I protein (syt(null)). Electrophysiological analyses of these mutants revealed that evoked transmitter release is decreased by approximately 36% and that spontaneous release is increased approximately twofold relative to syt(null) flies that express a wild type syt transgene. Synaptotagmin expression in both the mutant and the wild type transgenic lines was equivalent, as measured by semiquantitative Western blot analysis. Thus, the alteration in synaptic transmission was due to the mutation and not to the level of synaptotagmin expression. We conclude that synaptotagmin interactions mediated by the C2 B polylysine motif are required to attain full synaptotagmin function in vivo.  相似文献   

8.
In recent years significant progress has been made in the elucidation of the molecular assembly of the postsynaptic density at synapses, whereas little is known as yet about the components of the presynaptic active zone. Piccolo and Bassoon, two structurally related presynaptic cytomatrix proteins, are highly concentrated at the active zones of both excitatory and inhibitory synapses in rat brain. In this study we used immunocytochemistry to examine the cellular and ultrastructural localization of Piccolo at synapses in the rat retina and compared it with that of Bassoon. Both proteins showed strong punctate immunofluorescence in the outer and the inner plexiform layers of the retina. They were found presynaptically at glutamatergic ribbon synapses and at conventional GABAergic and glycinergic synapses. Although the two proteins were coexpressed at all photoreceptor ribbon synapses and at some conventional amacrine cell synapses, at bipolar cell ribbon synapses only Piccolo was present. Our data demonstrate similarities but also differences in the molecular composition of the presynaptic apparatuses of the synapses in the retina, differences that may account for the functional differences observed between the ribbon and the conventional amacrine cell synapses and between the photoreceptor and the bipolar cell ribbon synapses in the retina.  相似文献   

9.
F1-20/AP-3 is a synapse-specific phosphoprotein. In this study we characterize the ability of bacterially expressed F1-20/AP-3 to bind and assemble clathrin cages. We find that both of two bacterially expressed alternatively spliced isoforms of F1-20/AP-3 can bind and assemble clathrin as efficiently as preparations of F1-20/AP-3 from bovine brain. This establishes that the clathrin assembly activity found in F1-20/AP-3 preparations from brain extracts is indeed encoded by the cloned gene for F1-20/AP-3. It also demonstrates that posttranslation modification is not required for activation of the clathrin binding or assembly function of F1-20/AP-3. Ultrastructural analyses of the clathrin cages assembled by bacterially expressed F1-20/AP-3 reveals a strikingly narrow size distribution. This may be important for the regulation of quantal size during neurotransmission. We also express the 33 kD NH2-terminus of F1-20/AP-3 in E. coli, and measure its ability to bind to clathrin triskelia, to bind to clathrin cages, and to assemble clathrin triskelia into clathrin cages. It has been suggested that the 33 kD NH2-terminus of F1-20/AP-3 constitutes a clathrin binding domain. We find that the bacterially expressed 33 kD NH2-terminus of Fl20/AP-3 binds to clathrin triskelia, fails to bind to preassembled clathrin cages, and is not sufficient for clathrin assembly. The finding that the 33 kD NH2-terminus of F1-20/AP-3 binds to clathrin triskelia but fails to assemble clathrin triskelia into clathrin cages is consistent with the published proteolysis studies. The finding that the 33 kD NH2-terminus of F1-20/AP-3 fails to bind to clathrin cages is novel and potentially important. It is clear from these experiments that the 33 kD NH2-terminus of F1-20/AP-3 is sufficient to carry out some aspects of clathrin binding; however it appears that defining the regions of the protein involved in clathrin binding and assembly may be more complex than originally anticipated. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The synaptic vesicle-associated cysteine string protein (CSP) is critical for neurotransmitter release at the neuromuscular junction (NMJ) of Drosophila, where the approximately 4% of mutant flies lacking CSP that survive to adulthood exhibit spastic jumping and shaking, temperature-sensitive paralysis, and premature death. Previously, it has been shown that CSP is also required for nerve terminal growth and the prevention of neurodegeneration in Drosophila and mice. At larval csp null mutant NMJs of Drosophila, intracellular recordings from the muscle showed that evoked release is significantly reduced at room temperature. However, it remained unclear whether the reduction in evoked release might be due to a loss of synaptic boutons, loss of synapses, and alterations in trafficking of vesicles to synapses. To resolve these issues, we have examined synaptic structure and function of csp null mutant NMJs at the level of single boutons. csp null mutations proportionally reduce the number of synaptic boutons of both motor neurons (1s and 1b) innervating larval muscles 6 and 7, while the number of synapses per bouton remains normal. However, focal recordings from individual synaptic boutons show that nerve-evoked neurotransmitter release is also impaired in both 1s and 1b boutons. Further, our ultrastructural analyses show that the reduction in evoked release at low stimulation frequencies is not due to a loss of synapses or to alterations in docked vesicles at synapses. Together, these data suggest that CSP promotes synaptic growth and evoked neurotransmitter release by mechanistically independent signaling pathways.  相似文献   

11.
Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system.  相似文献   

12.
The SNAP receptor (SNARE) complex is a core complex specialized for synaptic vesicle exocytosis, and the binding of SNAPs to the complex is an essential step for neurotransmitter release. Complexin I and II have been identified as SNARE-complex-associated proteins. Importantly, complexins compete with alpha-SNAP for binding to the complex, suggesting that complexins may modulate neurotransmitter release process. To examine this possibility and to understand the physiological function of complexins, we generated complexin II knockout mice. The complexin-II-deficient mice (-/-) were viable and fertile, and appeared normal. Electrophysiological recordings in the mutant hippocampus showed that ordinary synaptic transmission and paired-pulse facilitation, a form of short-term synaptic plasticity, were normal. However, long-term potentiation (LTP) in both CA1 and CA3 regions was impaired, suggesting that complexin II may not be essential for synaptic vesicle exocytosis, but it does have a role in the establishment of hippocampal LTP.  相似文献   

13.
Bassoon is a 420-kDa presynaptic protein which is highly concentrated at the active zones of nerve terminals of conventional synapses, both excitatory glutamatergic and inhibitory GABAergic, in rat brain. It is thought to be involved in the organization of the cytomatrix at the site of neurotransmitter release. In the retina, there are two structurally and functionally distinct types of synapses: ribbon and conventional synapses. Antibodies against bassoon were applied to sections of rat and rabbit retina. Strong punctate immunofluorescence was found in the outer and inner plexiform layers. Using pre- and post-embedding immunostaining and electron microscopy, bassoon was localized in the outer plexiform layer at ribbon synapses formed by rods and cones but was absent from basal synaptic contacts formed by cones. In the inner plexiform layer a different picture emerged. As in the brain, bassoon was found at conventional inhibitory GABAergic synapses, made by amacrine cells, but it was absent from the bipolar cell ribbon synapses. These data demonstrate differences in the molecular composition of the presynaptic apparatuses of outer and inner plexiform layer ribbon synapses. Thus, differential equipment with cytomatrix proteins may account for the functional differences observed between the two types of ribbon synapses in the retina.  相似文献   

14.
The classical experiments on synaptic vesicle recycling in the 1970s by Heuser and Reese, Ceccarelli, and their colleagues raised opposing theories regarding the speed, mechanisms, and locations of membrane retrieval at the synapse. The Heuser and Reese experiments supported a model in which synaptic vesicle recycling is mediated by the formation of coated vesicles, is relatively slow, and occurs distally from active zones, the sites of neurotransmitter release. Because heavy levels of stimulation were needed to visualize the coated vesicles, Ceccarelli’s experiments argued that synaptic vesicle recycling does not require the formation of coated vesicles, is relatively fast, and occurs directly at the active zone in a “kiss-and-run” reversal of exocytosis under more physiological conditions. For the next thirty years, these models have provided the foundation for studies of the rates, locations, and molecular elements involved in synaptic vesicle endocytosis. Here, we describe the evidence supporting each model and argue that the coated vesicle pathway is the most predominant physiological mechanism for recycling synaptic vesicles.  相似文献   

15.
Pregnenolone sulfate (PREGS) is an endogenous neurosteroid widely released from neurons in the brain, and is thought to play a memory-enhancing role. At excitatory synapses PREGS facilitates transmitter release, but the underlying mechanism is not known. We addressed this issue at the calyx of Held in rat brainstem slices, where direct whole-cell recordings from giant nerve terminals are feasible. PREGS potentiated nerve-evoked excitatory postsynaptic currents (EPSCs) without affecting the amplitude of miniature EPSCs, suggesting that its site of action is presynaptic. In whole-cell recordings from calyceal nerve terminals, PREGS facilitated Ca2+ currents, by accelerating their activation kinetics and shifting the half-activation voltage toward negative potentials. PREGS had no effect on presynaptic K+ currents, resting conductance or action potential waveforms. In simultaneous pre- and postsynaptic recordings, PREGS did not change the relationship between presynaptic Ca2+ influx and EPSCs, suggesting that exocytotic machinery downstream of Ca2+ influx is not involved in its effect. PREGS facilitated Ba2+ currents recorded from nerve terminals and also from HEK 293 cells expressed with recombinant N- or P/Q-type Ca2+ channels, suggesting that PREGS-induced facilitation of voltage-gated Ca2+ channels (VGCCs) is neither Ca2+ dependent nor VGCC-type specific. The PREGS-induced VGCC facilitation was blocked by the PREGS scavenger (2-hydroxypropyl)-beta-cyclodextrin applied from outside, but not from inside, of nerve terminals. We conclude that PREGS facilitates VGCCs in presynaptic terminals by acting from outside, thereby enhancing transmitter release. We propose that PREGS may directly modulate VGCCs acting on their extracellular domain.  相似文献   

16.
The P19 embryonal carcinoma cells differentiate into neurons, astrocytes, and fibroblast-like cells following induction with retinoic acid. The cells mature into functional neurons, as determined by their ability to release neurotransmitters in a Ca2+- and depolarization-dependent manner. P19 neurons in culture represent a mixed population in terms of their neurotransmitter phenotype. The cholinergic phenotype of these neurons is modulated by culture density. Cholinergic markers, such as the vesicular acetylcholine transporter, acetyl cholinesterase, and choline acetyltransferase, are expressed in about 85% of the cells in sparse cultures and are largely suppressed at high cell densities. In contrast, glutamate release is enhanced in dense P19 neuronal cultures. The factor mediating the density effect is concentrated exclusively on the cell membrane of P19 neurons and not on the nonneuronal cells, which also differentiate from P19 embryonal carcinoma cells. This membrane-associated component retains its functionality, even after membrane fixation. The downregulation of the cholinergic properties in dense cultures is paralleled by a downregulation of the α subunit of the ciliary neurotrophic factor (CNTF) receptor. Thus, it is suggested that the membrane-associated factor, which mediates the density effect, downregulates the cholinergic phenotype by inhibiting the responsiveness of these neurons to CNTF. We further suggest that the P19 cell line can serve as a model system for the study of neurotransmitter phenotype acquisition and plasticity throughout neuronal differentiation.  相似文献   

17.
Homozygous or heterozygous mutations in the PTEN‐induced kinase 1 (PINK1) gene have been linked to early‐onset Parkinson's disease (PD). Several neurophysiological studies have demonstrated alterations in striatal synaptic plasticity along with impaired dopamine release in PINK1‐deficient mice. Using electrophysiological methods, here we show that PINK1 loss of function causes a progressive increase of spontaneous glutamate‐mediated synaptic events in the hippocampus, without influencing long‐term potentiation. Moreover, fluorescence analysis reveals increased neurotrasmitter release although our biochemical results failed to detect which presynaptic proteins might be engaged. This study provides a novel role for PINK1 beyond the physiology of nigrostriatal dopaminergic circuit. Specifically, PINK1 might contribute to preserve synaptic function and glutamatergic homeostasis in the hippocampus, a brain region underlying cognition. The subtle changes in excitatory transmission here observed might be a pathogenic precursor to excitotoxic neurodegeneration and cognitive decline often observed in PD. Using electrophysiological and fluorescence techniques, we demonstrate that lack of PINK1 causes increased excitatory transmission and neurotransmitter release in the hippocampus, which might lead to the cognitive decline often observed in Parkinson's disease. Synapse 70:223–230, 2016 . © 2016 Wiley Periodicals, Inc.  相似文献   

18.
A study has been made of the in vitro effects of (+/-)- and (-)-baclofen on the evoked field potentials and release of endogenous amino acid neurotransmitter candidates (aspartate, glutamate, GABA and possibly taurine) which accompany electrical stimulation of the excitatory input to the olfactory cortex slice, the lateral olfactory tract. Baclofen appears to reduce the excitatory input to the GABA-utilizing inhibitory interneurones; this action was manifest as a drug-induced abolition of the field potential known as the P-wave (IC50 for (-)-baclofen, 1.7 +/- 0.4 microM) together with a simultaneous reduction in the synaptically evoked release of aspartase and glutamate from the cut surface of slices. Both these actions of baclofen exhibited concentration dependence and stereospecificity and were not antagonized by picrotoxin (25 microM) thereby suggesting that they are directly related. The consequence of this action of baclofen was the abolition of GABA-mediated presynaptic and postsynaptic inhibition together with their respective field potential correlates, the late N- and I-waves. (+/-)-Baclofen (5 and 25 microM) also inhibited the potassium-evoked release of aspartate and glutamate from small cubes of tissue but, except at a high concentration (1 mM), had no effect on GABA release. Baclofen (up to 1 mM) did not affect transmission either at the lateral olfactory tract-superficial pyramidal cell synapse, a site where aspartate is the likely neurotransmitter, or at the superficial pyramidal cell collateral-deep pyramidal cell excitatory synapse. It is proposed that: (i) the actions of baclofen on the olfactory cortex are the result of inhibition of aspartate and glutamate release, probably from deep pyramidal cell collaterals; and (ii) not all neurones utilizing excitatory amino acids as their neurotransmitters are subject to the inhibitory action of baclofen.  相似文献   

19.
20.
The termination of chemical neurotransmission in the central nervous system (CNS) involves the rapid removal of neurotransmitter from synapses. This is fulfilled by specific transport systems in neurons and glia, including those for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. Glial cells express the cloned Na(+)/Cl(-)-dependent, high-affinity GABA transporters (GATs) GAT1, GAT2, and GAT3, as well as the low-affinity transporter BGT1. In situ hybridization and immunocytochemistry have revealed that each transporter shows distinct regional distribution in the brain and the retina. The neuronal vs. glial localization of the different transporters is not clear-cut, and variations according to species, neighboring excitatory synapses, and developmental stage have been reported. The localization, stoichiometry, and regulation of glial GATs are outlined, and the participation of these structures in development, osmoregulation, and neuroprotection are discussed. A decrease in GABAergic neurotransmission has been implicated in the pathophysiology of several CNS disorders, particularly in epilepsy. Since drugs which selectively inhibit glial but not neuronal GABA uptake exert anticonvulsant activity, clearly the establishment of the molecular mechanisms controlling GATs in glial cells will be an aid in the chemical treatment of several CNS-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号