首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently some of us cloned a new probe RN1 (DXS369), which appears a close marker for the fragile X locus (FRAXA) [Oostra et al.: Genomics 1990]. We present here new evidence for its physical and genetic mapping in the DXS98--FRAXA interval. We used 2 different somatic cell hybrid lines with breakpoints in the Xq27-q28 region: L10B Rea and PeCHN, and we established the order: (DXS105, DXS98)-L10B Rea-DXS369-PeCHN- (DXS304, DXS52). We detected an additional TaqI RFLP at the DXS369 locus which increases its informativeness up to 57%. Two point linkage analysis in a large set of families gave high lod scores for the FRAXA-DXS369 linkage (z(theta) = 10.1 at theta = 0.044) and for DXS369-DXS304, a marker distal to FRAXA (z = 19.2 at theta = 0.070). By multipoint analyses we established the localization of DXS369 in the DXS98-FRAXA interval. DXS369 is a much closer proximal marker for FRAXA than DXS105 or DXS98 and any new probe mapping between the breakpoints in L10B Rea and PeCHN will be of potential interest as a marker for FRAXA.  相似文献   

2.
A new RFLP marker U6.2 defining the locus DXS304 was recently mapped to the distal long arm of the X chromosome. In the present study we report the results of genetic linkage analysis of 13 fragile X [fra(X)] families that were informative for the new marker. Analysis of the recombinants for F9-FRAXA, DXS105-FRAXA, DXS98-FRAXA, DXS52-FRAXA, DXS15-FRAXA, and F8C-FRAXA, places DXS304 distal and near to the FRAXA locus. Combined with results from previous studies, our results support the order Xcen.-F9-DXS105-DXS98-FRAXA-DXS304-DXS5 2-DXS15-F8C-Xqter. Close linkage was observed between DXS304 and the disease locus with a peak lod score of 5.12 at theta = 0.04 from the present study and, with a peak lod score of 17.45 at theta = 0.035 when our data are combined with published data from 2 other studies. The present study confirms that U6.2 is useful for prenatal diagnosis and carrier testing in families affected by fra(X) syndrome.  相似文献   

3.
We report on linkage data between DXS105, DXS98, the locus for the fragile X syndrome (FRAXA), and 3 other polymorphic loci that flank the FRAXA locus. An analysis was undertaken to determine the relative positions of DXS105 and DXS98 and to test the assignment of DXS105 to a location proximal and closely linked to FRAXA. In this study of fragile X fra(X) syndrome families, the DXS105 locus was calculated to be proximal to FRAXA with a maximum lod score of 10.36 at theta = 0.08. DXS105 was also shown to be closely linked to the gene for factor IX (F9)(Z = 11.84 at theta = 0.08) and to DXS98 (Z = 4.91 at theta = 0.04). The order of the loci proximal to FRAXA is most likely centromere-factor IX-DXS105-DXS98-FRAXA-telomere. The use of DXS105 and DXS98 in clinical investigations should significantly increase the accuracy of risk assessment in informative fragile X families.  相似文献   

4.
Multipoint linkage analysis of DXS369 and DXS304 in fragile X families   总被引:2,自引:0,他引:2  
Diagnosis of carriers of the fragile-X mental retardation gene is hampered by the paucity of tightly linked DNA markers. Recently, 2 new DNA markers RN1 (DXS369) and U6.2 (DXS304) have become available. Both markers are tightly linked to the fragile-X locus, but their location relative to the fragile site was not known with certainty. We have tested these new markers in a multipoint linkage analysis of 26 fragile-X families typed for DXS105 as a proximal marker and DXS52 as a distal marker. Our results establish the order DXS105-DXS369-fra(X)-DXS304-DXS52, which is in agreement with physical mapping results.  相似文献   

5.
The use of linked DNA markers and linkage analysis in the fragile X [fra(X)] syndrome allows for improved genetic counseling and prenatal diagnosis. In order to provide the most accurate information, it is important to determine the order and location and position of flanking markers. Conflicting results have been reported for the order of 3 DNA markers distal to the fra(X) locus. We analyzed the linkage relationships of the distal markers ST14 (DXS52), DX13 (DXS15), and F8 (F8C) in 102 fra(X) families. The results indicated that the 3 DNA markers were closely linked to one another and mapped approximately 11 to 15% recombination units away from the fra(X) locus. The most likely order was fra(X)-DXS52-DXS15-F8. The order fra(X)-DXS52-F8 and 728 times more likely than the order fra(X)-F8-DXS52. One family showed a probable double recombinant: in one individual there was recombination between fra(X)-DXS52 and between DXS52-F8. The low probability of this occurring, 0.3%, raises the possibility of an alternate chromosome arrangement or an unusual recombinant mechanism in some individuals.  相似文献   

6.
Linkage analysis was performed in 34 fragile X (fra(X)) families in order to study the efficiency of carrier detection using the restriction fragment length polymorphisms (RFLPs) closely linked to fra(X) locus (FRAXA). The marker loci used were F9, DXS105, DXS98, DXS369, DXS297 and DXS477 proximally and DXS465, DXS296, DXS304, DXS52 and F8C distally to FRAXA. Flanking heterozygosity was achieved in 60% of the females with a combination of 3 restriction enzymes and 6 closest RFLP markers. When adding more distant markers and other restriction enzymes to the analysis, the proportion of females heterozygous for flanking polymorphisms increased to 96%. With RFLP-analysis most (85/91) females at high risk of being a carrier could be separated clearly into 2 groups: those with a very low and those with a very high risk. The 6 cases with a recombination between flanking markers did not benefit from RFLP-analysis.  相似文献   

7.
Until recently few polymorphic loci had been genetically mapped close to the fragile X syndrome locus [FRAXA]. Six polymorphic loci, DXS369, DXS297, DXS296, DXS304, IDS and DXS374, have now been mapped closer to the fragile X FRAXA than in the present study. We report the results of genetic linkage analysis of 32 fragile X [fra(X)] families using 12 polymorphic loci including these new markers. Cytogenetic and molecular data were combined in two-point linkage analysis for the estimation of lod scores and carrier probabilities in potential carriers. Combined with results from previous studies, recombination fractions (0) corresponding to the maximum lod scores (Z max) were obtained for each of the 12 loci versus FRAXA. Recombination fractions between marker loci in the families were also calculated. The data were evaluated to determine the efficacy of using the strategy suggested by Suthers et al. (1991a) for molecular studies in fra(X) families. The large proportion of females heterozygous for at least one locus (83%) and of females heterozygous for flanking loci (60%) indicate that this is a very useful diagnostic strategy. Use of these new marker loci substantially changed the carrier risk estimates for members of 7 of the 32 families from the risk estimates previously calculated on the basis of less closely linked probes available prior to 1989.  相似文献   

8.
The linkage relationship between the factor VIII gene (F8C) and the DXS52 locus was examined in 8 families. Two recombinations were identified in 35 informative meioses (Zmax = 5.67; theta = 0.05), one in a family with hemophilia A, the other in a family with the fra(X) syndrome. Based on the latter recombination, the most probable order of loci was determined to be centromere-fra(X)-DXS15-DXS52-F8C-telomere. When these data are added to those reported previously the most probable genetic distance between F8C and DXS52 is 3 cM (Z = 14.62). Identification of these and other recombinations suggests that the use of DXS52 as a genetic marker for carrier detection and prenatal diagnosis of hemophilia A has an error rate between 3-5%.  相似文献   

9.
Fragile X [fra (X)] syndrome is a frequently encountered form of mental retardation and is inherited as an X-linked semi-dominant trait with reduced penetrance. We report here the characterization of a highly polymorphic dinucleotide repeat, DXS 548, which is approximately 150 kb proximal to the fra(X) site and the associated FMR-1 gene. DXS 548 is tightly linked to the fra (X) syndrome locus (FRAXA) without recombination (LOD = 9.07 with q of 0) in selected families with crossovers between FRAXA and very closely linked flanking markers. This dinucleotide repeat could be useful in determining the parental origin of a new fra (X) mutations and evaluating the role of FMR-1 in X-linked non-specific mental retardation.  相似文献   

10.
Diagnosis of the carrier status of the fragile X [fra(X)] syndrome was made in 2 unrelated women who did not express the fragile site. Both were related to several individuals with a typical fra(X) phenotype and the marker X chromosome. A restriction fragment length polymorphism (RFLP) approach was used with probes that flank the fra(X) locus (FRAXA). The loci used for risk calculations of the fra(X) genotype were DXS98 and DXS105 on the centromeric side and a recently characterized locus, DXS304, on the telomeric side. Coincidence correction for the distances between marker loci and FRAXA was made according to the Kosambi function. The DNA marker test gave the risk for one female to be a carrier of 99.7-99.9%. In another family a female was excluded from being a carrier with a probability of greater than 99.7%. The DNA marker U6.2, defining the locus DXS304, has increased the reliability of DNA based diagnosis of carrier status for females-at-risk. It is concluded that DNA analysis can serve as a valuable complement to chromosome analysis in families informative for the more closely linked flanking markers.  相似文献   

11.
The locus for X linked recessive myotubular myopathy (MTM1) has previously been mapped to Xq28 by linkage analysis. We report two new families that show recombination between MTM1 and either DXS304 or DXS52. These families and a third previously described recombinant family were analysed with two highly polymorphic markers in the DXS304-DXS52 interval, the DXS455 VNTR and a newly characterised microsatellite, DXS1684 (82% heterozygosity). These markers did not recombine with MTM1 in the three families. Together with the recent mapping of an interstitial X chromosome deletion in a female patient with moderate signs of myotubular myopathy, our data suggest the following order of loci in Xq28: cen-DXS304-(DXS455, MTM1)-DXS1684-DXS305-DXS52-tel. This considerably refined localisation of the MTM1 locus should facilitate positional cloning of the gene. The availability of highly polymorphic and very closely linked markers will markedly improve carrier and prenatal diagnosis of MTM1.  相似文献   

12.
Linkage data using the polymorphic loci F9, DXS105, DXS98, DXS52, DXS15, and F8 and the DNA probe 1A1 are presented from 14 families segregating for fragile X [fra(X)] syndrome. Recombination fractions corresponding to the maximum LOD scores obtained by two-point linkage analysis suggest that DXS98 (Zmax = 3.23, theta = 0.0) and DXS105 (Zmax = 2.09, theta = 0.0) are the closest markers proximal to FRAXA and that DXS52 is the closest distal marker (Zmax = 3.55, theta = 0.16). FRAXA is located within a 25 cM interval between F9 and DXS52, coincident with DXS98, on multipoint linkage analysis. Phase-known three way crossover information places F8 outside the cluster (DXS52, DXS15, 1A1). Confidence limits for the markers DXS98 and DXS52 are relatively wide (0.0-0.15 and 0.06-0.31, respectively), but when used in combination with cytogenetic examination offer improved carrier detection in comparison with cytogenetic analysis alone.  相似文献   

13.
Improved genetic mapping of X linked retinoschisis.   总被引:3,自引:0,他引:3       下载免费PDF全文
X linked retinoschisis (RS) causes poor vision in affected males owing to radial cystic changes at the macula. Genetic linkage analysis was carried out in 16 British families with X linked retinoschisis using markers from the Xp22 region. Linkage was confirmed between the RS locus and the markers DXS207 (lod score, Zmax = 17.9 at recombination fraction theta = 0.03; confidence interval for theta = 0.007-0.09), DXS1053 (Zmax = 18.0 at theta = 0.01, CI = 0.001-0.06), DXS43 (Zmax = 12.9 at theta = 0.03, CI = 0.004-0.09), DXS1195 (Zmax = 6.4 at theta = 0.00), DXS418 (Zmax = 8.2 at theta = 0.00), DXS999 (Zmax = 21.2 at theta = 0.01, CI = 0.001-0.05), DXS443 (Zmax = 14.2 at theta = 0.03, CI = 0.004-0.09), DXS365 (Zmax = 24.5 at theta = 0.008, CI = 0.001-0.04). Key recombinants placed RS between DXS43 distally and DXS999 proximally. Multipoint linkage analysis gave odds of 344:1 in favour of this location for RS and supported the map Xpter-(DXS207, DXS1053)-DXS43-1 cM-RS-1 cM-DXS999-DXS443-DXS365-DXS1052-Xcen.  相似文献   

14.
Multipoint linkage of 9 anonymous probes to HPRT, factor 9, and fragile X   总被引:2,自引:0,他引:2  
We have analyzed the segregation of restriction fragment length polymorphisms (RFLPs) associated with 9 anonymous probes detecting loci DXS10, DXS15, DXS19, DXS37, DXS51, DXS52, DXS98, DXS99, and DXS100 and probes for HPRT and F9 in a set of 40 families segregating fragile X (fra(X]. Using two-point and multipoint analysis, we have established their relative genetic locations. The results indicate that DXS99 and DXS10, unlike previous reports, are not tightly linked to F9. A new locus was found to map within the F9 - fra(X) region. DXS98 showed 6% recombination with fra(X) and appeared to be the closest locus to fra(X). These results will be useful for mapping the relative position of newly defined X probes in this region and for future genetic studies of families with fra(X), hemophilia B, or Lesch-Nyhan mutations.  相似文献   

15.
The X linked form of Kallmann syndrome (KAL) and X linked ocular albinism (OA1) have both been mapped to Xp22.3. We have used a dinucleotide repeat polymorphism at the Kallmann locus to type 17 X linked ocular albinism families which had previously been typed for the Xg blood group (XG) and the DNA markers DXS237 (GMGX9), DXS143 (dic56), and DXS85 (782). Close linkage was found between KAL and OA1 with a maximum lod score (Zmax) of 30.14 at a recombination fraction (theta max) of 0.06 (confidence interval for theta: 0.03-0.10). KAL was also closely linked to DXS237 (Zmax = 15.32; theta max = 0.05; CI 0.02-0.12) and DXS143 (Zmax = 14.57; theta max = 0.05; CI 0.02-0.13). There was looser linkage to the Xg blood group (XG) and to DXS85 (782). Multipoint linkage analysis gave the map: Xpter-XG-0.13-DXS237-0.025-KAL-0.025-DXS143-0.01 5-OA1-0.09-DXS85-Xcen. Placement of OA1 proximal to DXS143 was supported by odds of 2300:1 compared to other orders. This confirms our previous localisation of OA1 and improves the genetic mapping of both disease loci.  相似文献   

16.
Genetic linkage studies were performed in 16 British families affected by X linked ocular albinism (XLOA) using RFLPs from the Xp22.3 region. Linkage was confirmed between the XLOA locus (OA1) and the loci DXS143 (dic56; Zmax = 15.90 at theta = 0.0, confidence interval (CI) 0-0.035), DXS85 (782; Zmax = 15.67 at theta = 0.04, CI = 0.007-0.11), and DXS237 (GMGX9; Zmax = 12.65 at theta = 0.08, CI = 0.03-0.17). Multipoint linkage analysis placed OA1 between DXS85 (782) and DXS237 (GMGX9) with odds exceeding 10(4):1 to give the map DXS85-(OA1,DXS143)-DXS237-XG-Xpter. OA1 lies close to DXS143 (dic56) but in the absence of recombinants the order of these loci could not be determined.  相似文献   

17.
Linkage analysis using the polymorphic loci DXS369, DXS296, DXS297 and DXS306 was carried out on a cohort of 17 families segregating for fragile X syndrome. The observed recombination fractions at: DXS369 (Zmax = 3. 02; theta=0. 06), DXS297 (Zmax= 2. 92; theta = 0.0), DXS296 (Zmax = 3. 82; theta = 0.0), DXA306 (Zmax = 4. 55; theta = 0.05) confirm that these loci are tightly linked to FRAXA. Our experience in the cytogenetic analysis of 58 at risk pregnancies by chorionic villus or fetal blood sample examination documents a false negative rate in obligate carrier male pregnancies for CVS of 11% and for FBS of 3%.  相似文献   

18.
A high proportion of synovial sarcomas contain a chromosome translocation t(X;18)(p11.2;q11.2). We have previously used somatic cell hybrids derived from an established cell line, SS255, to map the X chromosome breakpoint to the interval flanked by the markers DXS14 and DXS146. In this study we have examined these hybrids with thirteen additional markers located at Xp11.3-Xcen, by Southern hybridization. Based on these results we have delimited the breakpoint as follows Xpter-DXS228-(UBE1-OATL1-TIMP-DXS226 )-(DXS255-TFE3-ELK1-DXS146)-OATL2- X;18-(DXS14-DXS422-DXS423-DXS674-DXS679)-+ ++Xcen. Confirmation of the breakpoint location has been obtained by analysis of two synovial sarcoma cell lines, SS255 and HA2243, using fluorescence in situ hybridization. A 350kb YAC probe spanning the DXS423 locus hybridized only to the derivative X chromosome, showing that it maps proximal to the breakpoint. Two YAC probes of 300kb and 450kb, containing the OATL2 locus, hybridized to both derivative chromosomes, indicating that these YACs span the translocation breakpoint. Similar results were obtained with both cell lines. The identification of YACs that span the t(X;18) breakpoint now facilitates a strategy for cloning candidate genes from this precisely defined region.  相似文献   

19.
Multipoint linkage analysis was undertaken with eight Xq cloned DNA sequences which identify one or more restriction fragment length polymorphisms in 26 families. These families comprise seven phase known normal families with three or more males in the third generation, seven families segregating for haemophilia B, one large family with dyskeratosis congenita, and 11 families with the fragile X syndrome. Phase known meioses informative for three or more loci supported the order centromere--DXYS1--DXS107--DXS102, DXS51--F9--FRAXA--DXS15, DXS52, F8--Xqter in each group of families studied. One of the normal families was segregating for protan colour blindness and showed a phase known recombination which would support the order centromere--F9--DXS52--CBP--Xqter. With the exception of DXYS1, all of these sequences have been localised to Xq27----qter by in situ hybridisation or hybridisation to Xq fragment panels, and on this basis should lie within 20 cM of one another. No recombination was observed between the sequences localised to Xq28, namely DXS52, F8, and DXS15 (between DXS15 and DXS52 Z = 12.25 at theta = 0 with confidence limits of 0 to 5 cM). However, an excess of recombination was apparent in the region of FRAXA with maximal lod scores as follows: F9 versus FRAXA (Z = 2.05, theta = 0.19), DXS52 versus FRAXA (Z = 1.85, theta = 0.26), and DXS15 versus FRAXA (Z = 1.33, theta = 0.27). No consistent differences were observed in the frequency of recombination when families with the fragile X syndrome were compared with normal families or families segregating for other X linked conditions. These results are compared with other published work and support the conclusion that although measurable linkage exists between these flanking markers and FRAXA, the intervals as measured by the frequency of meiotic recombination will seriously limit their clinical usefulness.  相似文献   

20.
Linkage analysis using the polymorphic loci DXS369, DXS296, DXS297 and DXS306 was carried out on a cohort of 17 families segregating for fragile X syndrome. The observed recombination fractions at: DXS369 (Zmax = 3.02; theta = 0.06), DXS297 (Zmax = 2.92; theta = 0.0), DXS296 (Zmax = 3.82; theta = 0.0), DXA306 (Zmax = 4.55; theta = 0.05) confirm that these loci are tightly linked to FRAXA. Our experience in the cytogenetic analysis of 58 at risk pregnancies by chorionic villus or fetal blood sample examination documents a false negative rate in obligate carrier male pregnancies for CVS of 11% and for FBS of 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号