首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rostral ventrolateral medulla (RVL) contains reticulospinal adrenergic (C1) neurons that are thought to be sympathoexcitatory and that form the medullary efferent limb of the baroreceptor reflex pathway. The RVL receives direct projections from two important autonomic regions, the caudal ventrolateral medulla (CVL) and the nucleus tractus solitarii (NTS). In the present study, we used anterograde tracing from the CVL or the NTS combined with immunocytochemical identification of C1 adrenergic neurons in the RVL to compare the morphology of afferent input from these two autonomic regions into the RVL. NTS (n = 203) and CVL (n = 380) efferent terminals had similar morphology and vesicular content, but CVL efferent terminals were slightly larger than NTS efferent terminals. Overall, efferent terminals from either region were equally likely to contact adrenergic neurons in the RVL (21% for NTS, 25% for CVL). Although efferents from both regions formed both symmetric and asymmetric synapses, NTS efferent terminals were statistically more likely to form asymmetric synapses than CVL efferent terminals. CVL efferent terminals were more likely to contact adrenergic somata than were NTS efferents, which usually contacted dendrites. These findings 1) support the hypothesis that a portion of NTS efferents to the RVL may be involved in sympathoexcitatory, e.g., chemoreceptor, reflexes (via asymmetric synapses), whereas those from the CVL mediate sympathoinhibition (via symmetric synapses); and 2) provide an anatomical substrate for differential postsynaptic modulation of C1 neurons by projections from the NTS and CVL. With their more frequent somatic localization, CVL inhibitory inputs may be more influential than excitatory NTS inputs in determining the discharge of RVL neurons. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Anterograde, retrograde, and combined axonal transport methods were used to describe the descending efferent projections of a region of rostral ventrolateral medullary reticular formation important in cardiovascular control. We have termed this region, which contains C1 adrenaline-synthesizing neurons, the nucleus reticularis rostroventrolateralis (RVL). Efferent projections from the RVL innervate all segmental levels of the thoracic intermediolateral and intermediomedial columns as shown using retrograde transport of lectin-conjugated horseradish peroxidase (HRP) or fast blue dye, and anterograde transport of either HRP or labeled amino acids. The projection is highly specific in that there are no projections to thoracic dorsal or ventral horns. This innervation corresponds to the distribution of preganglionic sympathetic neurons in the intermediolateral column. In particular, terminals surround neurons projecting to the adrenal medulla, as demonstrated by combined anterograde and retrograde transport methods at the light level. Terminals containing phenylethanolamine-N-methyl transferase (PNMT) were mapped using immunocytochemical techniques. PNMT-labeled terminals were present at all levels of thoracic intermediolateral column, in a distribution similar to that of the descending projections from the RVL. We have previously shown using double label techniques (Ross et al., '81-'83), that many of the spinal projections of the RVL originate from C1 neurons. These data support our suggestion that certain bulbospinal neurons within the RVL, in particular the C1 neurons, are crucial for tonic vasomotor control.  相似文献   

3.
The paratrigerminal nucleus (Pa5), a constituent of the spinal interstitial system, was linked to the pressor effect caused by bradykinin injected in the dorsal lateral medulla of the rat. The nucleus receives primary afferent sensory fibers contained in branches of the trigeminal, glossopharyngeal and vagus nerves. In this investigation connections of the paratrigeminal nucleus to other medullary structures were studied with the use of retrograde and anterograde neuronal tracers. Fluorescent light microscopy analyses of medullary sections of rats injected with the retrograde transport tracer Fluoro-gold in the nucleus of the solitary tract (NTS) or in the pressor area of the rostral ventrolateral medulla (RVLM) revealed labeled neuronal cell bodies in the ipsi- and contralateral Pa5. FluoroGold microinjections in the caudal ventrolateral medulla (CVLM) did not produce fluorescent labeling of Pa5 neurons. Microinjection of the anterograde transport neuronal tracer biocytin in the Pa5 produced bilateral labeling of the solitary tract (sol). rostroventrolateral reticular nucleus (RVL), ambiguus nucleus (Amb), lateral reticular nucleus (LRt) and ipsilateral parabrachial nuclei, but not the contralateral Pa5. Confocal laser microscopy showed fluorescence labeling of fibers and presumptive terminal varicosities in the NTS, RVL, Amb and LRt. The present findings showing the paratrigeminal nucleus interposed between sensory afferent and stuctures associated to cardiovascular and respiratory functions, suggest that the structure may act as a medullary relay nucleus for sensory stimuli directly connecting primary afferents to structures mediating cardiovascular and respiratory reflexes.  相似文献   

4.
The nucleus tractus solitarii (NTS) receives primary visceral afferents and sends projections to other autonomic nuclei at all levels of the neuroaxis. However, it is unknown if distinct populations of NTS neurons project to individual autonomic targets or if individual neurons in the NTS project to multiple autonomic targets. Understanding the basic circuitry of visceral reflex pathways is essential for the analyses of functional central autonomic networks. We examined projections from the NTS to autonomic targets within the hypothalamus (paraventricular nucleus, PVN), pons (parabrachial nucleus, PB), and medulla (caudal ventrolateral medulla, CVL) using retrograde tracing and immunohistochemistry. Dual retrograde tracer microinjections were made into pairs of targets (PVN + CVL; PVN + PB; PB + CVL), and the pattern of retrograde labeling was examined within NTS. The extent of collateralization, seen as dual retrogradely labeled neurons, was negligible for combined PVN and CVL injections and increased for injections combining PB with either PVN or CVL, but the majority of NTS neurons project to only one autonomic target. Immunohistochemistry for tyrosine hydroxylase (TH) was used to examine the pattern of TH-immunoreactivity (TH-ir) within retrogradely labeled NTS neurons. TH-ir was seen predominantly in projections to PVN, to a lesser degree in projections to PB, and was largely absent from projections to CVL. The percentage of dual retrogradely labeled neurons displaying TH-ir corresponded to the target displaying the most TH-ir, and TH-ir was not predictive of collateralization. Together, these results indicate that NTS neurons project to individual autonomic targets in the brain.  相似文献   

5.
The fundamental neuronal substrates of the arterial baroreceptor reflex have been elucidated by combining anatomical, neurophysiological, and pharmacological approaches. A serial pathway between neurons located in the nuclei of the solitary tract (NTS), the caudal ventrolateral medulla (CVL), and the rostral ventrolateral medulla (RVL) plays a critical role in inhibition of sympathetic outflow following stimulation of baroreceptor afferents. In this paper, we summarize our studies using tract-tracing and electron microscopic immunocytochemistry to define the potential functional sites for synaptic transmission within this circuitry. The results are discussed as they relate to the literature showing: (1) baroreceptor afferents excite second-order neurons in NTS through the release of glutamate; (2) these NTS neurons in turn send excitatory projections to neurons in the CVL; (3) GABAergic CVL neurons directly inhibit RVL sympathoexcitatory neurons; and (4) activation of this NTS-->CVL-->RVL pathway leads to disfacilitation of sympathetic preganglionic neurons by promoting withdrawal of their tonic excitatory drive, which largely arises from neurons in the RVL. Baroreceptor control may also be regulated over direct reticulospinal pathways exemplified by a newly recognized sympathoinhibitory region of the medulla, the gigantocellular depressor area. This important autonomic reflex may also be influenced by parallel, multiple, and redundant networks.  相似文献   

6.
Previous anatomical and physiological studies have revealed a substantial projection from the periaqueductal gray (PAG) to the nucleus paragigantocellularis (PGi). In addition, physiological studies have indicated that the PAG is composed of functionally distinct subregions. However, projections from PAG subregions to PGi have not been comprehensively examined. In the present study, we sought to examine possible topographic specificity for projections from subregions of the PAG to PGi. Pressure or iontophoretic injections of wheat germ agglutinin-conjugated horseradish peroxidase, or of Fluoro-Gold, placed into the PGi of the rat retrogradely labeled a substantial number of neurons in the PAG from the level of the Edinger-Westphal nucleus to the caudal midbrain. Retrogradely labeled neurons were preferentially aggregated in distinct subregions of the PAG. Rostrally, at the level of the oculomotor nucleus, labeled neurons were i) compactly aggregated in the ventromedial portion of the PAG corresponding closely to the supraoculomotor nucleus of the central gray, ii) in the lateral and ventrolateral PAG, and iii) in medial dorsal PAG. More caudally, retrogradely labeled neurons became less numerous in the dorsomedial PAG but were more widely scattered throughout the lateral and ventrolateral parts of the PAG. Only few retrogradely labeled neurons were found in the ventromedial part of the PAG at caudal levels. Injections of retrograde tracers restricted to subregions of the PGi suggested topography for afferents from the PAG. Injections into the lateral portion of the PGi yielded the greatest number of labeled neurons within the rostral ventromedial PAG. Medially placed injections yielded numerous retrogradely labeled neurons in the lateral and ventrolateral PAG. Injections placed in the rostral pole of the PGi (medial to the facial nucleus) produced the greatest number of retrogradely labeled neurons in the dorsal PAG. To examine the pathways taken by fibers projecting from PAG neurons to the medulla, and to further specify the topography for the terminations of these afferents in the PGi, the anterograde tracer Phaseolus vulgaris-leucoagglutinin was iontophoretically deposited into subregions of the PAG that contained retrogradely labeled neurons in the above experiments. These results revealed distinct fiber pathways to the rostral medulla that arise from the dorsal, lateral/ventrolateral, and ventromedial parts of the PAG. These injections also showed that there are differential but overlapping innervation patterns within the PGi. Consistent with the retrograde tracing results, injections into the rostral ventromedial PAG near the supraoculomotor nucleus yielded anterograde labeling immediately ventral to the nucleus ambiguus in the ventrolateral medulla, within the retrofacial portion of the PGi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
This study was undertaken to identify premotor neurons in the nucleus tractus solitarii (NTS) serving as relay neurons between the sensory trigeminal complex (STC) and the facial motor nucleus in rats. Trigemino-solitarii connections were first investigated following injections of anterograde and/or retrograde (biotinylated dextran amine, biocytin, or gold-HRP) tracers in STC or NTS. Trigemino-solitarii neurons were abundant in the ventral and dorsal parts of the STC and of moderate density in its intermediate part. They project throughout the entire rostrocaudal extent of the NTS with a strong lateral preponderance. Solitarii-trigeminal neurons were observed mostly in the rostral and rostrolateral NTS. They mainly project to the ventral and dorsal parts of the spinal trigeminal nucleus but not to the principal nucleus. Additional neurons located in the middle NTS were found to project exclusively to the spinal trigeminal nucleus pars caudalis. No solitarii-trigeminal cells were observed in the caudal NTS. In addition, evidence was obtained of NTS retrogradely labeled neurons contacted by anterogradely labeled trigeminal terminals. Second, solitarii-facial projections were analyzed following injections of anterograde and retrograde tracers into the NTS and the facial nucleus, respectively. NTS neurons, except those of the rostrolateral part, reached the dorsal aspect of the facial nucleus. Finally, simultaneous injections of anterograde tracer in the STC and retrograde tracer in the facial nucleus gave retrogradely labeled neurons in the NTS receiving contacts from anterogradely labeled trigeminal boutons. Thus, the present data demonstrate for the first time the existence of a trigemino-solitarii-facial pathway. This could account for the involvement of the NTS in the control of orofacial motor behaviors.  相似文献   

8.
The periaqueductal or midbrain central gray matter (CG) in the rat contains a dense network of adrenergic and noradrenergic fibers. We examined the origin of this innervation by using retrograde and anterograde axonal tracers combined with immunohistochemistry for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT). Following injections of the fluorescent tracers Fast Blue or Fluorogold into the CG, double-labeled neurons in the medulla were identified mainly in the noradrenergic A1 group in the caudal ventrolateral medulla (VLM) and A2 group in the medial part of the nucleus of the solitary tract (NTS); and in the adrenergic C1 group in the rostral ventrolateral medulla and C3 group in the rostral dorsomedial medulla. Injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) into these cell groups resulted in a distinct pattern of axonal labeling in various subdivisions of the CG. Anterogradely labeled fibers originating in the medial NTS were predominantly found in the lateral portion of the dorsal raphe nucleus and in the adjacent part of the lateroventral CG (CGlv). Following PHA-L injections into the C3 region the anterogradely labeled fibers were diffusely distributed in the CGlv and the dorsal raphe nucleus at caudal levels, but rostrally tended to be located laterally in the CGlv. In contrast, ascending fibers from the caudal and rostral VLM terminated in the rostral dorsal part of the CGlv and in the dorsal nucleus of the CG, whereas ventral parts of the CG, including the dorsal raphe nucleus, contained few afferent fibers. Double-label studies with antisera against DBH and PNMT confirmed that noradrenergic neurons in the A1 and A2 groups and adrenergic neurons in the C1 and C3 groups contributed to these innervation patterns in the CGlv. Noradrenergic and adrenergic projections from the medulla to the CG may play an important role in a variety of autonomic, sensory and behavioral processes.  相似文献   

9.
Glutamic acid decarboxylase (GAD), the enzyme which synthesizes the inhibitory transmitter gamma-aminobutyric acid (GABA), was localized immunocytochemically within cells and processes distributed throughout the ventrolateral medulla. In caudal regions, GAD-stained cells were adjacent to the 'precerebellar' lateral reticular nucleus and partially overlapped the A1 area of norepinephrine synthesizing neurons. The largest number of labeled neurons filled the rostral ventrolateral medulla (RVL), coinciding with and extending beyond the C1 adrenergic area. GAD-positive cells also occupied the nucleus reticularis parvocellularis, raphe magnus (RM) and lateral wings of RM in the region of the pararaphe. Intrinsic GAD-containing cells in the ventrolateral medulla may tonically inhibit sympathoinhibitory neurons in the caudal ventrolateral medulla (CVL) and sympathoexcitatory neurons in the RVL.  相似文献   

10.
Horseradish peroxidase (HRP) has been applied to the proximal severed ends of glossopharyngeal (N IX), vagus (NX), and hypoglossal (N XII) cockatoo in order to localize the motoneurons and sensory projections of these nerves which are involved in the control of the bird's feeding and phonatory behaviors. Application of HRP to N IX labeled four rhombencephalic nuclei: (1) a large-celled, retrofacial nucleus supplying M. geniohyoideus, the major tongue extensor; (2) a dorsal nucleus composed of medium-sized cells, projecting to most branches of N IX; (3) a ventrolateral nucleus supplying, amongst other structures, the floor of the pharynx and larynx; and (4) a ventral portion of the dorsal motor nucleus of the vagus. Neurons labeled by application of HRP to the cervical vagus comprise the classically defined dorsal motor nucleus and a ventrolateral medullary nucleus which is coextensive with that of the glossopharyngeus: together they probably constitute a nucleus ambiguus. Application of HRP to hypoglossal branches labeled a large nucleus intermedius (IM) and neurons ventral, ventrolateral, and caudal to it. The rostral third of IM supplies the lingual muscles, the caudal two-thirds the tracheosyringeal muscles. Many labeled neurons were found in the "jugular" ganglion following HRP treatment of each of the three nerves, especially N IX and N XII, which innervate the tongue. Central projections of these neurons are to nuclei of the descending trigeminus and to largely nonoverlapping portions of the principal trigeminal nucleus. It is hypothesized that these afferents provide sensory information necessary for the efficient processing and passage of food in the mouth.  相似文献   

11.
Kawano H  Masuko S 《Brain research》2001,903(1-2):154-161
The subfornical organ (SFO) is known to be innervated by noradrenergic fibers. One possible origin of these fibers, which carry peripheral baroreceptor information to enhance the activity of SFO neurons, is the nucleus tractus solitarius (NTS). To investigate possible sites of origin of the catecholaminergic projections to the SFO, a retrograde tracing method was combined with immunohistochemistry in the rat. Stereotaxical injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase--colloidal gold complex, into the SFO from the dorsal aspect revealed retrogradely labeled neurons in several catecholaminergic cell groups. A substantial number of retrogradely labeled neurons showing tyrosine hydroxylase (TH) immunoreactivity were found in the NTS and ventrolateral medulla (VLM) at levels caudal to the obex and in the locus coeruleus, while retrogradely labeled neurons without TH immunoreactivity were found in the VLM at levels rostral to the obex and in the nucleus prepositus hypoglossi. When the tracer was injected into the structures dorsal to the SFO, including the triangular septal nucleus, the frequency of retrogradely labeled neurons in the NTS and VLM at the caudal level was very low. These findings indicate the existence of catecholaminergic projections from the VLM (probably A1) to the SFO, in addition to the noradrenergic projections from the NTS previously reported.  相似文献   

12.
13.
The CNS cell groups that project to vagal preganglionic neurons which innervate the most distal part of the airways were identified by the viral retrograde transneuronal labeling method. Pseudorabies virus (PRV) was injected into the lung parenchyma of C8 spinal rats and after 5 days survival, brain tissue sections from these animals were processed for immunohistochemical detection of PRV. Retrogradely labeled parasympathetic preganglionic cells (first-order neurons) were seen mainly in the ventral medulla oblongata: the compact portion of the nucleus ambiguus and the area ventral to it. Occasionally, a few labeled cells were seen within the rostral part of the dorsal vagal nucleus. This labeling pattern correlated well with the retrograde cell body labeling seen following cholera toxin beta-subunit (CT-b) injections in the lung parenchyma. PRV transneuronally labeled neurons (second-order and/or presumed third-order neurons) were found throughout the CNS with the characteristic labeling in the brainstem. Labeled neurons were identified along and just beneath the ventral medullary surface, and in nearby areas: the parapyramidal, retrotrapezoid, gigantocellular and lateral paragigantocellular reticular nuclei, as well as the caudal raphe nuclei (raphe pallidus, obscurus, and magnus). Several nucleus tractus solitarius (nTS) regions contained labeled cells including the commissural, medial, and ventrolateral nTS subnuclei. The A5 cell group and a small number of locus coeruleus neurons were also labeled. PRV-infected neurons were present in the K?lliker-Fuse and Barrington's nuclei. In the mesencephalon, neurons within the ventral periventricular gray matter were labeled. Labeling was present in the dorsal, lateral and paraventricular hypothalamic nuclei, and within the amygdaloid complex. In summary, the parasympathetic preganglionic neurons that innervate the peripheral airways are controlled by networks of lower brainstem and suprapontine neurons that lie in the same regions known to be involved in central regulation of autonomic functions.  相似文献   

14.
The central organization of the vagus nerve innervating the stomach of the rat   总被引:14,自引:0,他引:14  
We employed the neural tracers cholera toxin-horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase to examine the organization of the afferent and efferent connections of the stomach within the medulla oblongata of the rat. The major finding of this study is that gastric motoneurons of the dorsal motor nucleus (DMN) possess numerous dendrites penetrating discrete regions of the overlying nucleus of the solitary tract (NTS). In particular, dendritic labelling was present in areas of NTS which also received terminals of gastric vagal afferent fibers such as the subnucleus gelatinosus, nucleus commissuralis, and medial nucleus of NTS. This codistribution of afferent and efferent elements of the gastric vagus may provide loci for monosynaptic vagovagal interactions. A small number of dendrites of DMN neurons penetrated the ependyma of the fourth ventricle and a few others entered the ventral aspect of the area postrema, thus making possible the direct contact of preganglionic neurons with humoral input from the cerebrospinal fluid and/or the peripheral plasma. Nucleus ambiguus neurons projecting to the stomach predominantly innervate the forestomach. The dendrites of these cells, when labelled, were generally short, and extended beyond the compact cluster of ambiguus neurons in a ventrolateral direction, parallel to the fascicles of vagal efferent fibers traversing the medulla.  相似文献   

15.
The central afferent projections to cells in the region of the dorsal and ventral groups of respiratory neurones of the medulla were studied in the cat using the retrograde axonal transport of horseradish peroxidase (HRP).HRP was injected electrophoretically either in the ventrolateral nucleus of the solitary tract (the dorsal group), or into the nucleus ambiguus and retroambigualis (the ventral group). Microelectrode recordings of the activity of the respiratory neurones in these locations were obtained prior to the iontophoretic injections of the enzyme.Projections from the parabrachial region of the pons (nucleus locus coeruleus and subcoeruleus, lateral and medial parabrachial nuclei, Kölliker-Fuse nucleus), nucleus reticularis pontis oralis, retrofacial nucleus, nucleus paragigantocellularis lateralis and ventrolateral nucleus of the solitary tract to the nucleus ambiguus and retroambigualis were identified.The ventrolateral nucleus of the solitary tract was found to receive an input from the retrofacial and lateral paragigantocellular nuclei, and to have strong reciprocal connections with the nucleus paragigantocellularis dorsalis of the medulla upon which pontine Kölliker-Fuse nucleus projects, and some of the primary respiratory and cardiovascular afferences are thought to converge.  相似文献   

16.
大鼠中脑导水管周围灰质向孤束核的直接投射   总被引:4,自引:0,他引:4  
用PHA-L和WGA-HRP顺行追踪方法,对大鼠中脑导水管周围灰质(PAG)向孤束核的投射进行了研究。结果如下:(1)PHA-L和WGA-HRP顺标纤维和终末在孤束核内的分布状态基本一致,内侧亚核最多,连合亚核、腹外侧亚核和腹侧亚核次之,中间亚核内最少。无论注射区在PAG的尾段还是吻段,孤束核的尾中段内的标记纤维和终末均多于吻段。(2)PAG尾段向孤束核的投射多于PAG吻段。(3)PAG腹外侧区向孤束核的投射较多,而背外侧区较少(尾段)或缺如(吻段)。根据作者过去的结果和本实验证据,可见PAG向孤束核的投射通路存在定位投射关系。  相似文献   

17.
The muskrat, an aquatic rodent with a brisk and reliable diving response, shows a remarkable bradycardia after nasal stimulation. However, the medullary origin of cardiac preganglionic motoneurons is unknown in this species. We injected fat pads near the base of the heart of muskrats with a WGA-HRP solution to label retrogradely preganglionic parasympathetic neurons that project to the cardiac plexi. Results showed that the preponderance of labeled neurons was in ventrolateral parts of the medulla from 1.5 mm caudal to the obex to 2.0 mm rostral. Eighty-nine percent of the labeled neurons were located bilaterally in the external formation of the nucleus ambiguus, 5.6% were in the lateral extreme of the dorsal motor nucleus of the vagus nerve and 5.3% were found in the intermediate area in between these two nuclei. Although controversy still exists concerning the medullary origin of preganglionic cardiac motoneurons, our results from muskrats agree with those from most other species where preganglionic cardiac motoneurons were located just ventral to the nucleus ambiguus.  相似文献   

18.
J B Cabot  J Carroll  N Bogan 《Brain research》1991,544(1):162-168
The binding fragment of tetanus toxin, fragment C, was injected into several different regions of the pigeon heart. Retrogradely and/or transneuronally labeled cardiomotor parasympathetic preganglionic neurons were found in two separate nuclei within the medulla oblongata. The majority of fragment C-immunolabeled cells was confined to the caudal division of the nucleus ambiguus. This nuclear region is likely to be homologous to the ventrolateral nucleus of the external formation of the nucleus ambiguus in mammals. A smaller fraction (10-30%) of fragment C-positive cardiomotor preganglionic neurons were localized within a restricted portion of the ventrolateral subnucleus of the dorsal motor nucleus of the vagus nerve. This dual cardiac representation in an avian is very similar to the organization established in several mammalian species, and suggests that the brainstem organisation of cardiac parasympathetic efferents is evolutionarily stable across avians and mammals.  相似文献   

19.
Direct projections from the forebrain to the nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus in the rat medulla were mapped in detail using both retrograde axonal transport of the fluorescent tracer True Blue and anterograde axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). In the retrograde tracing studies, cell groups in the medial prefrontal cortex, lateral prefrontal cortex (primarily ventral and posterior agranular insular cortex), bed nucleus of the stria terminalis, central nucleus of the amygdala, paraventricular, arcuate, and posterolateral areas of the hypothalamus were shown to project to the NTS and in some cases also to the dorsal motor nucleus of the vagus. The prefrontal cortical areas projecting to the NTS apparently overlap to a large degree with those cortical areas receiving mediodorsal thalamic and dopaminergic input. The retrogradely labeled cortical cells were situated in deep layers of the rat prefrontal cortex. The anterograde tracing studies revealed a prominent topography in the mediolateral termination pattern of forebrain projections to the rostral part of the NTS and to the dorsal pons. The projections to the NTS were generally bilateral, except for projections from the central nucleus of the amygdala and bed nucleus of the stria terminalis which were predominantly ipsilateral. The prefrontal cortical projections to the NTS travel through the cerebral peduncle and pyramidal tract and terminate throughout the rostrocaudal extent of the NTS. Specifically, the prefrontal cortex innervates dorsal portions of the NTS (lateral part of the dorsal division of the medial solitary nucleus, dorsal part of the lateral solitary nucleus and the caudal midline region of the commissural nucleus), areas which receive relatively sparse subcortical projections. These dorsal portions of the NTS receive major primary afferent projections from the vagal and glossopharyngeal nerves. In contrast, the subcortical projections, which travel through the midbrain and pontine tegmentum, terminate most heavily in the ventral portions of the NTS, i.e., the area immediately dorsal and lateral to the dorsal motor nucleus of the vagus. Only the paraventricular hypothalamic nucleus has substantial terminals throughout the dorsal motor nucleus of the vagus. Hypothalamic cell groups innervate the area postrema and, along with the prefrontal cortex, innervate the zone subjacent to the area postrema.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号