首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal adhesion kinase (FAK) is a key component of cell-substratum adhesions, known as focal adhesion complexes. Growing evidence indicates that FAK is important in maintenance of normal cell survival and that disruption of FAK signaling results in loss of substrate adhesion and anoikis (apoptosis) of anchorage-dependent cells, such as endothelial cells. Basal FAK activity in non-stimulated endothelial cells is important in maintaining cell adhesion to integrins via PI3 kinase/Akt signaling. FAK activity is dependent upon small GTPase signaling. FAK also appears to be important in cardiomyocyte hypertrophy and hypoxia/reoxygenation-induced cell death. This review summarizes the signaling pathways of FAK in prevention of apoptosis and the role of FAK in mediating adenosine and homocysteine-induced endothelial cell apoptosis and in cardiovascular diseases.  相似文献   

2.
Significant progress has been made recently in the understanding of cell adhesion signaling. Many components of focal adhesion complexes have been identified in fibroblasts and endothelial cells, showing considerable overlap and complementarity between growth signaling mediated by growth factor receptors and adhesive signaling mediated by cell adhesion receptors such as integrins. These studies showed that the cytoskeleton is essential for the correct intracellular localization of large signaling complexes that regulate the cellular machinery. Although adhesive interactions are essential to maintain steady-state hemopoiesis, the study of the function and role of adhesive interactions in hemopoietic progenitor and stem cells is less advanced. As in fibroblasts, functional overlap between hemopoietic growth factor receptors and cell adhesion receptors has been demonstrated, with the cytoskeleton likely playing a critical role in integrating information provided by soluble factors and cell adhesion molecules constituting the hemopoietic microenvironment. The intention of this article is to give a critical review of the current knowledge about the cytoskeleton and integrin-mediated signaling in hemopoietic progenitor cells.  相似文献   

3.
The migration of vascular smooth muscle cells (SMCs) from the media into the neointima and their subsequent proliferation is important in the pathogenesis of atherosclerosis. This process is regulated by multiple factors, including growth factors, and involves changes in the interaction of SMCs with the extracellular matrix and in intracellular signaling cascades that regulate cell movement. We demonstrated previously that hepatocyte growth factor (HGF) is expressed in human atherosclerotic plaques. Although HGF has been shown to promote SMC migration, the mechanisms involved in this process have not been characterized fully. In this study, inhibitory antibodies were used to determine which integrins mediated HGF-induced SMC migration. Inhibition of beta1 or beta3 integrin resulted in a significant decrease in migration. Subsequent experiments were performed to characterize additional biochemical mechanisms involved in HGF-mediated migration. HGF induced the redistribution of focal adhesions, the activation of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and their increased association with beta1 and beta3 integrins, and the production of pro-matrix metalloproteinase-2. Migration levels were significantly reduced by cotreatment of SMCs with the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, UO126, the p38 inhibitor, SB203580, or the phosphatidylinositol-3 kinase inhibitor, LY294002. In HGF-treated SMCs, focal adhesion redistribution and FAK and Pyk2 activation were decreased by ERK1/2 inhibition. Neither SB203580 nor LY294002 inhibited HGF-induced ERK1/2 activation. Thus, ERK1/2 signaling may play an important role in HGF-mediated SMC migration by contributing to focal adhesion redistribution and FAK and Pyk2 activation.  相似文献   

4.
Gerli R  Solito R  Weber E  Aglianó M 《Lymphology》2000,33(4):148-157
Anchoring filaments are a characteristic feature of initial lymphatic vessels. They connect the abluminal membrane of endothelial cells to the surrounding elastic fibers. The main molecular component of anchoring filaments is fibrillin. Initial lymphatic vessels of human skin were stained with monoclonal antibodies to fibrillin, integrins alpha 2 beta 1, alpha 3 beta 1 and alpha v beta 3, vinculin, talin, beta-actin and focal adhesion kinase (FAK). A double-labeling immunofluorescence method was used to simultaneously stain fibrillin and alpha 3 beta 1 integrin or FAK. Close contiguities between integrins and anchoring filaments were observed. These results suggest that the anchoring filaments connect the extracellular matrix and the endothelial cell cytoskeleton through the transmembrane integrin and FAK molecule. The results also demonstrate the presence of focal adhesions in the wall of initial lymphatic vessels. These connections possibly enable transmission of chemical and/or mechanical stimuli from the extracellular matrix to the endothelial cells. Here, they are transformed in cytoskeleton rearrangements and intracellular signaling events, some of which may contribute to the initial formation of lymph.  相似文献   

5.
The vascular endothelium serves as a semi-selective barrier between the circulating contents of the blood and the tissues through which they flow. Disruption of this barrier results in significant organ dysfunction during devastating inflammatory syndromes such as sepsis and acute lung injury (ALI). Sphingosine 1-phosphate (S1P) is an endogenous lipid regulator of endothelial permeability that produces potent barrier enhancement via actin and junctional protein rearrangement and resultant cytoskeletal changes. A key effector protein in this S1P response is focal adhesion kinase (FAK), a highly conserved cytoplasmic tyrosine kinase involved in the engagement of integrins and assembly of focal adhesions (FA) through the catalysis of multiple downstream signals. After stimulation by S1P, endothelial FAK undergoes specific tyrosine phosphorylation that results in activation of the kinase and dynamic interactions with other effector molecules to improve the endothelial barrier. FAK participates in peripheral actin cytoskeletal rearrangement as well as cell-matrix (FA) and cell-cell (adherens junction) junctional complex strengthening that combine to decrease vascular permeability. This review summarizes the current knowledge of the role of FAK in mediating enhanced endothelial barrier function by S1P.  相似文献   

6.
The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.  相似文献   

7.
The focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To gain insight into FAK function, we examined the potential interaction of FAK with intracellular signaling molecules containing the Src homology 2 domains. We report here the stable association of FAK with phosphatidylinositol 3-kinase (PI3-kinase; EC 2.7.1.137) in NIH 3T3 mouse fibroblasts. This interaction was stimulated by cell adhesion concomitant with FAK activation. We also found that recombinant FAK bound to the p85 subunit of PI 3-kinase directly in vitro and that autophosphorylation of recombinant FAK in vitro increased its binding to PI 3-kinase. We detected increased tyrosine phosphorylation of the p85 subunit of PI 3-kinase during cell adhesion and observed direct phosphorylation of p85 by FAK in vitro. Together, these results suggest that PI 3-kinase may be a FAK substrate in vivo and serve as an effector of FAK.  相似文献   

8.
Focal adhesions (FA) are important mediators of endothelial cytoskeletal interactions with the extracellular matrix (ECM) via transmembrane receptors, integrins and integrin-associated intracellular proteins. This communication is essential for a variety of cell processes including EC barrier regulation and is mediated by the non-receptor protein tyrosine kinase, focal adhesion kinase (FAK). As FA mediate the basic response of EC to a variety of stimuli and FAK is essential to these responses, the idea of targeting EC FAK as a therapeutic strategy for an assortment of diseases is highly promising. In particular, inhibition of FAK could prove beneficial in a variety of cancers via effects on EC proliferation and angiogenesis, in acute lung injury (ALI) via the attenuation of lung vascular permeability, and in rheumatoid arthritis via reductions in synovial angiogenesis. In addition, there are potential therapeutic benefits of FAK inhibition in cardiovascular disease and diabetic nephropathy as well. Several drugs that target EC FAK are now in existence and include agents currently under investigation in preclinical models as well as drugs that are readily available such as the sphingolipid analog FTY720 and statins. As the role of EC FAK in the pathogenesis of a variety of diseases continues to be explored and new insights are revealed, drug targeting of FAK will continue to be an important area of investigation and may ultimately lead to highly novel and effective strategies to treat these diseases.  相似文献   

9.
The bioactive component of mildly oxidized low-density lipoproteins, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), activates tissue factor expression and monocyte adhesion to endothelial cells (EC) from systemic circulation, but blocks expression of inflammatory adhesion molecules (VCAM, E-selectin) and neutrophil adhesion associated with EC acute inflammatory response to bacterial lypopolysacharide (LPS). Due to constant exposure to oxygen free radicals, lipids in the injured lung are especially prone to oxidative modification and increased OxPAPC generation. In this study, we focused on OxPAPC-mediated intracellular signaling mechanisms that lead to physiological responses in pulmonary endothelial cells. Our results demonstrate that OxPAPC treatment activated in a time-dependent fashion protein kinase C (PKC), protein kinase A (PKA), Raf/MEK1,2/Erk-1,2 MAP kinase cascade, JNK MAP kinase and transient protein tyrosine phosphorylation in human pulmonary artery endothelial cells (HPAEC), whereas nonoxidized PAPC was without effect. Pharmacological inhibition of PKC and tyrosine kinases blocked activation of Erk-1,2 kinase cascade upstream of Raf. OxPAPC did not affect myosin light chain (MLC) phosphorylation, but increased phosphorylation of cofillin, a molecular regulator of actin polymerization. Finally, OxPAPC induced p60Src-dependent tyrosine phosphorylation of focal adhesion proteins paxillin and FAK. Our results suggest a critical involvement of PKC and tyrosine phosphorylation in OxPAPC-induced activation of Erk-1,2 MAP kinase cascade associated with regulation of specific gene expression, and demonstrate rapid phosphorylation of cytoskeletal proteins, which indicates OxPAPC-induced EC remodeling.  相似文献   

10.
Rho family GTPases are key signal transducers that regulate cell adhesion and migration and a variety of other cellular responses, including changes in gene expression. In this review, we discuss how Rho GTPases regulate signaling by endothelial cell receptors involved in leukocyte extravasation. First, Rho GTPases affect the expression of some leukocyte adhesion molecules on endothelial cells, such as intracellular adhesion molecule-1 and E-selectin, that can be induced by proinflammatory mediators, hypoxia, or shear stress. Second, Rho GTPases are activated by engagement of several leukocyte adhesion receptors and contribute to both early morphological changes and subsequent alterations in gene expression. Rho GTPases are therefore candidate targets for inhibiting leukocyte transendothelial migration in heart disease and chronic inflammatory disorders.  相似文献   

11.
Belkin AM  Tsurupa G  Zemskov E  Veklich Y  Weisel JW  Medved L 《Blood》2005,105(9):3561-3568
Interactions of endothelial cells with fibrin(ogen) are implicated in inflammation, angiogenesis, and wound healing. Cross-linking of the fibrinogen alphaC domains with factor XIIIa generates ordered alphaC oligomers mimicking polymeric arrangement of the alphaC domains in fibrin. These oligomers and those prepared with tissue transglutaminase were used to establish a mechanism of the alphaC domain-mediated interaction of fibrin with endothelial cells. Cell adhesion and chemical cross-linking experiments revealed that oligomerization of the alphaC domains by both transglutaminases significantly increases their RGD (arginyl-glycyl-aspartate)-dependent interaction with endothelial alphaVbeta3 and to a lesser extent with alphaVbeta5 and alpha5beta1 integrins. The oligomerization promotes integrin clustering, thereby increasing cell adhesion, spreading, formation of prominent peripheral focal contacts, and integrin-mediated activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) signaling pathways. The enhanced integrin clustering is likely caused by ordered juxtaposition of RGD-containing integrin-binding sites upon oligomerization of the alphaC domains and increased affinity of these domains for integrins. Our findings provide new insights into the mechanism of the alphaC domain-mediated interaction of endothelial cells with fibrin and imply its potential involvement in cell migration. They also suggest a new role for transglutaminases in regulation of integrin-mediated adhesion and signaling via covalent modification of integrin ligands.  相似文献   

12.
Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is overexpressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.  相似文献   

13.
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.  相似文献   

14.
Focal adhesion kinase (FAK) is a highly conserved, cytoplasmic tyrosine kinase that has been implicated in promoting cell migration and transmission of antiapoptotic signals in vertebrate cells. In cultured cells, integrin engagement with the extracellular matrix promotes the recruitment of FAK to focal contacts and increases in its phosphotyrosine content and kinase activity, suggesting FAK is an intracellular mediator of integrin signaling. We have identified a Drosophila FAK homolog, DFak56, that is 33% identical to vertebrate FAK, with the highest degree of homology in domains critical for FAK function, including the kinase and focal adhesion targeting domains, and several protein-protein interaction motifs. Furthermore, when expressed in NIH 3T3 cells, DFak56 both localizes to focal contacts and displays the characteristic elevation of phosphotyrosine content in response to plating the cells on fibronectin. During embryogenesis, DFak56 is broadly expressed, and it becomes elevated in the gut and central nervous system at later stages. Consistent with a role in cell migration, we also observe that DFak56 is abundant in the border cells of developing egg chambers before the onset of, and during, their migration.  相似文献   

15.
Focal adhesion kinase (FAK), a broadly expressed non-receptor tyrosine kinase which transduces signals from integrins, growth and hormonal factors, is a key player in many fundamental biological processes and functions, including cell adhesion, migration, proliferation and survival. The involvement of FAK in this range of functions supports its role in important aspects of organismal development and disease, such as central nervous system and cardiovascular development, cancer, cardiac hypertrophy and tissue fibrosis. Many functions of FAK are correlated with its tyrosine kinase activity, which is temporally and spatially controlled by complex intra-molecular autoinhibitory conformation and inter-molecular interactions with protein and lipid partners. The inactivation of FAK in mice results in embryonic lethality attributed to the lack of proper development and function of the heart. Accordingly, embryonic FAK myocyte-specific knockout mice display lethal cardiac defects such as thin ventricle wall and ventricular septum defects. Emerging data also support a role for FAK in the reactive hypertrophy and failure of adult hearts. Moreover, the mechanisms that regulate FAK in differentiated cardiac myocytes to biomechanical stress and soluble factors are beginning to be revealed and are discussed here together with data that connect FAK to its downstream effectors. This article is part of a Special Issue entitled "Local Signaling in Myocytes".  相似文献   

16.
The biologic effects of growth factors are dependent on cell adhesion, and a cross talk occurs between growth factors and adhesion complexes. The aim of the present study was to evaluate the influence of cell adhesion on the major intracellular signaling pathways elicited by platelet-derived growth factor (PDGF) in hepatic stellate cells (HSC). PDGF signaling was investigated in an experimental condition characterized by lack of cell adhesion for different intervals of time. Basal and PDGF-induced focal adhesion kinase (FAK) tyrosine phosphorylation was maintained in a condition of cell suspension for 2, 4, and 6 hours, whereas it was completely lost after 12 and 24 hours. We examined MAP kinase activity at 2 and 24 hours, corresponding to the higher and lower levels of FAK phosphorylation. In these experiments, MAP kinase activity correlated with FAK phosphorylation. Stimulation with PDGF was able to cause Ras-GTP loading only in adherent cells. The ability of PDGF to induce phosphatidylinositol 3-kinase (PI 3-K) activity was abrogated in cells maintained in suspension. The Ser473 phosphorylation of Akt was only marginally affected by the lack of cell adhesion. We then evaluated the association of FAK with c-Src. This association was found to be cell adhesion dependent, and it did not appear to be dependent from phosphorylated FAK. These changes in PDGF-induced intracellular signaling were associated with a remarkable reduction of PDGF-proliferative potential in nonadherent cells, although no marked differences in the apoptotic rate were observed. In conclusion, these results suggest that cell adhesion differentially regulates major signaling pathways activated by PDGF in HSC.  相似文献   

17.
Rho signaling and mechanical control of vascular development   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: To discuss how mechanical cues and Rho signaling contribute to control of vascular development and hematopoiesis. RECENT FINDINGS: Rho guanine trinucleotide phosphatases are ubiquitious regulators of cytoskeletal structure and tension generation. Recent work shows that Rho-dependent mechanical interactions between cells and extracellular matrix regulate cell fate switching in capillary endothelial cells and megakaryocytes in vitro, as well as angiogenesis, vascular permeability, leukocyte migration and platelet formation in vivo. Signaling pathways that link integrins and tension-dependent changes in cytoskeletal structure to Rho have also begun to be delineated. SUMMARY: Mechanical force generation by cells and simultaneous sensing of these physical forces play critical roles in vascular development by estimating whether individual cells will grow, differentiate, move or undergo apoptosis in the local tissue microenvironment. Future work in the vascular field therefore needs to incorporate physical control mechanisms into existing biochemical concepts of cell and tissue regulation.  相似文献   

18.
OBJECTIVE: Rheumatoid arthritis (RA) synovial cells interact with inflammatory cells, as well as extracellular matrices, through integrins. However, the relevance of beta1 integrin to inflammatory processes in RA remains unclear. We examined the role of beta1 integrin-mediated signaling in RA. METHODS: Expression of cell-surface molecules was assessed by FACScan. Engagement of beta1 integrins was performed by crosslinking using a specific monoclonal antibody (mAb) and ligand matrices such as fibronectin or collagen. To determine the involvement of tyrosine kinases in beta1 integrin-mediated signaling, the cells were pretreated with various inhibitors of intracytoplasmic signaling or were transfected with a wild-type focal adhesion kinase (FAK) or a dominant negative truncation of the FAK expression plasmid via cationic liposome-mediated transfection. Apoptosis of synovial cells was detected by double staining with propidium iodide and annexin V. RESULTS: beta1 integrin was highly expressed on RA synovial cells. Engagement of beta1 integrins by crosslinking as well as by ligand matrices markedly up-regulated expression of intercellular adhesion molecule 1 (ICAM-1) and Fas. Up-regulation of ICAM-1 and Fas induced by beta1 integrin was mediated by the tyrosine kinase signaling pathway, especially involving FAK. Fas-mediated early apoptotic change in the cells was amplified by beta1 crosslinking. CONCLUSION: Our results suggest that interaction of beta1 integrins with extracellular matrix augments expression of ICAM-1 and Fas on RA synovial cells, as well as Fas-mediated apoptosis of synovial cells. This might lead to the spontaneous growth arrest through the Fas/Fas ligand pathway observed in RA synovitis.  相似文献   

19.
B lymphocytes express several members of the integrin family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. In addition to beta1 integrins, predominantly alpha4 beta1, mature B cells also express alpha4 beta7, which is a receptor for vascular cell adhesion molecule-1 and fibronectin, and is also involved in the homing of B cells to mucosal sites through binding to a third ligand, mucosal address in cell adhesion molecule-1. Here we describe that crosslinking of alpha4 beta7 integrins on B cell lines and normal tonsillar B cells, induces tyrosine phosphorylation of multiple substrates of 105-130 kD, indicating that beta7 integrin plays a role as signaling molecule in B cells. This pattern of phosphorylated proteins was very similar to that induced following ligation of alpha4 beta1. Interestingly, ligation of alpha5 beta1 or alpha6 beta1 also stimulated the 105-125 kD group of phosphorylated proteins, whereas ligation of beta2 integrins did not. The focal adhesion tyrosine kinase p125FAK was identified as one of these substrates. Beta1 or beta7 mediated tyrosine phosphorylations were markedly decreased when the microfilament assembly was inhibited by cytochalasin B. These results suggest that intracellular signals initiated by different integrins in B cells may converge, to similar cytoskeleton-dependent tyrosine phosphorylated proteins.  相似文献   

20.
OBJECTIVE: Recent results have shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors referred to as statins rapidly activate the protein kinase Akt/PKB in endothelial cells (ECs) and endothelial precursor cells (EPCs). This pathway is critical for cellular responses that contribute to angiogenesis and EC function including nitric oxide production, cellular survival and migration. METHODS: Here we tested whether statins control the translocation of recombinant and endogenous Akt to the plasma membrane of endothelial cells in a cholesterol-dependent manner. RESULTS: Low doses of statins rapidly induce the translocation of Akt to discrete sites in endothelial cell plasma membrane that colocalize with F-actin-positive, focal adhesion kinase (FAK)-negative lamellipodia and filopodia. This translocation event requires the lipid-binding, pleckstrin homology domain of Akt. Treatment with phosphoinositide 3-kinase (PI 3-kinase) inhibitors or the HMG-CoA reductase reaction product L-mevalonate blocks the translocation of Akt in response to statin stimulation. Furthermore, the ability of statins to promote Akt activation and translocation to the membrane is inhibited by cholesterol delivery to cells, but cholesterol loading had no effect on VEGF-induced Akt activation. CONCLUSIONS: These results suggest that statin activation of Akt signaling is mediated by the translocation of Akt to cholesterol-sensitive membrane structures within activated ECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号