首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using a monoclonal antibody, nerve growth factor receptor has been immunohistochemically identified within the suprachiasmatic nucleus of adult rats. Labelling was most intense in the ventral, lateral and caudal portions of the nucleus and appeared primarily associated with fibers and terminals. These were among the most intensely labelled fibers and terminals in the forebrain.  相似文献   

2.
Immunocytochemical techniques were used to examine and compare the effects of intracerebroventricular administration of nerve growth factor (NGF) on Fos expression within identified cholinergic and non-cholinergic neurons located in different regions of the adult rat basal forebrain. Animals were killed 1, 3, 6, and 12 h after receiving NGF (0.5 or 5.0 μg) or vehicle into the left lateral ventricle and sections through the medial septum, diagonal band of Broca, nucleus basalis magnocellularis, and striatum were processed for the combined immunocytochemical detection of Fos and choline acetyltransferase (a marker for cholinergic neurons), or Fos and parvalbumin (a marker for gamma aminobutyric acid (GABA)-containing neurons). NGF produced a significant increase in the percentage of cholinergic neurons containing Fos-like immunoreactivity within all four regions examined. The largest increases were detected in the medial septum (47.8%) and the horizontal limb of the diagonal band of Broca (67.7%). In these areas, NGF-mediated induction of Fos-like immunoreactivity was detected as early as 3 h, peaked at 6 h, and was reduced by 12 h, postinfusion. Small but significant increases in the percentage of cholinergic neurons containing Fos-like immunoreactivity were also detected in the striatum (4.2%) and in the nucleus basalis magnocellularis (19.2%) 3–12 h following administration of the higher dose of NGF. No evidence for an NGF-mediated induction of Fos within parvalbumin-containing neurons was detected in any of the four regions at any of the time-points examined; however, evidence for an NGF-mediated induction of Fos within epithelial cells lining the lateral ventricle was observed. These data demonstrate that NGF induces Fos expression within cholinergic, and not parvalbumin-containing (GABAergic), neurons in the basal forebrain, and furthermore that intracerebroventricular administration of NGF influences the different subgroups of basal forebrain cholinergic neurons to different degrees. ©1977 Elsevier Science B.V. All rights reserved.  相似文献   

3.
4.
BACKGROUND—The cholinergic nucleus basalis (Ch4)is an exclusive site of neurofibrillary degeneration in alcoholicpatients with Wernicke's encephalopathy. Aim—To testthe hypothesis that the loss of Ch4 neurons contributes to the memorydisorder, Korsakoff's psychosis, commonly seen in Wernicke's encephalopathy.
METHODS—Magnocellular basal forebrain neuronswere quantified in alcoholic patients with Wernicke's encephalopathy,both with and without Korsakoff's psychosis, and neurologicallyasymptomatic alcoholic and non-alcoholic controls. Because amnesic andnon-amnesic patients with Wernicke's encephalopathy share commonperiventricular lesions, both thiamine deficient groups as well asalcoholic patients with no neurological complications were included todetermine the lesion specific to memory impairment.
RESULTS—Ch4 cell number did not differsignificantly between alcoholic and non-alcoholic controls and therewas no correlation between cell number and lifetime alcohol intake.However, Ch4 cell number in all groups was significantly correlatedwith the volume of its major projection target, the cerebral cortex.Ch4 cell number in the non-amnesic Wernicke's encephalopathy group wassignificantly below controls (24%), with cell number in patients withKorsakoff's psychosis 21% below controls. There was considerableoverlap in cell number between groups. On discriminant analysis, therewas significantly greater cell loss in three non-amnesic patients withWernicke's encephalopathy than in some patients with Korsakoff's psychosis. The non-amnesic patient with the greatest cell loss wasimpaired on attentional tasks.
CONCLUSION—Whereas neurons in the nucleus basalisare at risk in thiamine deficient alcoholic patients, cell loss isminor and does not account for the profound memory disorder.

  相似文献   

5.
The nucleus basalis of Meynert provides diffuse cholinergic input to the neocortex. When compared with an age- and sex-matched control, the nucleus basalis from a patient with Alzheimer disease demonstrated substantial reduction of neurons. Loss of this neuronal population may represent an anatomical correlate of the well-documented cholinergic derangement in Alzheimer disease.  相似文献   

6.
A monoclonal antibody raised against the receptor for nerve growth factor (NGF) was used to examine the distribution and morphology of NGF receptor-containing neurons within the central nervous system of Cebus apella monkeys. Most somata demonstrating positive immunoreactivity were localized within the Ch1-4 regions of the basal forebrain. Neurons in the Ch1 region displayed morphological features typical of cholinergic medial septal neurons. These perikarya were primarily vertically oriented (40-50 micron along the vertical axis) with both apical and basal neuritic processes. Magnocellular (40-50 micron) neurons within the Ch2 (vertical limb of the diagonal band), Ch3 (horizontal limb of the diagonal band) and Ch4 (nucleus basalis of Meynert) regions were multipolar and had rounded perikarya that often displayed an eccentric nucleus. Fibers presumably originating from the Ch1-2 regions were observed throughout the fimbria-fornix system and were found to terminate preferentially within the CA1 and CA3 regions of the hippocampal formation and within the dentate gyrus of the hippocampus. An intense fiber network was also observed in the olfactory tubercle and other rhinencephalic structures, presumably originating from the Ch3 region of the basal forebrain. Beaded processes emanating from the Ch4 region primarily coursed within the external capsule and terminated preferentially within layers I, II, and IV of the cerebral cortex. In a pattern similar to that of cortical acetylcholinesterase (AChE) staining, NGF receptor immunopositive fibers were oriented in a tangential plane within the molecular layer of the cortex and in both a radial and tangential fashion within the cortical granular cell layers. In addition to neural innervation, there was an extensive vascular apposition by NGF receptor-containing neurites on both large caliber vessels and microcapillaries. NGF receptor immunoreactivity was extensively, but not exclusively, colocalized with choline acetyltransferase (ChAT) and AChE in the basal forebrain. A small population of cholinergic neurons were observed that were not NGF receptor-immunoreactive. Conversely, a few NGF receptor-containing neurons that were noncholinergic were also observed in this brain region. NGF receptor-containing somata were also identified in the putamen. The number of immunoreactive neurons observed in this structure, however, would not appear to be sufficient to account for the homologous NGF receptor binding densities described in rodents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A monoclonal antibody raised against the receptor for nerve growth factor (NGF) has been used to map the distribution of NGF receptor-containing profiles within the human basal forebrain of four male and three female elderly patients without neurologic or psychiatric illness. Immunohistochemically processed tissue reveals a continuum of NGF receptor-positive neurons located within the medial septum, vertical and horizontal limb nuclei of the diagonal band, and nucleus basalis. NGF receptor-containing neurons are also found within the bed nucleus of the stria terminalis, the anterior commissure, the internal capsule, and the internal and external medullary laminae of the globus pallidus. Virtually all (greater than 95%) NGF receptor-containing neurons colocalize with the specific cholinergic marker choline acetyltransferase (ChAT) or the nonspecific marker acetylcholinesterase (AChE). Conversely, a few cholinergic perikarya are found which are not NGF receptor positive (and vice versa). These findings demonstrate that human basal forebrain neurons on which NGF receptor immunoreactivity is detected are primarily cholinergic and analogous to the nonhuman primate Ch1-Ch4 subgroups of Mesulam et al. (J. Comp. Neurol., 214:170-197, '83). NGF receptor-containing fiber tracts are observed emanating from the medial septum and vertical limb nucleus of the diagonal band coursing medially within the fornix. Another fascicle originating mainly from the nucleus basalis and travelling within the external capsule enroute to the cortex is observed innervating all cortical layers. Comparison of NGF receptor- and ChAT-containing neurons reveals cholinergic perikarya within the striatal complex, whereas virtually no NGF receptor-containing neurons are found in these structures. An occasional displaced NGF receptor-containing neurons is seen in the ventrolateral portion of the putamen and the white matter underlying the nucleus accumbens. These data are discussed in terms of the relationship of NGF receptor- and ChAT-containing neurons within the basal forebrain and in terms of the possible functional significance of NGF in normal and diseased brain.  相似文献   

8.
Nerve growth factor receptor (NGFr) immunoreactive neurons of the adult rat nucleus basalis magnocellularis were examined by electron microscopy. Prominent NGFr immunoreactivity (IR) was consistently present along the perikaryal cell membrane and frequently in intracellular sites of protein synthesis and modification such as the rough endoplasmic reticulum and Golgi apparatus, respectively. Immunoperoxidase reaction product was also seen along the nuclear membrane. Membrane-bound aggregates of immunoreactive vesicles were scattered throughout the perikaryon, being more concentrated in the perinuclear region and in the proximal neurites. These may represent either aggregates of receptor-containing vesicles on their way to/from the cell membrane or secondary lysosomes where NGFr reaction product is degraded. Immunostained cytoplasmic vesicles which possessed an electron-dense coat and were adjacent to or contiguous with the plasmalemma probably represented internalized receptor. This ultrastructural study of the subcellular distribution of NGFr-IR in basal forebrain neurons therefore demonstrates sites of receptor metabolism and potential receptor-ligand interaction.  相似文献   

9.
A monoclonal antibody recognizing the p75 receptor for nerve growth factor (NGF) was used to assess the immunohistochemical expression of NGF receptors within the developing human neo-, limbic, and paralimbic cortices as well as the hippocampal complex. Between embryonic weeks 16 and 26, a transient population of neurons located within the upper and lower subplate zones of the neo-, limbic, and paralimbic cortices expressed the receptor for NGF. In contrast, NGF receptor-immunoreactive neurons were only observed in the upper subplate zone of the entorhinal cortex at embryonic week 40 (term), a staining pattern not observed in a 5-year-old specimen. The expression of NGF receptor-immunoreactive neurons within the upper subplate zone between embryonic weeks 16 and 40 was characterized by a dense band of immunoreactive neurons and neuropil. These neurons were bipolar with basal and apically directed neurites. NGF receptor-immunoreactive neurons were also scattered throughout the lower subplate zone and underlying white matter between embryonic weeks 19 and 26. These neurons were multipolar, with less apically directed neurites. NGF receptor-immunoreactive subplate neurons displayed a topographic distribution with the heaviest concentration found within limbic and paralimbic cortices as well as association neocortex. In contrast, light to moderate NGF receptor-immunoreactivity was seen in sensory-motor cortex. Within the hippocampal complex, only a few lightly stained NGF receptor-immunoreactive neurons were seen within the fimbria, hilar region of the dentate gyrus, and subiculum. The expression of NGF receptor-immunoreactivity increased within the subplate zone of the pre- and parasubiculum culminating in intense entorhinal cortex staining. As the entorhinal cortex merged with the developing inferior temporal association cortex, there was a marked reduction in staining intensity. In contrast to those in the subplate zone, neurons within the germinal zone and cortical plate were NGF receptor immunonegative at all times examined. The presence of NGF receptors in the subplate zone suggests that neurotrophins such as NGF play an important role in the transient viability of these neurons as well as in the guidance of cortical afferent inputs into topographically organized regions of the cerebral cortex.  相似文献   

10.
It has been proposed that nerve growth factor (NGF) provides critical trophic support for the cholinergic neurons of the basal forebrain and that it becomes available to these neurons by retrograde transport from distant forebrain targets. However, neurochemical studies have detected low levels of NGF mRNA within basal forebrain areas of normal and experimental animals, thus suggesting that some NGF synthesis may actually occur within the region of the responsive cholinergic cells. In the present study with in situ hybridization and immunohistochemical techniques, the distribution of cells containing NGF mRNA within basal forebrain was compared with the distribution of cholinergic perikarya. The localization of NGF mRNA was examined by using a 35S-labeled RNA probe complementary to rat preproNGF mRNA and emulsion autoradiography. Hybridization of the NGF cRNA labeled a large number of cells within the anterior olfactory nucleus and the piriform cortex as well as neurons in a continuous zone spanning the lateral aspects of both the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus. In the latter regions, large autoradiographic grain clusters labeled relatively large Nissl-pale nuclei; it did not appear that glial cells were autoradiographically labeled. Comparison of adjacent tissue sections processed for in situ hybridization to NGF mRNA and immunohistochemical localization of choline acetyltransferase (ChAT) demonstrated overlapping fields of cRNA-labeled neurons and ChAT-immunoreactive perikarya in both the horizontal limb of the diagonal band and magnocellular preoptic regions. However, no hybridization of the cRNA probe was observed in other principal cholinergic regions including the medial septum, the vertical limb of the diagonal band, or the nucleus basalis of Meynert. These results provide evidence for the synthesis of NGF mRNA by neurons within select fields of NGF-responsive cholinergic cells and suggest that the generally accepted view of “distant” target-derived neurotrophic support should be reconsidered and broadened.  相似文献   

11.
The present study used the NGFR-5 monoclonal antibody raised against human nerve growth factor receptor (NGFR) to determine the extent of NGFR immunoreactivity within the embryonic and young adult Cebus apella cerebellum as well as the human cerebellum. Immunohistochemically processed tissue revealed NGFR expressing Purkinje cell somata, axons, and dendrites, the latter being observed within the molecular layer of both adult species. Within all regions of the cerebellum we observed both darkly and lightly immunostained Purkinje cells. The proximal axons of these cells, which were visualized for short distances within the granular cell layer, appeared to contain bulbous aggregates of reaction product. In sagittal sections, the full extent of the Purkinje cell dendritic tree was observed in the more lightly stained portions of the cerebellum. In situ hybridization experiments revealed NGFR mRNA within Purkinje cells in a pattern similar to that seen with immunohistochemistry. The distribution of NGFR immunoreactivity within the cerebellum exhibits a general topographic organization with the heaviest and most consistent staining occurring within the archi- and neocerebellum and weaker staining within the paleocerebellum. In fetal Cebus monkey cerebellum obtained at gestational day 50 and 70, NGFR immunoreactivity was observed as a band composed of developing Purkinje cell neurites. These profiles were seen in the paleo- and neocerebellum, but not the archicerebellum. The present investigation is the first demonstration of NGFR immunoreactive profiles in the adult monkey and human cerebellum. These findings suggest that nerve growth factor may influence locomotor and vestibular behaviors that are mediated by cerebellar circuity. The precise mode of action for the NGF/NGFR system within the cerebellum remains to be determined.  相似文献   

12.
The origin of nerve growth factor receptor-immunoreactive (NGFr-ir) fibers innervating the thalamic reticular nucleus (Rt) was here investigated in the rat using retrograde tracers in combination with immunocytochemistry. Neurons retrogradely labeled from Rt were scattered ipsilaterally throughout the medial septal nucleus and the other cell groups of the basal forebrain, which contained NGFr-ir cells; 10–20% of these retrogradely labeled neurons were also NGFr-ir. Furthermore, a few retrogradely labeled NGFr-ir cells were detected in the basal forebrain on the contralateral side. Retrograde tracing combined with a double immunocytochemical procedure revealed that all the NGFr-ir neurons labeled from Rt also displayed immunoreactivity for choline acetyltransferase. The present results demontrate that the NGFr-ir neurons of the basal forebrain which project to Rt are cholinergic. The possible functional implications of these findings are discussed.  相似文献   

13.
A representative region of the nucleus basalis of Meynert was investigated in 11 patients with idiopathic Parkinson's disease and compared with the identical region in 13 age-matched control subjects. Simultaneously, the cerebral cortex and the nucleus basalis in the patients with Parkinson's disease were examined for senile plaques and Alzheimer's neurofibrillary tangles. The nucleus basalis was significantly depleted of its large neurons in Parkinson's disease (p less than 0.001 versus controls; Student t tests), but in the majority of cases the neuron loss was not associated with Alzheimer's disease.  相似文献   

14.
The nucleus basalis of Meynert (nbM) has been implicated in the pathogenesis of the presynaptic cholinergic deficiency in the cerebrum of patients with Alzheimer's disease. To further define the role of this cholinergic basal forebrain nucleus in dementia, we examined the nbM in two patients with lobar sclerosis, or Pick's disease (PD). The brains of both of these patients showed substantial reductions in the number of nerve cells in many neuronal populations, including the nbM. Our observations of the changes in the nbM are correlated with previous investigations of cholinergic markers in PD.  相似文献   

15.
A depletion of large cholinergic neurons in the nucleus basalis of Meynert is a consistent finding in Alzheimer's disease (AD). The nucleus basalis of Meynert also contains interneurons and afferents that may modulate its functioning. In the present study we examined neurochemical markers for neuropeptides, amino acid neurotransmitters, and monoaminergic neurotransmitters in postmortem samples of the nucleus basalis in 16 control subjects and 30 patients with AD. There were no significant changes in glutamate, aspartate, taurine, gamma-aminobutyric acid (GABA), and catecholamines; however, concentrations of serotonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol were significantly reduced. Choline acetyltransferase activity was significantly reduced, consistent with previous reports. Galanin immunoreactivity was significantly increased twofold in the patients with AD, but there were no significant changes in substance P, somatostatin, or neuropeptide Y immunoreactivity. Since galanin inhibits acetylcholine release, and produces cognitive deficits in animals, increased galanin immunoreactivity in the nucleus basalis of Meynert in AD may contribute to the cognitive deficits that characterize the illness.  相似文献   

16.
Recent studies indicate that there is a marked reduction in trkA-containing nucleus basalis neurons in end-stage Alzheimer's disease (AD). We used unbiased stereological counting procedures to determine whether these changes extend to individuals with mild cognitive impairment (MCI) without dementia from a cohort of people enrolled in the Religious Orders Study. Thirty people (average age 84.7 years) came to autopsy. All individuals were cognitively tested within 12 months of death (average MMSE 24.2). Clinically, 9 had no cognitive impairment (NCI), 12 were categorized with MCI, and 9 had probable AD The average number of trkA-immunoreactive neurons in persons with NCI was 196, 632 +/- 12,093 (n = 9), for those with MCI it was 106,110 +/- 14,565, and for those with AD it was 86,978 +/- 12,141. Multiple comparisons showed that both those with MCI and those with AD had significant loss in the number of trkA-containing neurons compared to those with NCI (46% decrease for MCI, 56% for AD). An analysis of variance revealed that the total number of neurons containing trkA immunoreactivity was related to diagnostic classification (P < 0.001), with a significant reduction in AD and MCI compared to NCI but without a significant difference between MCI and AD. Cell density was similarly related to diagnostic classification (P < 0.001). There was a significant correlation with the Boston Naming Test and with a global score measure of cognitive function. The number of trkA-immunoreactive neurons was not correlated with MMSE, age at death, education, apolipoprotein E allele status, gender, or Braak score. These data indicate that alterations in the number of nucleus basalis neurons containing trkA immunoreactivity occurs early and are not accelerated from the transition from MCI to mild AD.  相似文献   

17.
A monoclonal antibody raised against the human nerve growth factor receptor (NGFr) was used to map the distribution of NGFr-immunoreactivity (IR) in the trigeminal nuclear complex of 8- to 10-week-old, immature felines. Somata and fibers show NGFr-IR within the trigeminal ganglion and the mesencephalic trigeminal nucleus. NGFr-IR is also found in fibers within the trigeminal root entry zone, the spinal trigeminal tract, and in fibers and terminals within all the central trigeminal sensory nuclei. The NGFr-IR found within the trigeminal sensory nuclei typically occurs in circumscribed zones that vary in position for the different subnuclei. NGFr-IR is found in the dorsomedial and ventrolateral subdivisions of the main sensory nucleus, in the dorsomedial and occasionally in ventral positions within pars oralis, in dorsal and ventral regions within pars interpolaris, and primarily in outer lamina II with fibers that project to lamina V within pars caudalis/medullary dorsal horn. These results show some overlap with the central distribution of trigeminal primary afferent nociceptive fibers such as those found from the tooth pulp and overlap with the central distribution of such peptides as calcitonin gene-related peptide and substance P, but NGFr-IR is more restricted. Thus, it appears that NGFr-IR is associated with the endings of primary afferent fibers in the brain stem, and that these fibers may represent a certain subclass of primary afferent nociceptors. It is speculated that fibers showing NGFr-IR may have the ability to alter their response to peripheral deafferentation when compared to fibers lacking NGFr-IR.  相似文献   

18.
Intraventricular nerve growth factor (NGF) infusion in the adult rat can prevent and also, if delayed, reverse the disappearance of most of the axotomized medial septum cholinergic neurons immunostained for choline acetyltransferase (ChAT). We have utilized the delayed NGF treatment protocol to (i) extend to 3 months the delay time between axotomy and NGF treatment, (ii) define the time course of their recovery, (iii) determine that immunostaining for the (lower affinity) NGF receptor (NGFR) parallels loss and reversal of the ChAT marker, and (iv) evaluate changes in cholinergic somal size following axotomy and subsequent NGF treatment. While NGF treatments starting only 7 days after the fimbria-fornix transection (axotomy) almost entirely restored the number of both ChAT- and NGFR-positive medial septum neurons, longer delayed (2-3 weeks) treatment brought about recovery from the baseline of 20-25% to only about 70% of the control numbers. This limited recoverability, however, persisted even after a 95 day delay period. In all cases examined maximal recoveries were achieved within 3-7 days of NGF treatment. Neuronal size analyses provided evidence for an axotomy-induced atrophy. NGF treatments, started with 1 or 2 week delays, not only reversed fully the average somal size loss but also induced an actual hypertrophy of several of those neurons. These results provide additional evidence that at least half of the apparent loss of cholinergic medial septum neurons upon axotomy is due to a loss of markers such as the transmitter-related enzyme ChAT and NGFR rather than to actual neuronal cell death. These results also show that NGF exerts a genuine trophic influence by regulating the size of its target neurons as well as their content of several proteins.  相似文献   

19.
Recent studies indicate that trkA expression is reduced in end-stage Alzheimer's disease (AD). However, understanding the neuropathologic correlates of early cognitive decline, as well as the changes that underlie the transition from nondemented mild cognitive impairment (MCI) to AD, are more critical neurobiological challenges. In these regards, the present study examined the expression of trkA mRNA in individuals diagnosed with MCI and AD from a cohort of people enrolled in a Religious Orders Study. Individuals with MCI and AD displayed significant reductions in trkA mRNA relative to aged-matched controls, indicating that alterations in trkA gene expression occur early in the disease process. The magnitude of change was similar in MCI and AD cases, suggesting that further loss of trkA mRNA is not necessarily associated with the transition of individuals from nondemented MCI to AD. The loss of trkA mRNA was not associated with education, apolipoprotein E allele status, gender, Braak score, global cognitive score or Mini-Mental Status Examination. In contrast, the loss of trkA mRNA in MCI and AD was significantly correlated with function on a variety of episodic memory tests.  相似文献   

20.
Although it is well known that magnocellular cholinergic basal forebrain neurons are trophically responsive to nerve growth factor (NGF) and contain NGF receptors (NGFr), the exact distribution of forebrain NGFr-immunoreactive neurons and the degree to which cholinergic neurons are colocalized with them have remained in question. In this study we employed a very sensitive double-labelling method and examined in the same tissue section the distribution and cellular features of NGFr-positive and choline acetyltransferase (ChAT)-immunolabelled neurons within the rat basal forebrain. Throughout this region the majority of magnocellular basal forebrain neurons were immunoreactive for both NGFr and ChAT. However, a small percentage of neurons in the ventral portion of the vertical limb of the diagonal band of Broca were immunoreactive only for NGFr, whereas a larger population of magnocellular neurons in the substantia innominata exhibited only ChAT immunoreactivity. No NGFr-immunoreactive cells were found associated with ChAT-positive neurons in the striatum, neocortex, or hippocampus, and no single-labelled NGFr-immunoreactive neurons were found outside the basal forebrain area, except for a large number of positive-labelled cells along the ventricular walls of the third ventricle. In addition to its function in maintaining the normal integrity of the basal forebrain and cholinergic, peripheral sympathetic, and neural-crest-derived sensory neurons, NGF may also have a role in the growth of these neurons after damage to the nervous system. To examine this postulate the hippocampus was denervated of its septal input and examined 8 weeks later. Two populations of neurons were found to have undergone collateral sprouting--namely, the midline magnocellular cholinergic neurons of the dorsal hippocampus and the sympathetic noradrenergic neurons of the superior cervical ganglion. Both of these neuronal populations also stained strongly for NGFr. In contrast, the small intrinsic cholinergic neurons of the hippocampus exhibited neither sprouting response nor staining for NGFr. In view of these results, we suggest that the differing sprouting responses demonstrated by these three neuronal populations may be due to their responsiveness to NGF, as indicated by the presence or absence of NGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号