首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: The purpose of this study was to profile methylation alterations of CpG islands in ovarian tumors and to identify candidate markers for diagnosis and prognosis of the disease. EXPERIMENTAL DESIGN: A global analysis of DNA methylation using a novel microarray approach called differential methylation hybridization was performed on 19 patients with stage III and IV ovarian carcinomas. RESULTS: Hierarchical clustering identified two groups of patients with distinct methylation profiles. Tumors from group 1 contained high levels of concurrent methylation, whereas group 2 tumors had lower tumor methylation levels. The duration of progression-free survival after chemotherapy was significantly shorter for patients in group 1 compared with group 2 (P < 0.001). Differential methylation in tumors was independently confirmed by methylation-specific PCR. CONCLUSIONS: The data suggest that a higher degree of CpG island methylation is associated with early disease recurrence after chemotherapy. The differential methylation hybridization assay also identified a select group of CpG island loci that are potentially useful as epigenetic markers for predicting treatment outcome in ovarian cancer patients.  相似文献   

2.
CpG island methylation is a common finding in colorectal cancer cell lines   总被引:5,自引:0,他引:5  
Tumour cell lines are commonly used in colorectal cancer (CRC) research, including studies designed to assess methylation defects. Although many of the known genetic aberrations in CRC cell lines have been comprehensively described, no studies have been performed on their methylation status. In this study, 30 commonly used CRC cell lines as well as seven primary tumours from individuals with hereditary nonpolyposis colorectal cancer (HNPCC) were assessed for methylation at six CpG islands known to be hypermethylated in colorectal cancer: hMLH1, p16, methylated in tumour (MINT-)-1, -2, -12 and -31. The cell lines were also assessed for microsatellite instability (MSI), ploidy status, hMLH1 expression, and mutations in APC and Ki-ras. Methylation was frequently observed at all examined loci in most cell lines, and no differences were observed between germline-derived and sporadic cell lines. Methylation was found at MINT 1 in 63%, MINT 2 in 57%, MINT 12 in 71%, MINT 31 in 53%, p16 in 71%, and hMLH1 in 30% of cell lines. Overall only one cell line, SW1417, did not show methylation at any locus. Methylation was found with equal frequency in MSI and chromosomally unstable lines. MSI was over-represented in the cell lines relative to sporadic CRC, being detected in 47% of cell lines. The rate of codon 13 Ki-ras mutations was also over three times that expected from in vivo studies. We conclude that CpG island hypermethylation, whether acquired in vivo or in culture, is a ubiquitous phenomenon in CRC cell lines. We suggest that CRC cell lines may be only representative of a small subset of real tumours, and this should be taken into account in the use of CRC cell lines for epigenetic studies.  相似文献   

3.
背景与目的:胃癌的发生基于基因和表观遗传学机制,表观遗传学的改变在胃癌的发展中起到重要作用。DNA甲基化是目前研究最多、最为深入的一种表观遗传学表达机制。DNA甲基化是一个可逆性过程。核苷酸切除修复交叉互补基因1(excision repair cross-complementing gene 1,ERCC1)是一种DNA损伤修复基因。本研究检测胃癌患者外周血与胃癌组织中ERCC1基因启动子CpG岛甲基化状态,探讨两者的关系及其意义。方法:采用甲基化特异性PCR技术,检测30例胃癌患者外周血、胃癌组织中ERCC1基因启动子CpG岛甲基化状态。结果:胃癌组织中ERCC1基因启动子CpG岛甲基化率为76.7%(23/30),外周血中ERCC1基因启动子CpG岛甲基化率为63.3%(19/30),差异无统计学意义。结论:胃癌患者外周血中的ERCC1基因启动子CpG岛甲基化率与胃癌组织中相似,检测胃癌患者外周血中的ERCC1基因启动子CpG岛甲基化状态为治疗胃癌提供一个简便、快捷、可靠的途径,同时也为以ERCC1基因启动子CpG岛甲基化作为靶点治疗胃癌提供了可靠的理论依据。  相似文献   

4.
BACKGROUND: Microsatellite instability (MSI) has been reported in endometrial carcinoma (EC) and in colorectal carcinoma (CRC), primarily as a result of defective DNA mismatch repair (MMR). The MMR gene hMLH1 commonly is inactivated in both EC and CRC. In the current study, epigenetic mechanisms involved in hMLH1 inactivation have been investigated to further elucidate the role of these mechanisms in the pathogenesis of EC and CRC. METHODS: Polymerase chain reaction (PCR)-based microsatellite analysis performed on paraffin-embedded tissues was used to select 42 sporadic carcinomas (21 ECs and 21 CRCs) with MSI. Immunohistochemistry (IHC), using the anti-hMLH1 antibody, and mutation analysis, using denaturing high-performance liquid chromatography and automated sequencing, were performed on unstable carcinoma samples. Methylation analysis, using modified protocols for bisulfite treatment and methylation-specific PCR (MSP), was performed on DNA from archival tissue samples. RESULTS: No MSI-positive tumor samples with normal hMLH1 immunostaining (n = 7) exhibited hMLH1 promoter methylation, whereas 8 of 35 unstable cases with loss of hMLH1 expression (23%) exhibited MSP amplification. Among analyzed cases, germ-line mutations of hMLH1 were found in 4 of 20 unmethylated samples (20%) and in 0 of 8 methylated samples. Bisulfite sequencing of amplification products from methylated samples demonstrated that almost all CpG dinucleotides within the hMLH1 promoter elements underwent methylation. CONCLUSIONS: Although an MMR gene other than hMLH1 may be responsible for genetic instability in MSI-positive/IHC-positive tumors, the presence of MSP amplification and allelic deletions within the hMLH1 locus in subsets of MSI-positive/IHC-negative cases strongly suggests that hMLH1 promoter methylation may contribute to the inactivation of both hMLH1 alleles. Bisulfite analysis suggests that the mechanisms of hMLH1 silencing may depend on CpG density rather than site-specific methylation. Cancer 2003;98:1540-6.  相似文献   

5.
6.
OBJECTIVE This study is to investigate the prevalence of promoter CpG island methylation of O6-methylguananine-DNA methyltransferase (MGMT), mismatch repair genes (hMLH1 and hMSH2) in both tumor and serum samples of gliomas.METHODS Methylation-specific PCR (MSP) was employed to detect promoter CpG island methylation of the MGMT, hMLH1 and hMSH2 genes in 39 samples taken from surgery and 32 samples of pretreatment serum all from the patients with gliomas.RESULTS Promoter CpG island methylation of MGMT, hMLH1 and hMSH2 was detected and the results were 46.2%, 10.3% and 20.5%, respectively in tumor DNA of the cases with gliomas,and 40.6%, 9.4% and 18.8%, respectively in serum DNA of the cases. The methylation pattern in primary tumor and serum was found to be concordant in matched tissue and serum samples of 21 patients. In the cases with positive result of methylation for MGMT, hMLH1 and hMSH2 in tumor tissues, the results of detection for those in the paired serum sample were 77.8% (7/9),66.7% (2/3) and 75.0 % (3/4), respectively. False positive results were not obtained in any of the patients who did not exhibit methylation. No association was found between the promoter methylation of MGMT, hMLH1, and hMSH2 genes in primary gliomas and gender, age, localization, grade of malignant or tumor stage.CONCLUSION Promoter CpG island methylation is a frequent event in gliomagenesis. Methylation analysis appears to be a promising predictive factor of the prognosis for the glioma patients treated with alkylating drugs and a noninvasive tumor marker in serum DNA.  相似文献   

7.
Aberrant 5' CpG island methylation is an alternative mechanism of gene inactivation during the development of cancer as demonstrated for several tumor-suppressor genes. Also, marked relationship of microsatellite instability (MSI) and DNA methylation has been reported in sporadic colorectal cancer, which is a result of epigenetic inactivation of hMLH1 in association of promoter hypermethylation. In the present study, we investigated the 5' CpG island hypermethylation of hMLH1, E-cadherin and p16 in 61 primary gastric cancers (GCs) by using combined bisulfite restriction analysis (COBRA) and methylation-specific PCR (MSP), and their MSI status. Of 61 GCs investigated, 5 (8.1%) tumors presented hMLH1 methylation, 16 (26.2%) and 25 (40.9%) showed E-cadherin and p16 methylation respectively, and 8 (13.1%) presented high-frequency MSI (MSI-H). Of the 8 MSI-H patients, 5 presented hMLH1 methylation, whereas no low-frequency MSI (MSI-L) and microsatellite stable (MSS) cases exhibited hMLH1 methylation (5/8 vs. 0/43, p < 0.00001). Furthermore, these patients also presented E-cadherin and p16 hypermethylation. Our data showed a significant correlation between hMLH1 methylation and MSI in GC, and suggested that a common mechanism of aberrant de novo methylation can be postulated in these cancers.  相似文献   

8.
PURPOSE: Aberrant CpG island hypermethylation is a feature of a subgroup of colorectal cancers, which can be detected in the serum of affected patients. This study was designed to identify methylation targets with prognostic significance in the serum of patients with colorectal cancer. EXPERIMENTAL DESIGN: In a gene evaluation set consisting of sera from 24 patients with local colorectal cancers, 14 with metastasized disease, and 20 healthy controls, the genes HPP1/TPEF, HLTF, and hMLH1 were identified as potential serum DNA methylation markers. These genes were further analyzed in a test set of sera of 104 patients with colorectal cancer. RESULTS: Methylation of HLTF, HPP1/TPEF, and hMLH1 was found to be significantly correlated with tumor size, and methylation of HLTF and HPP1/TPEF was significantly associated with metastatic disease and tumor stage. Moreover, methylation of HPP1/TPEF was also associated with serum carcinoembryonic antigen. The prognostic relevance of methylation of these genes was tested in pretherapeutic sera of 77 patients with known follow-up. Patients with methylation of HPP1/TPEF or HLTF were found to have unfavorable prognosis (P = 0.001 and 0.008). In contrast, serum methylation of hMLH1 was not associated with a higher risk of death. Multivariate analysis showed methylated HPP1 and/or HLTF serum DNA to be independently associated with poor outcome and a relative risk of death of 3.4 (95% confidence interval, 1.4-8.1; P = 0.007). CONCLUSIONS: These data show that the methylation status of specific genes in the serum of patients with colorectal cancer has the potential to become a pretherapeutic predictor of outcome.  相似文献   

9.
10.
Esteller M 《Oncogene》2002,21(35):5427-5440
We have come a long way since the first reports of the existence of aberrant DNA methylation in human cancer. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as an important mechanism for gene inactivation. CpG island hypermethylation has been described in almost every tumor type. Many cellular pathways are inactivated by this type of epigenetic lesion: DNA repair (hMLH1, MGMT), cell cycle (p16(INK4a), p15(INK4b), p14(ARF)), apoptosis (DAPK), cell adherence (CDH1, CDH13), detoxification (GSTP1), etc em leader However, we still know little of the mechanisms of aberrant methylation and why certain genes are selected over others. Hypermethylation is not an isolated layer of epigenetic control, but is linked to the other pieces of the puzzle such as methyl-binding proteins, DNA methyltransferases and histone deacetylase, but our understanding of the degree of specificity of these epigenetic layers in the silencing of specific tumor suppressor genes remains incomplete. The explosion of user-friendly technologies has given rise to a rapidly increasing list of hypermethylated genes. Careful functional and genetic studies are necessary to determine which hypermethylation events are truly relevant for human tumorigenesis. The development of CpG island hypermethylation profiles for every form of human tumors has yielded valuable pilot clinical data in monitoring and treating cancer patients based in our knowledge of DNA methylation. Basic and translational will both be needed in the near future to fully understand the mechanisms, roles and uses of CpG island hypermethylation in human cancer. The expectations are high.  相似文献   

11.
卵巢癌表遗传学研究进展   总被引:10,自引:3,他引:7  
表遗传学的分子机制包括DNA甲基化、组蛋白修饰、染色质改型和RNA干涉等,它们在基因转录调控过程中起重要作用。DNA甲基化和组蛋白乙酰化是表遗传学调控基因表达的两种主要方式,DNA低甲基化和组蛋白乙酰化可促进基因表达,DNA高甲基化和组蛋白去乙酰化可抑制基因表达,DNA甲基化和组蛋白乙酰化相互影响。DNA甲基化在卵巢癌的发生、发展中起重要作用,若干肿瘤抑制基因启动子区异常甲基化与卵巢癌的形成密切相关,包括RASSF1A、BRCA1、p16、hMLH1和CDH1等。多个抑癌基因异常甲基化作为一种分子生物学指标可能用于卵巢癌临床诊断、肿瘤分型及预后判断,而且DNA甲基化异常可能用于卵巢癌化疗疗效判断。DNA去甲基化制剂及组蛋白脱乙酰基酶抑制剂可能用于卵巢癌的临床治疗。  相似文献   

12.
13.
The diagnosis of sessile serrated adenomas (SSAs) is challenging, and there is a great deal of interobserver variability amongst pathologists in differentiating SSAs from hyperplastic polyps (HPPs). The aim of this study was (i) to assess the utility of epigenetic changes such as DNA methylation in differentiating SSAs from HPPs and (ii) to identify common methylation based molecular markers potentially useful for early detection of premalignant neoplastic lesions of gastrointestinal tract. A total of 97 primary patient adenoma samples were obtained from The Johns Hopkins Hospital pathology archive with IRB approval and HIPAA compliance. We analyzed the promoter associated CpG island methylation status of 17 genes using nested multiplex methylation specific PCR (MSP). Methylation of CDX2, hMLH1 and TLR2 was detected in SSAs and SSAs with dysplasia but not in HPPs. A subset of genes including EVL, GATAs (4 and 5), HIN-1, SFRPs (1, 2, 4 and 5), SOX17 and SYNE1 were methylated frequently in all premalignant gastrointestinal adenomas including tubular adenomas, villous adenomas, SSAs and SSAs with dysplasia but infrequently in non-premalignant polyps such as HPPs. Methylation of CDX2, hMLH1 and TLR2 may be of diagnostic utility in differentiating, histologically challenging cases of SSAs from HPPs. Genes such as EVL, GATAs, HIN-1, SFRPs, SOX17 and SYNE1, which are frequently methylated in all types of tested premalignant adenomas, may be useful as biomarkers in stool-based strategies for early detection of these adenomas and CRCs in future.  相似文献   

14.
ARHI is a maternally imprinted tumor suppressor gene that maps to a site on chromosome 1p31 where loss of heterozygosity has been observed in 40% of human breast and ovarian cancers. ARHI is expressed in normal ovarian and breast epithelial cells, but ARHI expression is lost in a majority of ovarian and breast cancers. Expression of ARHI from the paternal allele can be down-regulated by multiple mechanisms in addition to loss of heterozygosity. This article explores the role of DNA methylation in silencing ARHI expression. There are three CpG islands in the ARHI gene. CpG islands I and II are located in the promoter region, whereas CpG island III is located in the coding region. Consistent with imprinting, we have found that all three CpG islands were partially methylated in normal human breast epithelial cells. Additional confirmation of imprinting has been obtained by studying DNA methylation and ARHI expression in murine A9 cells that carry either the maternal or the paternal copy of human chromosome 1. All three CpG islands were methylated, and ARHI was not expressed in A9 cells that contained the maternal allele. Conversely, CpG islands were not methylated and ARHI was expressed in A9 cells that contained the paternal allele of human chromosome 1. Aberrant methylation was found in several breast cancer cell lines that exhibited decreased ARHI expression. Hypermethylation was detected in 67% (6 of 9) of breast cancer cell lines at CpG island I, 33% (3 of 9) at CpG island II, and 56% (5 of 9) at CpG island III. Hypomethylation was observed in 44% (4 of 9) of breast cancer cell lines at CpG island II. When methylation of CpG islands was studied in 20 surgical specimens, hypermethylation was not observed in CpG island I, but 3 of 20 cases exhibited hypermethylation in CpG island II (15%), and 4 of 20 cases had hypermethylation in CpG island III (20%). Treatment with 5-aza-2'-deoxycytidine, a methyltransferase inhibitor, could reverse aberrant hypermethylation of CpG island I, II and III and partially restore ARHI expression in some, but not all of the cell lines. Treatment with 5-aza-2'-deoxycytidine partially reactivated ARHI expression in cell lines with hypermethylation of CpG islands I and II but not in cell lines with partial methylation or hypomethylation of these CpG islands. To test the impact of CpG island methylation on ARHI promoter activity more directly, constructs were prepared with the ARHI promoter linked to a luciferase reporter and transfected into SKBr3 and human embryo kidney 293 cells. Methylation of the entire construct destroyed promoter activity. Selective methylation of CpG island II alone or in combination with CpG island I also abolished ARHI promoter activity. Methylation of CpG I alone partially inhibited promoter activity of ARHI. Thus, hypermethylation of CpG island II in the promoter region of ARHI is associated with the complete loss of ARHI expression in breast cancer cells. Other epigenetic modifications such as hypermethylation in CpG island III may also contribute to the loss of ARHI expression.  相似文献   

15.
Cancer is a multi-factorial disease and variation in genetic susceptibility, due to inherited differences in thecapacity to repair mismatches in the genome, is an important factor in the development of gastric cancer (GC),for example. Epigenetic changes, including aberrant methylation of 5/CpG islands in the promoter regions ofmismatch repair (MMR) genes like hMLH1, have been implicated in the development of various types of GC.In the present study we evaluated the role of hMLH1 promoter hypermethylation in Kashmiri GC patients andcontrols, and assessed correlations with various dietary and lifestyle factors. The study included 70 GC patients(56 males and 14 females; age (mean±S.D) 50±11.4 years). Distinction between methylated and unmethylatedwas achieved with MS-PCR and DNA band patterns. The Chi-square test was applied to assess the risk due topromoter hypermethylation. We found a strikingly high frequency of promoter hypermethylation in GC casesthan in normal samples (72.9% (51/70) in GC cases vs 20% (14/70) in normal samples (p=0.0001).We also observeda statistically significant association between methylated hMLH1 gene promoter and smoking, consumption ofsundried vegetables and hot salted tea with the risk of GC. This study revealed that hMLH1 hypermethylationis strongly associated with GC and suggested roles for epigenetic changes in stomach cancer causation in theKashmir valley.  相似文献   

16.
17.

Introduction

Gastric cancer (GC) is one of the leading causes of cancer-related death in Iran. Genome stability is one of the main genetic issues in cancer biology which is governed via the different repair systems such as DNA mismatch repair (MMR). A clear correlation between MMR defects and tumor progression has been shown. Beside the genetic mutations, epigenetic changes also have a noticeable role in MMR defects.

Methods

Here, we assessed promoter methylation status and the level of hMLH1mRNA expression as the main component of MMR system in 51 GC patients using the methylation-specific PCR and real-time PCR, respectively. Moreover, we performed a promoter methylation study of the E-cadherin gene promoter.

Results

It was observed that, 12 out of 39 cases (23.5 %) had hMLH1 overexpression. Hypermethylation of hMLH1 and E-cadherin promoter regions were observed in 25.5 and 36.4 %, respectively. Although, there was no significant correlation between hMLH1 mRNA expression and clinicopathological features, there are significant correlations between E-cadherin promoter methylation and tumor stage (p?=?0.028) and location (p?=?0.025). The rate of hMLH1 promoter methylation in this study was lower than that in the other population, showing the importance of the other mechanisms, in gastric tumorigenesis.

Conclusion

The results of this study indicate that DNA repair system is adversely affected by hypermethylation of hMLH1 in a fraction of gastric cancer patients. Additionally, E-cadherin hypermethylation seen in a subset of our gastric cancer patients is consistent with other reports showing correlation with aggressiveness and metastasis of gastric cancer.  相似文献   

18.
Aberrant methylation of 5' CpG islands is thought to play an important role in the inactivation of tumor suppressor genes in cancer. In colorectal cancer, a group of tumors is characterized by a hypermethylator phenotype termed CpG island methylator phenotype (CIMP), which includes methylation of such genes as p16 and hMLH1. To study whether CIMP is present in gastric cancer, the methylation status of five newly cloned CpG islands was examined in 56 gastric cancers using bisulfite-PCR. Simultaneous methylation of three loci or more was observed in 23 (41%) of 56 cancers, which suggests that these tumors have the hypermethylator phenotype CIMP. There was a significant concordance between CIMP and the methylation of known genes including p16, and hMLH1; methylation of p16 was detected in 16 (70%) of 23 CIMP+ tumors, 1 (8%) of 12 CIMP intermediate tumors, and 1 (5%) of 21 CIMP- tumors (P<0.0001). Methylation of the hMLH1 gene was detected in three of five tumors that showed microsatellite instability, and all three of the cases were CIMP+. The CIMP phenotype is an early event in gastric cancer, being present in the normal tissue adjacent to cancer in 5 of 56 cases. These results suggest that CIMP may be one of the major pathways that contribute to tumorigenesis in gastric cancers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号