首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The localization of neurons expressing mRNAs for the NRI and NR2A-D subunits of the glutamatergic NMDA receptor was examined by non-radioactive in situ hybridization throughout the guinea pig vestibular nuclei. After deafferentation of the vestibular nuclei by unilateral labyrinthectomy, modifications of the mRNA distributions were followed for 30 days. A quantitative analysis was performed in the medial vestibular nucleus by comparison of the labelled neurons in the ipsi- and contra-lateral nuclei. In vestibular nuclei, the NR1 subunit mRNA was found in various populations of neurons. The NR2A and NR2C subunit mRNAs were less widely distributed, whereas little NR2D mRNA was detected and only rare cells contained NR2B mRNA. NRI and NR2A-D mRNAs were colocalized in some but not other neuronal types. Twenty hours after the lesion, there was a transient ipsilateral increase of NR1 mRNA level in the medial vestibular nucleus, followed by a decrease 48 h after the lesion and, at 3 days, by recovery to the control level. An ipsilateral increase in the mRNA level of NR2C subunit was detected 20 h after lesion and maintained at 48 h. No significant changes were apparent in NR2A, NR2B and NR2D mRNA levels. The distributions and the differential signal intensities of NR2A-D mRNAs suggest various subunit organizations of the NMDA receptors in different neurons of the vestibular nuclei. Neuronal plasticity reorganizations in the vestibular nuclei following unilateral labyrinthectomy appear to include only changes in NR1 and NR2C mRNA levels modifying the functional diversity of the NMDA receptor in the ipsilateral medial vestibular nucleus neurons. The transient changes in NRI and the NR2C subunit mRNA expressions in response to sensory deprivation are consistent with an active role for NMDA receptors in the appearance and development of the vestibular compensatory process.  相似文献   

3.
The functional enhancement of NMDA receptors after peripheral tissue injury is proposed to contribute to the sensitization of spinothalamic tract (STT) cells and hyperalgesia. Protein phosphorylation is a major mechanism for the regulation of NMDA receptor function. In this study, Western blots, immunofluorescence double labeling, and the retrograde tracing method were used to examine whether phosphorylation of NMDA receptor 1 (NR1) subunits increases in spinal cord tissue and spinal dorsal horn neurons, especially in STT cells, after injection of capsaicin (CAP) into the glabrous skin of one hindpaw of anesthetized rats. Western blots showed that phosphorylated NR1 protein in spinal cord tissue was increased 30 min after CAP injection. Immunofluorescence double-labeling staining showed no significant difference in the number of the NR1-like immunoreactive neurons in laminae I-VII in the lumbosacral segments (L(4)-S(1)) on the ipsilateral and the contralateral sides 30 min after CAP or vehicle injection. However, the numbers of phospho-NR1-like immunoreactive neurons were significantly increased on the ipsilateral side compared with the vehicle injection group. STT cells were labeled by bilateral microinjections of the retrograde tracer fluorogold into the lateral thalamus, including the ventral-posterior lateral nucleus. Immunofluorescence staining was performed at 30, 60, and 120 min after CAP injection or at 30 min after vehicle injection. There was a significant increase in the proportion of STT cells with phosphorylated NR1 subunits compared either with the contralateral side 30 and 60 min after CAP injection or either side of animals after intradermal injection of vehicle. These results provide direct evidence that NMDA receptors in STT cells are phosphorylated after CAP injection.  相似文献   

4.
The CA2 pyramidal cells are mostly resistant to cell death in mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, but they are aberrantly integrated into the epileptic hippocampal network via mossy fiber sprouting. Furthermore, they show increased excitability in vitro in hippocampal slices obtained from human MTLE specimens or animal epilepsy models. Although these changes promote CA2 to contribute to epileptic activity (EA) in vivo, the role of CA2 in the epileptic network within and beyond the sclerotic hippocampus is still unclear. We used the intrahippocampal kainate mouse model for MTLE, which recapitulates most features of the human disease including pharmacoresistant epileptic seizures and hippocampal sclerosis, with preservation of dentate gyrus (DG) granule cells and CA2 pyramidal cells. In vivo recordings with electrodes in CA2 and the DG showed that EA occurs at high coincidence between the ipsilateral DG and CA2 and current source density analysis of silicon probe recordings in dorsal ipsilateral CA2 revealed CA2 as a local source of EA. Cell-specific viral tracing in Amigo2-icreERT2 mice confirmed the preservation of the axonal projection from ipsilateral CA2 pyramidal cells to contralateral CA2 under epileptic conditions and indeed, EA propagated from ipsi- to contralateral CA2 with increasing likelihood with time after KA injection, but always at lower intensity than within the ipsilateral hippocampus. Furthermore, we show that CA2 presents with local theta oscillations and like the DG, shows a pathological reduction of theta frequency already from 2 days after KA onward. The early changes in activity might be facilitated by the loss of glutamic acid decarboxylase 67 (Gad67) mRNA-expressing interneurons directly after the initial status epilepticus in ipsi- but not contralateral CA2. Together, our data highlight CA2 as an active player in the epileptic network and with its contralateral connections as one possible router of aberrant activity.  相似文献   

5.
H Wood  J de Belleroche 《Brain research》1991,545(1-2):183-190
In this study we have characterized the induction of c-fos mRNA in cerebral cortex in response to unilateral kainate injection into the nucleus basalis. This treatment is associated with an intense stimulation of the ascending pathway and the subsequent induction of ornithine decarboxylase (ODC) enzyme activity and ODC mRNA in ipsilateral cerebral cortex which is sensitive to treatment with MK-801 and dihydropyridine antagonists. Unilateral injection of kainate into nucleus basalis caused a marked induction of c-fos mRNA in ipsilateral cortex which was detectable at 1 h, reached a maximal value at 8 h where c-fos mRNA levels were 16 times those in unoperated animals and then returned to control values by 24 h. However, the early induction of c-fos mRNA at 1 h was not related to a specific effect of kainate since at this time point, sham-operated animals also showed a significant increase in the level of c-fos mRNA in ipsilateral cerebral cortex. No significant induction of c-fos mRNA was detected in ipsilateral cortex in sham-operated animals at 4 and 8 h after injection of vehicle. Treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (3 mg/kg) significantly attenuated the response obtained at 4 h and 8 h after kainate injection by 73% and 55% respectively, but did not influence the level of c-fos mRNA induced at 1 h. Delaying administration of MK-801 by 30 min reduced the effectiveness of this treatment on the response obtained at 4 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We analyzed NMDA receptor subunit mRNAs, proteins, and anchoring proteins in mice transgenic for exon 1 of the HD gene. R6/2 mice had decreased levels of mRNAs encoding epsilon1 and epsilon2 NMDA receptor subunits (mouse orthologs of rat NR2A and NR2B subunits), but not the zeta1 subunit (mouse ortholog of NR1), as assessed by gene expression profiling and Northern blotting. In situ hybridization resolved mRNA decreases spatially to the CA1 field of hippocampus. Western blotting revealed decreases in plasma membrane-associated epsilon1 and epsilon2 subunits in hippocampus, and decreases in plasma membrane-associated zeta1 subunit in cortex and hippocampus. In addition, PSD-95 and alpha-actinin-2, proteins essential for anchoring NMDA receptors, were decreased. Finally, we found a decreased level of tyrosine-phosphorylated epsilon1 subunit, another determinant of NMDA receptor trafficking, in R6/2 hippocampus. Taken together, these data demonstrate multiple levels of NMDA receptor dysregulation, including abnormalities in mRNA expression levels, receptor stoichiometry, protein phosphorylation, and receptor trafficking.  相似文献   

7.
OBJECTIVE: Multiple quantifiable biologic abnormalities have been localized to the hippocampus in schizophrenia. Alterations in glutamate-mediated transmission at N-methyl-D-aspartic acid (NMDA)-sensitive receptors in hippocampus have been implicated in the pathophysiology of the illness. The authors tested the hypothesis that glutamatergic transmission within and efferent from hippocampus is altered in schizophrenia. METHOD: The authors analyzed postmortem hippocampal tissue from individuals with schizophrenia and from healthy individuals. The tissue samples had been collected by two brain tissue banks, one in Maryland and the other in Melbourne, Australia. lonotropic receptor binding for the NMDA, kainate, and (3)H-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA) receptors was quantified by using usual radioligand techniques. In situ hybridization autoradiography was used to quantify mRNA for the NMDA receptor subunits NR1, NR2A, and NR2B. RESULTS: Ligand binding to the ionotropic glutamate receptors (NMDA, kainate, and AMPA) did not differ significantly overall or in any subregion between the schizophrenia tissue and the healthy comparison tissue. The only exception was AMPA receptor binding in hippocampal subregion CA2, which was slightly but significantly less in schizophrenia. However, the level of mRNA for the NMDA receptor subunits NR1 and NR2B was significantly different between groups; in several hippocampal subregions, the level of NR1 mRNA was lower and the level of NR2B mRNA higher in schizophrenia. CONCLUSIONS: Because the NR1 subunit of the NMDA receptor is critical to full receptor activity, a reduction of NR1 in hippocampus in schizophrenia suggests a functional impairment in glutamatergic transmission at the NMDA receptor, resulting in reduced glutamatergic transmission within and possibly efferent from the hippocampus in schizophrenia. This defect could underlie a hypoglutamatergic state in regions of limbic cortex, consistent with published results from other lines of research in schizophrenia.  相似文献   

8.
Injection of N-methyl-D-aspartate (NMDA) or kainate in the striatum of 7-day-old rats induced massive cell loss in the ipsilateral striatum, hippocampus and inner cortical layers. In order to examine whether apoptosis contributes to cell death in this model of excitotoxic injury we examined the progression of internucleosomal DNA fragmentation and changes in cellular ultrastructure. Agarose gel electrophoresis of DNA extracted from the ipsilateral striatum, cerebral cortex and hippocampus clearly showed breakdown of DNA into oligonucleosome-sized fragments, indicative of apoptosis, 12 h post-NMDA injection. In addition, an increase between 12 and 24 h was observed as well as a continuous presence 5 days later. Kainate induced a similar time course of oligonucleosomal DNA fragmentation, but the intensity of the ethidium bromide stained bands was less compared with that observed for NMDA. DNA fragmentation was not detected in animals intrastriatally injected with Tris-HCl or in animals treated with MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohept-5,10-imine hydrogen maleate, 1 mg/kg] 30 min after NMDA injection. MK-801 had no effect on DNA fragmentation induced by kainate. In addition to agarose gel electrophoresis, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labelling (TUNEL) was used for detection of DNA fragmentation in sections. A gradual increase in the density of both apoptotic and non-apoptotic TUNEL nuclei was found in the anterior cingulate (ACC) and retrosplenial (RSC) areas of the cortex, the striatum, and the CA1 area and dentate gyrus of the hippocampus over the first 24 h post-NMDA or kainate injection. In the contralateral hemisphere hardly any TUNEL nuclei were present and their density was comparable with that in animals injected with vehicle only. In the ipsilateral mammillary nucleus (MN), which showed no signs of acute cell swelling after intrastriatal injection with NMDA, internucleosomal DNA fragmentation was found 24 and 48 h after intrastriatal NMDA injection. Here, the density of TUNEL cells with apoptotic morphology was high at 12 and 24 h post-NMDA injection but returned to control levels by 5 days. Electron microscopy showed cells with a clearly apoptotic morphology in the ACC and RSC and in the MN 24 h after NMDA injection. In the CA1 area of the hippocampus a necrotic, rather than an apoptotic, ultrastructure prevailed, indicating that the TUNEL method stained both apoptotic and necrotic cells. Based on biochemical and morphological criteria this study provides strong evidence that both apoptosis and necrosis are involved in NMDA- or kainate-induced excitotoxic cell death in the neonatal rat brain.  相似文献   

9.
We have studied the effect of intrahippocampal administration of quinolinic acid (QUIN) on the temporal expression of mRNAs encoding the immediate early genes (IEGs) c-fos and NGFI-A, by in situ hybridization histochemistry. After administration of QUIN to the left hippocampus, expression of mRNA of both IEGs was transiently stimulated. Maximal expression was found between 1 and 3 h. mRNA of both IEGs was simultaneously expressed in the ipsilateral and contralateral sides in the granule cell layer of the dentate gyrus, the pyramidal cell layer of the CA1 and CA3 fields as well as in the cortex. After pretreatment with the non-competitive NMDA antagonist MK-801 (2 mg/kg i.p. -30 min) the increased expression of both IEGs was partially prevented in the hippocampus and completely in the cortex. No inhibition was observed after treatment with the AMPA antagonist NBQX (30 mg/kg i.p. -15, -5 and +10 min). Additional delayed expression of both IEGs was observed in the ipsilateral hippocampus. This expression was related to cell damage. Twelve h after QUIN administration, c-fos and NGFI-A mRNAs were present in the dentate gyrus. After 4 days, only c-fos mRNA was observed in the dentate gyrus and CA1 field while no NGFI-A mRNA was detected. The present results show that the effect of QUIN is mediated by NMDA and not by AMPA receptors.  相似文献   

10.
11.
To investigate the changes in the principal subunit of N-methyl-D-aspartate (NMDA) receptor 1 (NR1) following the transient ischemia and postischemic hypothermia, in situ hybridization was used in the gerbil hippocampus. One of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, Glutamate receptor 2 (GluR2) was also investigated to compare with NR1. Even at 1 day, NR1 and GluR2 mRNAs in the CA1 region were reduced following ischemia. Although postischemic hypothermia prevented almost all the neuronal cell death by ischemia and inhibited the reduction of NR1 and GluR2 mRNAs in the CA1 region after 7 days, the downregulation of NR1 mRNA in the CA2 region was observed even at 1 day. This change was specific for NR1 and not for GluR2. These results suggest that the changes in NR1 and GluR2 receptors at the mRNA level would occur in spite of postischemic hypothermia. The phenomenon in the CA2 region may play an important role to rescue neuronal cell death by ischemia.  相似文献   

12.
The rostral ventrolateral medulla (RVLM) is the major brainstem region contributing to sympathetic control of blood pressure. We have compared the expression of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A-D), NR1 splice variants (NR1-1a/1b, -2a/2b, -3a/3b, -4a/4b), and the neuronal and inducible isoforms of NO synthase (nNOS and iNOS) in the RVLM of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR), based on the hypothesis that altered NMDA receptor make-up or altered expression of endogenous NO may be associated with the increase in sympathetic output described from this site in hypertension. Total RNA was extracted and reverse transcribed from the RVLM of mature male WKY and SHR (16-23 weeks). Conventional polymerase chain reaction (PCR) indicated that only the NR1 splice variants NR1-2a, NR1-2b, NR1-4a and NR1-4b were expressed in the RVLM of either species. Quantitative real-time PCR indicated that for both strains of rat, mRNA for the NR1 subunit (all splice variants) was the most abundant (16.5-fold greater, P< or =0.05, relative to the NR2A subunit). Amongst the NR2A-D subunits, NR2C was the most abundant (7- and 1.7-fold greater relative to the NR2A subunit, P< or =0.05, WKY and SHR, respectively). Relative to WKY, mRNA levels for the NR2C and NR2D subunits in the SHR RVLM were significantly lower (0.3- and 0.25-fold less, P< or =0.05), while nNOS was significantly higher (1.76-fold greater, P< or =0.05). This was confirmed immunohistochemically for nNOS expression. These results demonstrate differential expression levels of NMDA receptor subunits and NOS isoforms in the RVLM region of SHR when compared to WKY rats.  相似文献   

13.
The N-methyl- -aspartate (NMDA) receptor has shown to play an important role in the cognitive deficits associated with developmental lead (Pb) exposure. In this study, we examined the effects of low-level Pb exposure on NMDA receptor subunit gene expression in the developing rat brain. The pattern of NR1, NR2A, NR2B, and NR2C subunit mRNA in situ hybridization was consistent with previous studies. Brain levels of NR1 and NR2A mRNAs were lowest shortly after birth, increasing to reach peak levels by 14 or 21 days of age and subsequently decreasing at 28 days of age. NR2B mRNA levels were highest during early development and decreased as the animals aged. NR2C subunit mRNA was restricted to the cerebellum and a signal was not detectable until the second week of life. Lead exposure resulted in significant and opposite effects in NR1 and NR2A subunit mRNA expression with no changes in NR2B or NR2C subunit expression. The Pb-induced changes in NR1 and NR2A subunit mRNA were mainly present in the hippocampus. Hippocampal NR1 mRNA levels were significantly increased in the CA1 (15.3%) and CA4 (26.8%) pyramidal cells from 14-day-old Pb-exposed rats. At 21 days of age, only the NR1 mRNA at the CA4 subfield remained significantly elevated (10.3%). Lead exposure caused reductions of NR2A mRNA levels (11.9–19.3%) in the pyramidal and granule cell layers of the hippocampus at 14 and 21 days of age. NR1 mRNA levels were also significantly increased (14.0%) in the cerebellum of 28-day-old rats with no change in NR2A mRNA at any age. No significant changes in subunit mRNA levels were present in cortical or subcortical regions at any age. The Pb-induced changes in hippocampal NMDA receptor subunit mRNA expression measured in the present study may lead to modifications in receptor levels or subtypes and alter the development of defined neuronal connections which require NMDA receptor activation.  相似文献   

14.
Hardy PA  Chen W  Wilce PA 《Brain research》1999,819(1-2):33-39
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pair-fed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs. that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity.  相似文献   

15.
In our previous study, we have demonstrated that intra-amygdaloid injection of dibutyryl-cAMP causes neuronal damage in the injected AM and the CA 1-3 subfields of the ipsilateral hippocampus in addition to epileptic seizures. This result suggested that db-cAMP is a new neuroexcitotoxin. In this study, we examined comparative morphological effect on acetylcholinesterase (AChE) following intra-amygdaloid injection of db-cAMP or, kainate. In Expt. 1, twenty rats received 100 micrograms db-cAMP (N = 10), 0.5 micrograms kainate (N = 4), or saline as a vehicle (N = 6), through the implanted cannula under non-anesthesia. Either kainate or db-cAMP produced epileptic seizures, while saline induced no electroclinical ictal response. Following db-cAMP or kainate injection, neuronal loss was observed in the injected AM, but AChE positive fibers were intact. In the hippocampus ipsilateral to the injected AM, the loss of pyramidal cells was also noted in accordance with the severity of seizure intensity. In the piriform cortex ipsilateral to the injected AM, the loss of AChE-positive fibers were seen, but sparing neuronal cell bodies. In Expt. 2, nineteen rats were injected with 100 micrograms db-cAMP (N = 7), 0.5 micrograms kainate (N = 7), or saline as a vehicle (N = 5) under pentobarbital anesthesia. Kainate or db-cAMP produced few sporadic spikes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The glutamatergic transmission system plays a key role in afferent and efferent pathways involved in micturition. By in situ hybridization combined with retrograde Fast Blue labeling, expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR-A to -D) and N-methyl-D -aspartate (NMDA) receptor (NR1 and NR2A-D) subunit mRNAs were examined in visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. Parasympathetic preganglionic neurons (PGNs) in the intermediolateral nucleus highly expressed GluR-A and GluR-B subunit mRNAs, with very low levels for GluR-C and GluR-D subunits. As for the NMDA receptor, PGNs were associated with abundant signals for NR1 subunit mRNA, but without any NR2 subunit mRNAs. On the other hand, somatomotor neurons in the ventral horn (dorsolateral nucleus) express all four AMPA receptor subunit mRNAs, showing relatively abundant expressions of GluR-C and GluR-D subunit mRNA compared with PGNs. In addition to high levels of NR1 subunit mRNA, dorsolateral nucleus neurons moderately expressed NR2A and NR2B subunit mRNAs. These results suggest that molecular organization of both AMPA and NMDA receptor channels are distinct between PGNs and dorsolateral nucleus neurons. Considering that native NMDA receptors are heteromeric channels composed of NR1 and NR2 subunits, it seems likely that dorsolateral nucleus neurons, not PGNs, are provided with functional NMDA receptors, which could induce activity-dependent changes in synaptic transmission in the efferent pathway for the lower urinary tract. J. Comp. Neurol. 404:172–182, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

17.
PC12 cells are an established model for studying the role of N-methyl-d-aspartate (NMDA) receptors in excitotoxicity and function as multimeric assemblies of NR1 with at least one NR2(A-D) subunit. We examined NR1 splice variant and NR2 subunit expression in four PC12 cell-lines (ATCC, WEHI, Ordway and Flinders), correlated mRNA expression with protein expression, and used patch-clamp recordings to test functionality. PCR indicated strong expression of the NR1 splice variants NR1-2a and NR1-4a in all cell-lines, with the remainder weakly detected or absent. Real-time PCR showed variable levels of NR1 mRNA expression (all splice variants) between cell-lines and a significant increase in response to nerve growth factor in the WEHI and Ordway lines (NGF: 50ng/ml, 2.1- and 13.4-fold increases, respectively, P< or =0.05). mRNA for NR2A or NR2B was not detected in any PC12 cell-line. NR2C mRNA expression varied between lines and increased after NGF treatment (approximately 4-fold increase in WEHI and Ordway lines, P< or =0.05). In the Ordway line, NR2D mRNA was seen only after NGF treatment. Immunohistochemistry confirmed protein expression for NR1, NR2C and NR2D, and while fluorescence intensity changes in response to NGF paralleled mRNA responses, the degree of increase was of reduced magnitude. Whole-cell patch-clamping of NGF treated cells failed to detect functional NMDA receptors in any of the cell-lines. Our study demonstrates that in contrast to neurons from the CNS, PC12 cells do not express a normal complement of NMDA receptor-subunits, and this may be one factor limiting functional responses to NMDA/glutamate and consequently the use of PC12 cells as a neuronal model.  相似文献   

18.
The vulnerability of motoneurones to glutamate has been implicated in neurological disorders such as amyotrophic lateral sclerosis but it is not known whether specific receptor subtypes mediate this effect. In order to investigate this further, the expression of N-methyl-D-aspartate (NMDA) receptor subunits was studied during the first three post-natal weeks when motoneurones are differentially vulnerable to injury following neonatal nerve crush compared to the adult. Unilateral nerve crush was carried out at day 2 after birth (P2) which causes a decrease of 66% in motoneurone number by 14 days (P14). To study receptor expression in identified motoneurones, serial section analysis was carried out on retrogradely labelled common peroneal (CP) motoneurones by combined immunocytochemistry and in situ hybridization (ISH). mRNA levels were also quantified in homogenates from lumbar spinal cords in which the side ipsilateral to the crush was separated from the contralateral side. The NR1 subunit of the NMDA receptor was widely distributed in the spinal cord being expressed most strongly in motoneurone somata particularly during the neonatal period (P3-P7). The NR2 subunits were also expressed at higher levels in the somata and dendrites of neonatal motoneurones compared to older animals. NR2B mRNA was expressed at low to moderate levels throughout the studied period whereas NR2A mRNA levels were low until P21. Following unilateral nerve crush, an initial decrease in NR1 mRNA occurred at one day after nerve crush (P3) in labelled CP motoneurones ipsilateral to the crush which was followed by a significant increase in NR1 subunit expression at 5 days post-injury. This increase was bilateral although reaching greater significance ipsilateral to the crush compared with sham-operated animals. A significant increase in NR1 and NR2B mRNA post injury was also detected in spinal cord homogenates. In addition, the changes in levels of NR1 and NR2B mRNA were reflected by comparable bilateral changes at P7 in receptor protein determined by quantitative immunocytochemical analysis of NR1 and NR2 subunit expression in identified CP motoneurones indicating a co-ordinated regulation of receptor subunits in response to injury.  相似文献   

19.
Chidlow G  Osborne NN 《Brain research》2003,963(1-2):298-306
Quantification of retinal ganglion cell (RGC) loss/survival following a defined insult to the retina is a prerequisite in order to allow a comparison to be made between the effectiveness of potential neuroprotective drugs. The purpose of the present study was to extend the characterisation of our previously published semiquantitative RT-PCR assay to assess RGC loss/survival. Comparisons were made between the total mRNA levels of the ganglion cell-specific markers Thy-1 and neurofilament light (NF-L) in the retina at specific times after an intravitreal injection of N-methyl-D-aspartate (NMDA) or kainate or after 45 min of ischemia/reperfusion and also between the levels of NF-L mRNA and protein at various times after NMDA injection. Changes in Thy-1 and NF-L immunoreactivities were also observed. NMDA, kainate and ischemia/reperfusion all caused a reduction in the retinal content of Thy-1 and NF-L mRNAs and immunoreactivities. An excellent correlation was observed between the levels of the two mRNAs after these treatments. After NMDA, loss of NF-L mRNA was shown to precede loss of NF-L protein but total loss of each marker was similar after 7 days. The results of the study demonstrate that injury and subsequent death of RGCs, which occurs after ischemia/reperfusion and after intraocular injection of NMDA or kainate, can be followed by measurement of total retinal levels of Thy-1 and NF-L mRNAs and NF-L protein. The assays provides accurate, practical and complementary methods for assessing the potential benefits of neuroprotective drugs on RGCs which have been injured by a variety of experimental modalities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号