首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
不同类型G蛋白偶联受体(GPCRs)之间的异源二聚化作用已得到普遍认可,异源二聚体具有不同于单体和同源二聚体的高阶结构特点,这在一定层次上类似于变构调节机制,使得GPCRs异源二聚体呈现更高的信号特异性和多样性.成功筛选GPCRs异源二聚体的特异配体或偏向性配体,能够为研发降低副作用的药物提供新的策略.该文就GPCRs异源二聚体的信号特点及其偏向性配体的生理药理学价值和筛选GPCRs异源二聚体偏向性配体的技术做一简要综述.  相似文献   

2.
G蛋白偶联受体二聚化研究进展   总被引:4,自引:0,他引:4  
G蛋白偶联受体(GPCR s)是最大的细胞膜受体家族,具有七螺旋跨膜肽段结构。近年来,越来越多的研究认为这些受体以二聚体的形式参与调节生理活动,对信号识别及转导有重要作用。随着生物技术及分子生物学的发展,GPCRs二聚体研究已取得了很大的进展。该文就这些方面及同源、异源二聚体对受体结合及信号转导的重要作用作一简述。  相似文献   

3.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)不仅能以单体的形式发挥生物学作用,还可以相互作用形成同源/异源二聚体,后者是调节受体功能的一种重要方式,能改变下游信号蛋白的偶联,产生特异信号转导通路,介导一系列生理和病理过程,如心血管调节、能量代谢等。因此,GPCR二聚体成为新型药物靶点之一,备受关注。但是以往对GPCR二聚体的研究一直是按总体平均水平(ensemble average)进行,这隐藏了有价值的信息,失去了生物异质性的有用数据。单分子技术具有前所未有的时空分辨率,能够直接显示GPCR二聚体的内部状态、运动轨迹,以及随着时间和周围环境的变化而转变等,有助于进一步剖析GPCR二聚体的关键作用和相关药物的开发。因此,该文将对研究GPCR二聚体的单分子技术(如全内反射荧光显微镜、受激发射损耗显微技术、基态耗尽显微术等)进行简要综述。  相似文献   

4.
G蛋白偶联受体(G protein couple receptors,GPCRs)是一个超大的膜受体家族,可以被不同的配体所激活,如激素、多肽、氨基酸、光粒子等。通过与这些配体结合,它们可以介导许多的信号传导,通过激活细胞内的G蛋白,从而激活不同的细胞内通路,产生不同的生物学效应。在对GPCRs的研究初期,普遍认为它们是以单体形式存在并发挥作用的,但后来大量证据表明,绝大多数GPCRs存在二聚化甚至更高的聚合形式,并以此形成基本的功能单位。二聚化可以发生在同受体、相似家族受体或不同家族受体分子之间,其作用可以体现在受体信号传导通路中的诸多环节,如与配体的结合、受体的激活、失敏及运输等。  相似文献   

5.
以往认为阿片受体以单聚体与G蛋白发生相互作用,其比例是按1:1偶联。然而,近年来随着G蛋白偶联受体克隆的成功及其特异性抗体的出现,关于阿片受体二聚化出现了大量报道,用Western印迹法分析异源细胞表达系统,已证明有免疫反应性复合体,而这些复合体相当于阿片受体(μ,k,δ)单体、二聚体、高级寡聚体。  相似文献   

6.
G蛋白偶联受体(GPCRs)和酪氨酸激酶受体(RTKs)细胞膜受体,它们之间可以利用共同的信号转导途径实现信号交流。该文主要阐述GPCRs与RTKs两者之间的信号交流在肿瘤发生和治疗中的作用,为临床肿瘤治疗提供理论基础。  相似文献   

7.
很多胞外信号直接或间接通过G蛋白偶联受体向胞内传输。多种G蛋白偶联受体包括趋化因子受体、前列腺素(prostaglandins,PGs)受体、β2-肾上腺素受体(β2-adrener-gicreceptor)、致炎肽P物质(proinflammatorypeptidesub-stanceP,SP)受体、蛋白酶活化受体2(protease-activatedre-ceptor2,PAR-2)等在免疫应答调节中起至关重要的作用。该文综述了与类风湿关节炎相关的G蛋白偶联受体(Gpro-tein-coupledreceptors,GPCRs)信号转导的一些蛋白作用,包括G蛋白偶联受体激酶、视紫红质抑制蛋白(arrestin)、G蛋白信号转导调节因子、G蛋白偶联致炎受体等。作用于这些信号或其转导过程的药物正成为类风湿关节炎治疗的新策略之一。  相似文献   

8.
G蛋白偶联受体(G protein-coupled receptor,GPCRs)是人体内最大的膜蛋白受体超家族,共有超过800种亚型,目前约有35%经食品药品监督管理局批准上市的药物靶向GPCRs治疗多种疾病,如心力衰竭(β肾上腺素受体)、消化性溃疡(组胺受体)、前列腺癌(促性腺激素受体)、高血压(肾上腺素能和血管紧张素受体)、疼痛(阿片受体)和支气管哮喘(β2肾上腺素受体)等。虽然GPCRs数量巨大,但其下游的信号蛋白却是有限的,异三聚体G蛋白(heterotrimeric G proteins,GPs)是传导GPCRs信号的关键蛋白,通过与GPCRs偶联将细胞外刺激转化为细胞内反应并通过下游级联启动多种信号转导事件。足细胞是肾小球滤过屏障的重要组成部分,其损伤是蛋白尿形成和肾小球进行性硬化的核心事件。本文就GPs的调控、信号转导及其在足细胞损伤中的作用等方面作一综述,以期为科研和临床研治该病提供理论依据。  相似文献   

9.
血清素2A受体(5-HT_(2A)R)作为致幻剂、抗抑郁药、抗焦虑药和非典型抗精神病药物等许多精神活性药物的作用靶点,受到人们的广泛关注。5-HT_(2A)R属于G蛋白偶联受体(GPCRs),与mGluR2、D_(2)R和CB_(1)R等多种GPCRs形成异源二聚体。二聚体中的mGluR2、D_(2)R与CB_(1)R影响5-HT_(2A)R偶联的信号通路和诱导的动物行为,并且3种受体分别被敲除后,致幻性5-HT_(2A)R激动剂诱导产生的甩头反应次数明显降低。基于5-HT_(2A)R/mGluR2、5-HT_(2A)R/D_(2)R和5-HT_(2A)R/CB_(1)R异源二聚体的重要性,该文将3种受体与5-HT_(2A)R形成异源二聚体的发现与功能进行详细综述,为探寻以5-HT_(2A)R为靶点的精神活性药物作用机制提供参考。  相似文献   

10.
G蛋白偶联受体(GPCRs)是涉及信号转导的细胞膜最大的受体超家族,介导产生多种生理效应,激活相应的信号级联系统,在肝损伤过程中发挥关键作用,是一类非常重要的药物作用靶标。该文就肾上腺素受体、血管紧张素受体、趋化因子受体、蛋白酶激活受体等参与急慢性肝损伤调节的GPCRs相关研究进展做一综述。  相似文献   

11.
Milligan G 《Drug discovery today》2006,11(11-12):541-549
The growing recognition that members of the rhodopsin-like family A G-protein-coupled receptors (GPCRs) exist and function as dimers or higher-order oligomers, and that GPCR hetero-dimers and -oligomers are present in physiological tissues, offers novel opportunities for drug discovery. Differential pharmacology, function and regulation of GPCR hetero-dimers and -oligomers suggest means to selectively target GPCRs in different tissues and hint that the mechanism of function of several pharmacological agents might be different in vivo than anticipated from simple ligand-screening programmes that rely on heterologous expression of a single GPCR.  相似文献   

12.
Wang J  Norcross M 《Drug discovery today》2008,13(13-14):625-632
Chemokine receptors control and mediate a diverse array of physiological and pathogenic processes. Many seven transmembrane (TM) G-protein-coupled receptors (GPCRs), including chemokine receptors, exist as homo- or heterodimers. Growing evidence indicates that the dimeric form is the basic functional structure of these receptors. Hetero-dimerization may allow for enhanced or specific functions of receptors and may be essential for receptor activity. Thus, dimers may provide new targets for chemokine receptor-based therapies. Synthetic peptides of TM regions of chemokine receptors may interfere with homologous interactions and inhibit functional activity of the receptors. Therefore, TM peptides and possibly compounds that target dimers and/or signaling of chemokine receptors may have therapeutic applications.  相似文献   

13.
The idea that G-protein-coupled receptors (GPCRs) can function as dimers is now generally accepted. Although an increasing amount of data suggests that dimers represent the basic signaling unit for most, if not all, members of this receptor family, GPCR dimerization might also be necessary to pass quality-control checkpoints of the biosynthetic pathway of GPCRs. To date, this hypothesis has been demonstrated unambiguously only for a small number of receptors that must form heterodimers to be exported properly to the plasma membrane (referred to as obligatory heterodimers). However, increasing evidence suggests that homodimerization might have a similar role in the receptor maturation process for many GPCRs.  相似文献   

14.
Almost all existing models for G-protein-coupled receptors (GPCRs) are based on the occurrence of monomers. Recent studies show that many GPCRs are dimers. Therefore for some receptors dimers and not monomers are the main species interacting with hormones/neurotransmitters/drugs. There are reasons for equivocal interpretations of the data fitting to receptor dimers assuming they are monomers. Fitting data using a dimer-based model gives not only the equilibrium dissociation constants for high and low affinity binding to receptor dimers but also a 'cooperativity index' that reflects the molecular communication between monomers within the dimer. The dimer cooperativity index (D(C)) is a valuable tool that enables to interpret and quantify, for instance, the effect of allosteric regulators. For different receptors heteromerization confers a specific functional property for the receptor heteromer that can be considered as a 'dimer fingerprint'. The occurrence of heteromers with different pharmacological and signalling properties opens a complete new field to search for novel drug targets useful to combat a variety of diseases and potentially with fewer side effects. Antagonists, which are quite common marketed drugs targeting GPCRs, display variable affinities when a given receptor is expressed with different heteromeric partners. This fact should be taken into account in the development of new drugs.  相似文献   

15.
G-protein-coupled receptors (GPCRs) are, and will probably remain, the most tractable class of targets for the development of small-molecule therapeutic medicines. Currently, all approved GPCR-directed medicines are agonists or antagonists at orthosteric binding sites - except for the calcimimetic cinacalcet, which is a positive allosteric modulator of Ca(2+)-sensing receptors, and maraviroc, an allosteric inhibitor of CC-chemokine receptor (CCR) 5. It is now widely accepted that GPCRs exist and might function as dimers, and there is growing evidence for the physiological presence and relevance of GPCR heterodimers. Molecules that can regulate a GPCR within a heterodimer, through allosteric effects between the two protomers of the dimer or between a protomer or protomers and the associated G protein, offer the potential to function in a highly selective and tissue-specific way. Despite the conceptual attraction of such allosteric regulators of GPCR heterodimers as drugs, they cannot be identified by screening approaches that routinely use a 'one GPCR target at a time' strategy. In our opinion, this will require the development of new approaches for screening and a return to the use of physiologically relevant cell systems at an early stage in compound identification.  相似文献   

16.
A number of class C G-protein coupled receptors (GPCRs) have been shown to form dimers in the plasma membrane, and mounting evidence supports the hypothesis that many, if not all, class A rhodopsin-like receptors also form dimers or higher-order oligomers. Evidence for this hypothesis has come from SDS-polyacrylamide gel electrophoresis, coimmunoprecipitation, resonance energy transfer, atomic force microscopy, and cross-linking studies, approaches that are reviewed in this article. Like any method, each has its strengths and limitations, and these must be kept in mind when interpreting the data for oligomerization. Recent experimental evidence supports the hypothesis that class A receptors may exist as higher-order oligomers, or even as arrays, with distinct symmetrical interfaces in both the first and fourth transmembrane segments.  相似文献   

17.
It is becoming accepted that G-protein-coupled receptors (GPCRs) arrange in the neuronal membrane into homo- and hetero-oligomers and, therefore, these complexes mediate neurotransmission. New models are then needed to understand GPCR operation and predict the consequences of GPCR homo- or hetero-oligomerization. Although there is not any unifying theory addressing how hetero-oligomerization occurs, recent models have been devised to understand the thermodynamics of binding of neurotransmitters to GPCRs and the allosteric protomer-protomer interactions involved in neurotransmitter-mediated activation of GPCRs. Although a model to predict how signalling is produced via homo- or hetero-oligomerization is lacking, functional data show that receptor oligomers exist to produce a variety of effects in neurons in response to a single neurotransmitter.  相似文献   

18.
The complete sequencing of the human genome has afforded researchers the opportunity to identify novel G-protein-coupled receptors (GPCRs) that are expressed in human tissues. The successful identification of hundreds of GPCRs represents the single greatest opportunity for novel drug development today. However, the lack of identified ligands for these GPCRs has limited their utility for traditional drug discovery approaches that focus on ligand-based assay methods to discover and pharmacologically characterize drug candidates. Here, we review the use of constitutively activated GPCRs in the discovery pathway, both as a means to overcome the limitations of traditional drug discovery at novel GPCRs and as a tool to investigate the functionality of these receptors.  相似文献   

19.
In recent years, the concept of allosteric modulation of G-protein-coupled receptors (GPCRs) has matured and now represents an increasingly viable approach to drug discovery. This is evident in the fact that allosteric modulators have been reported for every class of GPCR, and several are currently in clinical trials with one drug example approved and launched. The allosteric approach has been highlighted for the potential of identifying highly selective compounds with a minimal propensity to produce adverse effect. While much has been written regarding the promises of this approach, important challenges, caveats, and pitfalls exist that are often overlooked. Therefore, a balanced overview of the field that describes both the promises and the challenges of discovering allosteric modulators of GPCRs as novel drugs is presented.  相似文献   

20.
Although classical models predict that G-protein-coupled receptors (GPCRs) function as monomers, several recent studies acknowledge that GPCRs exist as dimeric or oligomeric complexes. In addition to homodimers, heterodimers between members of the GPCR family (both closely and distantly related) have been reported. In some cases heterodimerization is required for efficient agonist binding and signaling, and in others heterodimerization appears to lead to the generation of novel binding sites. In this article, the techniques used to study GPCR heterodimers, and the 'novel pharmacology' and functional implications resulting from heterodimerization will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号