首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer.   总被引:3,自引:0,他引:3  
Magnetization transfer (MT) between protons of macromolecules and protons of water molecules is a recently introduced mechanism for tissue contrast in MR imaging. The MT effect is strong in tissues where there is an efficient cross relaxation between macromolecular protons and water protons and where this interaction is the dominant source of relaxation. Paramagnetic ions shorten relaxation times and decrease the MT effect. These two facts led to the assumption that, in the case of contrast enhanced MRI, the combination of the T1-weighted imaging method and the MT technique may yield increased contrast, compared with standard methods. The synergistic effect is demonstrated in this work with studies of egg white samples and by imaging three patients with different brain pathologies. The lesion-to-white matter contrasts, with standard T1-weighted sequences with and without the MT effect, were compared before and after the introduction of Gd-DTPA. In each case the synergistic effect of T1 weighting and MT improved the contrast enhancement provided with Gd-diethylenetriamine pentaacetic acid.  相似文献   

2.
The soft tissue contrast obtained in fast imaging using rapidly repeated partial saturation sequences is usually based on differences in T1. We describe here an extension of the method which results in the development of clinically useful T2-based contrast.  相似文献   

3.
Contrast in rapid MR imaging: T1- and T2-weighted imaging   总被引:1,自引:0,他引:1  
Partial saturation (PS) is an imaging technique that is useful in applications that require rapid image acquisitions (imaging time less than 1 min). Image contrast in PS imaging, as in other magnetic resonance methods, depends on the often conflicting effects of differences in proton density, T1, and T2. Previous analyses of pulse sequence optimization to maximize image contrast have assumed 90 degrees pulses and examined the effects of varying repetition times (TR) and echo times (TE). In this paper we present theoretical calculations and images made with a 0.6 T imager to show that the radiofrequency pulse tip angle alpha, and not the pulse sequence timing parameters, is the most important parameter for producing image contrast. For large tip angles (alpha greater than or equal to 60 degrees), contrast is primarily determined by differences in T1, but for small tip angles (alpha approximately equal to 25 degrees), contrast is primarily due to differences in T2. The T2-weighted images can be produced as quickly as T1-weighted images by using a small pulse angle and a long TE; it is not necessary to use a long TR to reduce the effects of T1 differences. Optimum pulse angles are calculated, and the potential advantages and disadvantages of T2-weighted and T1-weighted PS imaging are discussed.  相似文献   

4.
An ECG-triggered, segmented, magnetization-prepared, 3D, trueFISP sequence was recently developed for coronary artery imaging. Fat saturation was achieved by a chemically selective fat saturation pulse, which is susceptible to field inhomogeneities. In addition, the blood-myocardial contrast was compromised because data were acquired during signal transience to steady state. The goals of this work were to investigate the potential benefits of T(1)-shortening agents in improving blood-myocardial contrast, and to develop a technique to make fat suppression robust to resonance offsets for coronary artery imaging using trueFISP. A magnetization-preparation scheme using saturation and inversion pulses was developed for simultaneous suppression of tissues over a wide range of T(1)'s, including myocardium and fat. An additional advantage of this method is that it is insensitive to heart rate variations. Computer simulations were used to design the magnetization preparation, and volunteer studies were performed to compare precontrast imaging to contrast-enhanced (CE) imaging. Results showed consistent fat suppression and a 78% increase in the blood-myocardial contrast-to-noise ratio (CNR) for postcontrast imaging over precontrast imaging. In conclusion, contrast agents are useful for trueFISP coronary artery imaging.  相似文献   

5.
Standard T1- and T2-weighted spin-echo acquisitions were compared with T1- and T2-weighted phase-contrast techniques in a series of 10 consecutive patients with parotid masses to assess the role of phase-contrast methods in the evaluation of lesions in the parotid fossa. Greater tissue-lesion contrast was obtained with phase-contrast methods in nine of 10 cases, allowing improved lesion visualization; however, an increase in lesion detectability was not observed in this series. Standard MR imaging methods are sufficient for imaging the parotid region in most cases, but can be quite time-consuming. Recommended screening of the parotid fossa that optimizes tissue-lesion contrast, lesion detectability, and imaging time is performed by combining a standard T1-weighted acquisition with a T1- or T2-weighted phase-contrast acquisition. Selection of a T1- or T2-weighted phase-contrast acquisition is determined by the T1 characteristics of the lesion.  相似文献   

6.
A method for the volume- and resonance line-selective determination of the longitudinal relaxation time in the rotating frame, T1 rho, is described. The spin-lock pulse intrinsic to the T1 rho sequence simultaneously replaces the first slice-selective pulse of the VOSY method for localized spectroscopy. This is a further parameter suitable for the local characterization of tissue. On the same basis, T1 rho can be used as a new contrast parameter for biomedical imaging purposes. An appropriate pulse sequence for T1 rho imaging is presented. Test experiments which promise some striking advantages compared with conventional magnetic resonance imaging are reported.  相似文献   

7.
ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifacts. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. in computer simulation, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each flip angle (0-180 degrees) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR = 500 msec, TE = 20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muscle)2*100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38 degrees was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100 degrees, and that at 53 degrees was identical to that with T1-weighted spin-echo. CI on LFSE (74.0 +/- 52.0) was significantly higher than CI on CSE (40.9 +/- 35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging.  相似文献   

8.
目的 :观察联合使用SPIO和Gd DTPA对大鼠肝癌模型的增强特点。材料和方法 :制作 3 0只大鼠肝癌模型 ,增强前后行MR扫描 ,平扫序列包括SE、TSE、GRE的T1、T2WI序列。增强扫描分为 4组 ,其中Gd +SPIO联合增强组 10只 ,先注射Gd DTPA ,行SE、GRET1WI扫描 ,随后给予SPIO造影剂 ,扫描序列同平扫 ;SPIO +Gd联合增强组 10只 ,先注射SPIO ,行SE、GRET1WI扫描 ,12min后再给予Gd DTPA ,扫描序列同平扫 ;Gd、SPIO增强组各为 5只 ,增强扫描序列同平扫。分析各增强扫描组中病灶的增强特点。结果 :两种联合增强方法中 ,肝脏信号强度在所有扫描序列中均较平扫时下降 ,但与SPIO增强组无差异 ;病灶的SNR、CNR在SE、GRET1WI中明显高于平扫和SPIO、Gd DTPA增强法 ;在T2WI中病灶的SNR、CNR和单独使用SPIO无显著性差异。两种联合增强方法之间的SNR和CNR在每种扫描序列中没有显著性差异。结论 :SPIO和Gd DTPA联合增强方法利用了两种造影剂的优势 ,增加了肿瘤病变的对比 ,可提高发现病变的几率。  相似文献   

9.
Measurements of relaxation rates in the rotating frame with spin-locking techniques are sensitive to substances with exchanging protons with appropriate chemical shifts. The authors develop a novel approach to exchange-rate selective imaging based on measured T(1ρ) dispersion with applied locking field strength, and demonstrate the method on samples containing the X-ray contrast agent Iohexol with and without cross-linked bovine serum albumin. T(1ρ) dispersion of water in the phantoms was measured with a Varian 9.4-T magnet by an on-resonance spin-locking pulse with fast spin-echo readout, and the results used to estimate exchange rates. The Iohexol phantom alone gave a fitted exchange rate of ~1 kHz, bovine serum albumin alone was ~11 kHz, and in combination gave rates in between. By using these estimated rates, we demonstrate how a novel spin-locking imaging method may be used to enhance contrast due to the presence of a contrast agent whose protons have specific exchange rates.  相似文献   

10.
A new time-efficient and accurate technique for simultaneous mapping of T(1) and B(1) is proposed based on a combination of the actual flip angle (FA) imaging and variable FA methods. Variable FA-actual FA imaging utilizes a single actual FA imaging and one or more spoiled gradient-echo acquisitions with a simultaneous nonlinear fitting procedure to yield accurate T(1)/B(1) maps. The advantage of variable FA-actual FA imaging is high accuracy at either short T(1) times or long repetition times in the actual FA imaging sequence. Simulations show this method is accurate to 0.03% in FA and 0.07% in T(1) for ratios of repetition time to T1 time over the range of 0.01-0.45. We show for the case of brain imaging that it is sufficient to use only one small FA spoiled gradient-echo acquisition, which results in reduced spoiling requirements and a significant scan time reduction compared to the original variable FA method. In vivo validation yielded high-quality 3D T(1) maps and T(1) measurements within 10% of previously published values and within a clinically acceptable scan time. The variable FA-actual FA imaging method will increase the accuracy and clinical feasibility of many quantitative MRI methods requiring T(1)/B(1) mapping such as dynamic contrast enhanced perfusion and quantitative magnetization transfer imaging.  相似文献   

11.
Cerebral blood volume in a rat model of ischemia by MR imaging at 4.7 T   总被引:2,自引:0,他引:2  
Perturbation of the cerebral circulation by occlusion of the vertebral arteries and a carotid artery can be visualized by using MR imaging and the intravascular contrast agent Gd-DTPA complexed to albumin. This tracer consistently reduced the T1 relaxation time in the brain and blood. The difference between hemispheres was revealed by less T1 reduction in the occluded hemisphere and by an adjustment in the display contrast of images that revealed the territory of decreased perfusion. These results were confirmed by comparing them with cerebral blood flow using radioactive microspheres and the intravascular blood volume tracer 51Cr-EDTA. This method, combined with high-resolution MR imaging, can be applied to serial noninvasive studies of cerebral blood volume in ischemia and other conditions.  相似文献   

12.
The aim of this study was to prove the concept of using a long intravenous half-life blood-pool T1 contrast agent as a new functional imaging method. For each of ten healthy subjects, two dynamic magnetic resonance (MR) protocols were carried out: (1) a reference run with a typical T2* echo-planar imaging (EPI) sequence based on the blood oxygenation level-dependent (BOLD) effect and (2) a run with a T1-sensitive three-dimensional (3D) gradient-echo (GRE) sequence using cerebral blood volume (CBV) contrast after intravenous administration of a contrast agent containing a chelate of gadolinium diethylene-triamine-pentaacetate with a phosphono-oxymethyl substituent. All sequences were performed during the execution of a block-type finger-tapping paradigm. SPM5 software was used for statistical analysis. For both runs maximum activations (peak Z-score = 5.5, cluster size 3,449 voxels) were localized in the left postcentral gyrus. Visual inspection of respective signal amplitudes suggests the T1 contrast to be substantially smaller than EPI (0.5% vs 1%). A new functional imaging method with potentially smaller image artefacts due to the nature of CBV contrast and characteristics of the T1 sequence was proposed and verified.  相似文献   

13.
The spin lattice relaxation time (T1) is dependent on the strength of the polarizing magnetic field. The relaxation at low field strengths provides information from the processes at macromolecular level. However, the decrease of the polarizing magnetic field decreases the signal-to-noise ratio that determines the resolution of magnetic resonance images. In this report we describe a method for T1 rho imaging. The method possesses the relaxation time contrast of low field strengths with signal-to-noise ratio provided by the higher polarizing field. The relaxation time T1 rho is obtained under spin lock conditions. The spin system relaxes toward thermal equilibrium along the locking field. This process is analogous to the spin lattice relaxation at low field strength and characterized by the time constant T1 rho. T1 rho and T1 rho-dispersion may provide new imaging parameters for noninvasive tissue characterization.  相似文献   

14.
Methods: MRT     
MRI has become the imaging method of choice in special regions of the head and neck (e.g. nasopharynx, oropharynx, oral cavity, floor of the mouth). Superconducting MR-equipment with field strengths of 1.0-1.5 T are appropriate for the evaluation of the head and neck region. Signal acquisition is optimal with circular polarized head coils or with specially designed surface coils; the body coil is insufficient.When imaging tumors we need T1 contrast, T2 contrast and contrast medium information (enhancement information). For the T1 contrast T1-spin-echo is and remains the best sequence. For T2-contast T2 turbo-spin-echo with fat suppression has replaced the T2 spin-echo sequences because it is faster and shows good contrast between tumor and saturated fat tissue. Fat saturated T1 turbo-spin-echo enables best tissue contrast after Gd-DTPA application.  相似文献   

15.
T(1)-weighted contrast is conventionally obtained using multislice two-dimensional (2D) spin-echo (SE) imaging. Achieving isotropic, high spatial resolution is problematic with conventional methods due to a long acquisition time, imperfect slice profiles, or high-energy deposition. Single-slab 3D SE imaging was recently developed employing long echo trains with variable low flip angles to address these problems. However, long echo trains may yield suboptimal T(1)-weighted contrast, since T(2) weighting of the signals tends to develop along the echo train. Image blurring may also occur if high spatial frequency signals are acquired with low signal intensity. The purpose of this work was to develop an optimized T(1)-weighted version of single-slab 3D SE imaging with long echo trains. Refocusing flip angles were calculated based on a tissue-specific prescribed signal evolution. Spatially nonselective excitation was used, followed by half-Fourier acquisition in the in-plane phase encoding (PE) direction. Restore radio frequency (RF) pulses were applied at the end of the echo train to optimize T(1)-weighted contrast. Imaging parameters were optimized by using Bloch equation simulation, and imaging studies of healthy subjects were performed to investigate the feasibility of whole-brain imaging with isotropic, high spatial resolution. The proposed technique permitted highly-efficient T(1)-weighted 3D SE imaging of the brain.  相似文献   

16.
A method called segmented turboFLASH imaging allows high-resolution, multisection, short-inversion-time (TI) inversion-recovery (STIR), T1- or T2-weighted magnetic resonance (MR) studies of the liver to be completed within a breath-hold interval. The method was applied in a phantom and in 19 patients with hepatic lesions. Sequence comparisons were performed among segmented turboFLASH, single-shot turboFLASH, T1-weighted gradient-echo with ultrashort echo time, and T2-weighted spin-echo (SE) techniques. Signal from fat and liver could be nulled with the segmented turboFLASH method, with TIs of 10 and 300 msec, respectively; signal from these tissues could not be eliminated with the single-shot approach. Signal-difference-to-noise ratios and contrast for the best segmented sequences were comparable with those of the best T2-weighted SE and T1-weighted gradient-echo techniques. It is concluded that it is feasible to obtain breath-hold images with arbitrary tissue contrast by means of segmented turboFLASH imaging. The method may prove helpful for the detection and characterization of hepatic lesions and will likely have applications to other anatomic regions such as the chest and pelvis.  相似文献   

17.
In Overhauser enhanced magnetic resonance imaging (OMRI) for in vivo measurement of oxygen partial pressure (pO2), a paramagnetic contrast agent is introduced to enhance the proton signal through dynamic nuclear polarization. A uniform proton T1 is generally assumed for the entire region of interest for the computation of pO2 using OMRI. It is demonstrated here, by both phantom and in vivo (mice) imaging, that such an assumption may cause erroneous estimate of pO2. A direct estimate of pixel-wise T1 is hampered by the poor native MR intensities, owing to the very low Zeeman field (15-20 mT) in OMRI. To circumvent this problem, a simple method for the pixel-wise mapping of proton T1 using the OMRI scanner is described. A proton T1 image of a slice through the center of an SCC tumor in a mouse clearly shows a range of T1 distribution (0.2 approximately 1.6 s). Computation of pO2 images using pixel-wise T1 values promises oximetry with minimal artifacts by OMRI.  相似文献   

18.
Balanced steady-state free precession (SSFP) imaging is limited by off-resonance banding artifacts, which occur with periodicity 1/TR in the frequency spectrum. A novel balanced SSFP technique for widening the band spacing in the frequency response is described. This method, called wideband SSFP, utilizes two alternating repetition times with alternating RF phase, and maintains high SNR and T(2)/T(1) contrast. For a fixed band spacing, this method can enable improvements in spatial resolution compared to conventional SSFP. Alternatively, for a fixed readout duration this method can widen the band spacing, and potentially avoid the banding artifacts in conventional SSFP. The method is analyzed using simulations and phantom experiments, and is applied to the reduction of banding artifacts in cine cardiac imaging and high-resolution knee imaging at 3T.  相似文献   

19.
The effects of imaging conditions and measures for their improvement were examined with regard to recognition of the effects of contrast on images when T1-weighted imaging with selective fat suppression was applied. METHOD: Luminance at the target region was examined before and after contrast imaging using phantoms assuming pre- and post-imaging conditions. A clinical examination was performed on tumors revealed by breast examination, including those surrounded by mammary gland and by fat tissue. RESULTS: When fat suppression was used and imaging contrast was enhanced, the luminance level of fat tumors with the same structure as the prepared phantoms appeared to be high both before and after contrast imaging, and the effects of contrast were not distinguishable. This observation is attributable to the fact that the imaging conditions before and after contrast imaging were substantially different. To make a comparison between pre- and post-contrast images, it is considered necessary to perform imaging with fixed receiver gain and to apply the same imaging method for pre- and post-contrast images by adjusting post-contrast imaging conditions to those of pre-contrast imaging.  相似文献   

20.
Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号