首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doxorubicin is a highly effective cancer treatment whose use is severely limited by dose-dependent cardiotoxicity. It is well established that doxorubicin increases reactive oxygen species (ROS) production. In this study, we investigated contributions to doxorubicin cardiotoxicity from Nox2 NADPH oxidase, an important ROS source in cardiac cells, which is known to modulate several key processes underlying the myocardial response to injury. Nox2-deficient mice (Nox2-/-) and wild-type (WT) controls were injected with doxorubicin (12 mg/kg) or vehicle and studied 8 weeks later. Echocardiography indicated that doxorubicin-induced contractile dysfunction was attenuated in Nox2-/- versus WT mice (fractional shortening: 29.5±1.4 versus 25.7±1.0%; P<0.05). Similarly, in vivo pressure-volume analysis revealed that systolic and diastolic function was preserved in doxorubicin-treated Nox2-/- versus WT mice (ejection fraction: 52.6±2.5 versus 28.5±2.3%, LVdP/dtmin: -8,379±416 versus -5,198±527 mmHg s(-1); end-diastolic pressure-volume relation: 0.051±0.009 versus 0.114±0.012; P<0.001). Furthermore, in response to doxorubicin, Nox2-/- mice exhibited less myocardial atrophy, cardiomyocyte apoptosis, and interstitial fibrosis, together with reduced increases in profibrotic gene expression (procollagen IIIαI, transforming growth factor-β3, and connective tissue growth factor) and matrix metalloproteinase-9 activity, versus WT controls. These alterations were associated with beneficial changes in NADPH oxidase activity, oxidative/nitrosative stress, and inflammatory cell infiltration. We found that adverse effects of doxorubicin were attenuated by acute or chronic treatment with the AT1 receptor antagonist losartan, which is commonly used to reduce blood pressure. Our findings suggest that ROS specifically derived from Nox2 NADPH oxidase make a substantial contribution to several key processes underlying development of cardiac contractile dysfunction and remodeling associated with doxorubicin chemotherapy.  相似文献   

2.
Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause of male cancer death in Western nations. Thus, new treatment modalities are urgently needed. Elevated production of reactive oxygen species (ROS) by NADPH oxidase (Nox) enzymes is implicated in tumorigenesis of the prostate and other tissues. However, the identity of the Nox enzyme(s) involved in prostate carcinogenesis remains largely unknown. Analysis of radical prostatectomy tissue samples and benign and malignant prostate epithelial cell lines identified Nox5 as an abundantly expressed Nox isoform. Consistently, immunohistochemical staining of a human PCa tissue microarray revealed distinct Nox5 expression in epithelial cells of benign and malignant prostatic glands. shRNA‐mediated knockdown of Nox5 impaired proliferation of Nox5‐expressing (PC‐3, LNCaP) but not Nox5‐negative (DU145) PCa cell lines. Similar effects were observed upon ROS ablation via the antioxidant N‐acetylcysteine confirming ROS as the mediators. In addition, Nox5 silencing increased apoptosis of PC‐3 cells. Concomitantly, protein kinase C zeta (PKCζ) protein levels and c‐Jun N‐terminal kinase (JNK) phosphorylation were reduced. Moreover, the effect of Nox5 knockdown on PC‐3 cell proliferation could be mimicked by pharmacological inhibition of JNK. Collectively, these data indicate that Nox5 is expressed at functionally relevant levels in the human prostate and clinical PCa. Moreover, findings herein suggest that Nox5‐derived ROS and subsequent depletion of PKCζ and JNK inactivation play a critical role in modulating intracellular signaling cascades involved in the proliferation and survival of PCa cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.  相似文献   

3.
4.
Activation of the epidermal growth factor receptor (EGFR) regulates cellular proliferation, survival, and migration of breast cancer cells. In particular, EGFR recruits signaling proteins to the cell membrane leading to their phosphorylation and activation. However, EGFR also localizes to other cellular structures, including endosomes, mitochondrion, and nuclei. Recently, we demonstrated that lipid raft localization of EGFR in triple-negative breast cancer cell lines promotes EGFR protein-dependent, EGFR kinase-independent activation of Akt. Here, we further define the mechanism by which lipid rafts regulate EGFR signaling to Akt. Specifically, we show that the non-receptor tyrosine kinase c-Src co-localizes and co-associates with EGFR and lipid rafts. Breast cancer cells resistant to treatment with EGFR inhibitors, were also resistant to treatment with Src family kinase (SFK) inhibitors; however, the combination of EGFR and SFK inhibitors synergistically decreases cell viability. We found that this decrease in cell viability observed with EGFR and SFK inhibitor co-treatment correlates with loss of Akt phosphorylation. In addition, we found that in breast cancer cell lines with EGFR and c-Src co-localized to lipid rafts, phospho-inositide 3 kinase (PI3K) was also associated with lipid rafts. Together, the data herein suggest that lipid rafts provide a platform for the interaction of EGFR, c-Src, and PI3K, leading to activation of cellular survival signaling in breast cancer cells.  相似文献   

5.
6.
Although cholesterol accumulation in tumors was first reported in the early20th century, the mechanistic implications of this observation are still obscure. Here we report that caveolin-negative human prostate cancer (LNCaP) cells contain cholesterol-rich lipid rafts that mediate epidermal growth factor (EGF)-induced and constitutive signaling through the Akt1 serine-threonine kinase. EGF receptor and Akt1 phosphorylation were inhibited and autonomous cell survival was reduced when the rafts were disrupted. Reconstitution of the rafts with cholesterol restored EGF receptor-->Akt1 axis signaling and cytoprotection from a phosphoinositide 3-kinase-dependent apoptotic signal. These results suggest that cholesterol present in membrane microdomains is a prominent mediator of survival in prostate cancer cells.  相似文献   

7.
N-(4-hydroxyphenyl)retinamide (4HPR) is a synthetic retinoid that has shown efficacy in cancer chemoprevention and therapy possibly due to its ability to induce growth inhibition and apoptosis in cancer cells. Reactive oxygen species (ROS) have been implicated in mediating 4HPR-induced apoptosis in various cancer cells, including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR increased the level of p67phox, which is a subunit of the NADPH oxidase complex that is involved in the generation of ROS. The increase in the level of p67phox protein may be a downstream effect of the activation of c-Jun N-terminal kinase (JNK) induced by 4HPR. Suppression of endogenous and 4HPR-induced levels of p67phox using small interfering RNA did not result in a change in ROS generation or apoptosis. These results suggest that p67phox is not a critical component or a limiting factor in the 4HPR-induced apoptosis pathway in HNSCC cells.  相似文献   

8.
The bioactive sphingolipid ceramide induces oxidative stress by disrupting mitochondrial function and stimulating NADPH oxidase (NOX) activity, both implicated in cell death mechanisms. Many anticancer chemotherapeutics (anthracyclines, Vinca alkaloids, paclitaxel, and fenretinide), as well as physiological stimuli such as tumor necrosis factor α (TNFα), stimulate ceramide accumulation and increase oxidative stress in malignant cells. Consequently, ceramide metabolism in malignant cells and, in particular the up-regulation of glucosylceramide synthase (GCS), has gained considerable interest in contributing to chemoresistance. We hypothesized that increases in GCS activity and thus glucosylceramide, the product of GCS activity, represents an important resistance mechanism in glioblastoma. In our study, we determined that increased GCS activity effectively blocked reactive oxygen species formation by NOX. We further showed, in both glioblastoma and neuroblastoma cells that glucosylceramide directly interfered with NOX assembly, hence delineating a direct resistance mechanism. Collectively, our findings indicated that pharmacological or molecular targeting of GCS, using non-toxic nanoliposome delivery systems, successfully augmented NOX activity, and improved the efficacy of known chemotherapeutic agents.  相似文献   

9.
MCF-7 cells, a human breast carcinoma line, forms tumors when injected into athymic nude mice. These tumors are able to metastasize to lungs, liver and spleen. 17 beta-estradiol treatment increases both the growth rate and frequency of metastases. Castration or diabetes prevents metastasis formation, but treatment with estrogen or insulin restores the metastasizing capacity. MCF-7 cells secrete into the culture media collagenases able to lyse types I and IV collagens. Estrogen or insulin addition to the culture enhances collagenase production. Attention is called to the coexistence of enhancement in collagenase production and metastasis formation.  相似文献   

10.
11.
Most gastric cancer cells are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Since TRAIL resistance is associated with lipid rafts, in which both death receptors and epidermal growth factor receptors (EGFR) are enriched, our aim is to identify how lipid raft-regulated receptor redistribution influences the sensitivity of TRAIL in gastric cancer cells. In TRAIL-resistant gastric cancer cells, TRAIL did not induce effective death-inducing signalling complex (DISC) formation in lipid rafts, accompanied with EGFR translocation into lipid rafts, and activation of EGFR pathway. Knockdown of casitas B-lineage lymphoma-b (Cbl-b) enhanced TRAIL-induced apoptosis by promoting DISC formation in lipid rafts. However, knockdown of Cbl-b also enhanced EGFR translocation into lipid rafts and EGFR pathway activation induced by TRAIL. Either using inhibitors of EGFR or depletion of EGFR with small interfering RNA (siRNA) prevented EGFR pathway activation, and thus increased TRAIL-induced apoptosis, especially in Cbl-b knockdown clones. Taken together, TRAIL-induced EGFR activation through Cbl-b-regulated EGFR redistribution in lipid rafts antagonised TRAIL-induced apoptosis. The contribution of DISC formation and the inhibition of EGFR signal triggered in lipid rafts are both essential for increasing the sensitivity of gastric cancer cells to TRAIL.  相似文献   

12.
13.
Palmer CP  Mahen R  Schnell E  Djamgoz MB  Aydar E 《Cancer research》2007,67(23):11166-11175
Lipid rafts are membrane platforms that spatially organize molecules for specific signaling pathways that regulate various cellular functions. Cholesterol is critical for liquid-ordered raft formation by serving as a spacer between the hydrocarbon chains of sphingolipids, and alterations in the cholesterol contents of the plasma membrane causes disruption of rafts. The role that sigma receptors play in cancer is not clear, although it is frequently up-regulated in human cancer cells and tissues and sigma receptors inhibit proliferation in carcinoma and melanoma cell lines, induce apoptosis in colon and mammary carcinoma cell lines, and reduce cellular adhesion in mammary carcinoma cell lines. In this study, we provide molecular and functional evidence for the involvement of the enigmatic sigma 1 receptors in lipid raft modeling by sigma 1 receptor-mediated cholesterol alteration of lipid rafts in breast cancer cell lines. Cholesterol binds to cholesterol recognition domains in the COOH terminus of the sigma 1 receptor. This binding is blocked by sigma receptor drugs because the cholesterol-binding domains form part of the sigma receptor drug-binding site, mutations of which abolish cholesterol binding. Furthermore, we outline a hypothetical functional model to explain the myriad of biological processes, including cancer, in which these mysterious receptors are involved. The findings of this study provide a biological basis for the potential therapeutic applications of lipid raft cholesterol regulation in cancer therapy using sigma receptor drugs.  相似文献   

14.
Reactive oxygen species (ROS) signal cascades involved in cell growth, cell death, mitogenesis, angiogenesis and carcinogenesis. ROS are produced as a byproduct of oxidative phosphorylation (OXPHOS) in the mitochondria. It is estimated that 2-4% of the oxygen consumed during OXPHOS is converted to ROS. Besides mitochondria, NADPH-oxidase 1 (Nox1) also generates a significant amount of ROS in the cell. In this paper, we tested the hypothesis that mitochondria control Nox 1 redox signaling and the loss of control of this signaling contributes to tumorigenesis. We analyzed Nox1 expression in a mitochondrial gene knockout (rho(0)) cell line and in the isogenic cybrid cell line in which mitochondrial genes were restored by transfer of wild type mitochondria into rho(0) cells. Our study revealed, for the first time, that the inactivation of mitochondrial genes leads to down-regulation of Nox1 and that the transfer of wild type mitochondrial genes restored the Nox1 expression to a level comparable to that in the parental cell line. Consistent with Nox1 down-regulation, we found that rho(0) cells contained low levels of superoxide anion and that superoxide levels reversed to parental levels in cybrid cells when Nox1 expression was restored by transfer of wild type mitochondria. Increasing mitochondrial superoxide levels also increased the expression of Nox1 in parental cells. Confocal microscopy studies revealed that Nox1 localizes in the mitochondria. Nox1 was highly expressed in breast (86%) and ovarian (71%) tumors and that its expression positively correlated with expression of cytochrome C oxidase encoded by mtDNA. Our study, described in this paper demonstrates the existence of cross talk between the mitochondria and NADPH oxidase. Furthermore, our studies suggest that mitochondria control Nox1 redox signaling and the loss of control of this signaling contributes to breast and ovarian tumorigenesis.  相似文献   

15.

Background  

uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts.  相似文献   

16.
17.
18.
Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells   总被引:6,自引:0,他引:6  
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapy because of its relative tumor selectivity. However, many cancers including pancreatic cancer remain resistant towards TRAIL. To develop TRAIL for cancer therapy of pancreatic carcinoma, it will therefore be pivotal to elucidate the molecular mechanisms of TRAIL resistance. Here, we identify X-linked inhibitor of apoptosis (XIAP) as a regulator of TRAIL sensitivity in pancreatic carcinoma cells. Full activation of effector caspases, loss of mitochondrial membrane potential and cytochrome c release following TRAIL treatment were markedly impaired in pancreatic carcinoma cell lines, which poorly responded to TRAIL (PaTuII, PancTu1, ASPC1, DanG), compared to TRAIL-sensitive Colo357 pancreatic carcinoma cells. Stable downregulation of XIAP by RNA interference significantly reduced survival and enhanced TRAIL-induced apoptosis in pancreatic carcinoma cells. Also, downregulation of XIAP significantly increased CD95-induced cell death. Importantly, knockdown of XIAP strongly inhibited clonogenicity of pancreatic cancer cells treated with TRAIL indicating that XIAP promotes clonogenic survival of pancreatic carcinoma cells. Thus, our findings for the first time indicate that targeting XIAP represents a promising strategy to enhance the antitumor activity of TRAIL in pancreatic cancer, which has important clinical implications.  相似文献   

19.
Kim R  Tanabe K  Emi M  Uchida Y  Toge T 《Cancer》2005,103(10):2199-2207
BACKGROUND: Because the overexpression of HER-2 and Bcl-2 is associated with resistance to tamoxifen (TAM), the authors examined the effect of antisense (AS) Bcl-2 on sensitivity to TAM compared with the effect of trastuzumab on sensitivity to TAM in breast carcinoma cell lines. METHODS: Drug sensitivity was assessed in vitro using a [3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay with the breast carcinoma cell lines ZR-75-1, MDA-MB-453, and BT-474. AS Bcl-2 18-mer phosphorothioate oligonucleotide was applied. Apoptotic cell death was assessed with the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling method, and gene expression was evaluated with Western blot analysis. RESULTS: The expression of Bcl-2 was identified in ZR-75-1 and BT-474 cells and, to a lesser extent, in MDA-MB-453 cells. Overexpression of HER-2 was identified in BT-474 cells, and moderate expression was identified in MDA-MB-453 and ZR-75-1 cells. Combination treatment with trastuzumab or AS Bcl-2 enhanced TAM sensitivity in ZR-75-1 cells, which showed 50% inhibitory concentration (IC50) values of 0.9 microM (7.2-fold increase) and 0.5 microM (13.0-fold), respectively. Combination treatment with trastuzumab or AS Bcl-2 slightly enhanced TAM sensitivity of BT-474 cells, with IC50 values of 3.0 microM (1.3-fold) and 1.5 microM (2.6-fold), respectively. The sensitivity of MDA-MB-453 cells to TAM was not enhanced by combination with trastuzumab or AS Bcl-2. Modulation of TAM sensitivity by AS Bcl-2 was superior to modulation by trastuzumab in HER-2-expressing and Bcl-2-expressing breast carcinoma cells. Enhanced sensitivity in combination with AS Bcl-2 was associated with down-regulation of Bcl-2 and pAkt, which was correlated with the induction of Bax and caspase-3, leading to apoptosis. CONCLUSIONS: AS Bcl-2 appeared to be superior to trastuzumab with respect to regulating the signal-transduction pathways involved in breast carcinoma cells.  相似文献   

20.
Adjuvant therapy is one of the major advances in the treatment of breast carcinoma patients - but do all patients need it? New predictive markers, which are able to save breast carcinoma patients from the most toxic adjuvant therapies, are still needed. The expression of matrix metalloproteinases (MMP-2) has been previously linked to invasiveness of carcinoma cells. In this study, we explored the role of MMP-2 as a prognostic factor in breast carcinoma in a large series to be able to show the favourable effect of MMP-2 negativity in poor prognosis subgroup of hormone receptor-negative patients. The MMP-2 immunoreactive protein was evaluated from primary adenocarcinoma of the breast in 453 cases by using a specific monoclonal antibody in immunohistochemical stainings. The MMP-2 protein found in breast carcinoma tumour cells was here shown to be associated with a shortened recurrence-free survival or relative overall survival (P=0.03). It was shown here that MMP-2 negativity is significantly linked to favourable prognosis in patients considered to be at risk due to their hormone receptor negativity. In the patient group presenting with a progesterone receptor-negative tumour, the survival rate of the MMP-2-positive cases was 58% while it was 95% in MMP-2-negative cases after 10 years of follow-up (P=0.005). The present data shows for the first time that MMP-2 negativity could serve as a marker for favourable prognosis in breast carcinoma patients with a hormone receptor-negative tumour usually associated with high risk. MMP-2 is also shown to correlate to shortened survival independent of major prognostic indicators in patients with primary breast carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号