首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free radical-mediated mechanisms of cellular damage have been implicated in the early stages of spinal cord injury (SCI). Manganese superoxide dismutase (MnSOD) is a potent scavenger of superoxide radicals and likely serves an important cytoprotective role in preventing cellular damage after SCI. We have evaluated the expression of MnSOD to address its role during the early events of SCI using a well-established rat contusion model. Northern analysis showed a rapid induction of MnSOD mRNA between 2 and 6 h post injury. Observed time-dependent increases in MnSOD message was maximal 6 h post injury over that of MnSOD mRNA levels induced by laminectomy alone. Immunoblot and immunohistochemical analysis demonstrated increased expression of MnSOD protein 24 h after SCI with localization primarily within neurons. Interestingly, laminectomy alone also caused an induction of MnSOD gene and protein expression. To evaluate one potential mechanism of MnSOD induction, we microinjected the naive spinal cord with IL-1beta, which caused a similar fold induction of MnSOD mRNA levels by 6 h as observed with SCI, thus implicating it as a potential inducer of MnSOD during SCI. In summary, these results demonstrate that this potent cytoprotective antioxidant enzyme is rapidly and significantly induced as a consequence of SCI.  相似文献   

2.
3.
The involvement of caspases in apoptosis after spinal cord injury (SCI) was investigated in adult mouse spinal cord after contusion. Sections of spinal cord were processed for staining 7 days after SCI with the fluorescent dye Hoechst 33342, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and immunostaining with an antibody (CM1) recognizing activated caspase-3. Caspase-3- and caspase-8-like enzyme activities were measured colorimetrically at 8 hours to 7 days after SCI using the specific substrates Asp-Glu-Val-Asp-p-nitroanilide and Ile-Glu-Thr-Asp-p-nitroanilide, respectively. Hoechst 33342 staining showed small, bright areas in fragmented nuclei. Double labeling with TUNEL plus immunostaining with cell type-specific markers identified TUNEL-positive neurons stained by anti-neuronal nuclear protein/neurons antibody, and TUNEL-positive oligodendrocytes stained by anti-cyclic nucleotide 3'-phosphohydrolase antibody. Double labeling with CM1 and cell-type specific markers similarly identified CM1-positive neurons and oligodendrocytes. Caspase-8-like enzyme activity was increased significantly on days 3 and 7 (p < 0.01), whereas caspase-3-like activity increased on day 7 (p < 0.01). Intraventricular injection of a nonspecific tetrapeptide caspase inhibitor or a specific tetrapeptide inhibitor of caspase-3 just after SCI reduced enzyme activity at 7 days. Apoptotic cells were identified with TUNEL staining in both neurons and oligodendrocytes in mice after SCI, which also showed activated caspase-3. Increased caspase-3- and caspase-8-like activity was detected in the injured spinal cord on days 3 and 7. Caspase protease activities may be involved in delayed neuronal and glial apoptosis after SCI.  相似文献   

4.
Yan P  Li Q  Kim GM  Xu J  Hsu CY  Xu XM 《Journal of neurotrauma》2001,18(5):563-568
Posttraumatic inflammatory reaction may contribute to secondary injury after traumatic spinal cord injury (SCI). Expression of tumor necrosis factor-alpha (TNF-alpha), a key inflammatory mediator, has been demonstrated in the injured cord. However, the specific cell types that are responsible for TNF-alpha expression after SCI remain to be identified. In the present study, cellular sources of TNF-alpha were examined in rats that received a spinal cord impact injury at the 9th thoracic (T9) level. Here we demonstrate that, within hours after SCI, increased TNF-alpha immunoreactivity was localized in neurons, glial cells (including astrocytes, oligodendrocytes, and microglia), and endothelial cells in areas of the spinal cord adjacent to the lesion site. Myelin breakdown was noted in oligodendrocytes that are immunopositive for TNF-alpha. In sham-operated controls, a low level of TNF-alpha immunoreactivity was detected. In antigen-absorption experiments, no TNF-alpha immunoreactivity was detected, indicating the specificity of TNF-alpha immunocytochemistry in the present study. Results suggest that various cell types, including neurons, glial cells, and vascular endothelial cells, contribute to TNF-alpha production in the injured cord.  相似文献   

5.
Matrix metalloproteinase-9 (MMP-9) activation plays an important role in blood-brain barrier (BBB) dysfunction after central nervous system injury. Oxidative stress is also implicated in the pathogenesis after cerebral ischemia and spinal cord injury (SCI), but the relationship between MMP-9 activation and oxidative stress after SCI has not yet been clarified. We examined MMP-9 expression after SCI using copper/zinc-superoxide dismutase (SOD1) transgenic (Tg) rats. Our results show that MMP-9 activity significantly increased after SCI in both SOD1 Tg rats and their wild-type (Wt) littermates, although the increase was less in the SOD1 Tg rats. This pattern of MMP-9 expression was further confirmed by immunostaining and Western blot analysis. In situ zymography showed that gelatinolytic activity increased after SCI in the Wt rats, while the increase was less in the Tg rats. Evans blue extravasation increased in both the Wt and Tg rats, but was less in the SOD1 Tg rats. Inhibitor studies showed that, with an intrathecal injection of SB-3CT (a selective MMP-2/MMP-9 inhibitor), the MMP activity, Evans blue extravasation, and apoptotic cell death decreased after SCI. We conclude that increased oxidative stress after SCI leads to MMP-9 upregulation, BBB disruption, and apoptosis, and that overexpression of SOD1 in Tg rats decreases oxidative stress and further attenuates MMP-9 mediated BBB disruption.  相似文献   

6.
BackgroundResearch has revealed the crucial roles of inflammasomes in various central nervous system disorders. However, the role of inflammasomes in secondary damage following spinal cord injury (SCI) remains incompletely understood.MethodsHere, we investigated the role of apoptosis-associated speck-like protein (ASC), an adaptor protein for inflammasome formation, after contusion SCI in ASC homozygous knockout (ASC–/–) mice. Contusion SCI was induced using a force of 60 kdyn, and recovery of open-field locomotor performance was evaluated using the nine-point Basso Mouse Scale (BMS). Bone marrow transplantation (BMT) was performed to create mice chimeric for ASC expression in bone marrow cells.ResultsWestern blot analysis revealed that protein expression of NLRP3, ASC, Caspase-1, and IL-β were increased in injured spinal cords compared with sham-control spinal cords at 1 day post injury (dpi). Double immunostaining showed that ASC expression was co-localized to cellular constituents of the spinal cord, including NeuN+ neurons, CD11b+ microglia/macrophages, GFAP+ astrocytes, and MOG+ oligodendrocytes. ASC–/– mice had significantly better locomotor function assessed by BMS than wild-type (WT) mice. ASC–/– mice also had significantly reduced levels of Nlrp3, Casp1, IL1b, Il-6, Tnfa, Cxcl1, and Ly6g mRNA compared with WT mice. BMT (WT→ASC–/–) mice had significantly better BMS scores than BMT (WT→WT) mice. BMT (ASC–/–→WT) mice also had significantly better BMS scores than BMT (WT→WT) mice. However, the statistical significance was limited to time points between 7 and 21 dpi.ConclusionsThese results suggest that ASC-dependent inflammasome formation, especially in resident cells of the spinal cord, plays a pivotal role in the progression of secondary damage following SCI.  相似文献   

7.
8.
目的探讨黄连素对脊髓损伤(SCI)后线粒体氧化损伤的作用和可能机制。方法将36只C57小鼠随机分为假手术组、SCI组(伤后立即腹腔注射10 mg/kg生理盐水)和黄连素组(SCI后立即腹腔注射10 mg/kg黄连素),每组12只。使用PSI-IH脊髓打击器建立小鼠SCI模型,于损伤后24 h处死小鼠,取脊髓组织。使用全自动酶标仪检测各组小鼠脊髓组织线粒体内丙二醛(MDA)、还原型谷胱甘肽(GSH)和超氧化物歧化酶(SOD)的变化;用蛋白质印迹法检测脊髓组织caspase-3、cleaved caspase-3的表达及细胞质内和线粒体内细胞色素C(Cyt C)的表达;用免疫荧光双标染色法检测脊髓组织中神经细胞凋亡情况。结果与假手术组相比,SCI组小鼠脊髓组织线粒体内MDA水平升高,GSH、SOD水平降低;细胞质内Cyt C和脊髓组织中caspase-3、cleaved caspase-3表达水平增高,线粒体内Cyt C表达水平降低;脊髓组织中神经元凋亡比例增高;差异均有统计学意义(P 0.05)。与SCI组相比,黄连素组小鼠脊髓组织线粒体内MDA水平降低,SOD和GSH水平增高;细胞质内Cyt C和脊髓组织中caspase-3、cleaved caspase-3表达水平降低,线粒体内Cyt C表达水平增高;脊髓组织中神经细胞凋亡比例减少;差异均有统计学意义(P 0.05)。结论黄连素可减轻SCI小鼠脊髓组织中神经细胞凋亡,这可能与其抑制线粒体氧化损伤、减少Cyt C释放、降低凋亡蛋白表达有关。  相似文献   

9.
iNOS and nitrotyrosine expression after spinal cord injury   总被引:24,自引:0,他引:24  
  相似文献   

10.
Following contusive spinal cord injury (SCI), 50% of oligodendrocytes in the residual white matter are lost within 24 h. NG2-expressing cell proliferation is maximal 3 days after SCI, and may be the source of mature oligodendrocytes and astrocytes that chronically replace those that were lost. We studied NG2(+) cells dissociated from the 3-day injured spinal cord for comparison with those from uninjured adult and early postnatal cords. After 24 h in serum-containing medium, we performed patch clamp analysis and immunocytochemistry for NG2 in combination with nestin (progenitors), and A2B5, O4, and O1 (oligodendrocyte lineage markers). We observed an NG2(+)/A2B5-/O4-/O1- population in both adult preparations. More than double the normal number of NG2(+) cells was isolated from the injured cord, but OX42(+) microglia/macrophages were the predominant cell type after injury. Most cells isolated at P7 were NG2-/A2B5(+), whereas those from the normal adult were NG2(+)/A2B5-. NG2(+) cells after SCI displayed altered voltage-gated potassium current profiles compared to normal adult and P7 animals. Additionally, less than 25% of adult cells (normal and injured) responded to GABA and glutamate, compared to 100% of P7 cells. Our results indicate that the adult NG2(+) cell pool is antigenically and physiologically different than the early postnatal pool, and that contusive injury induces changes in adult NG2(+) cells.  相似文献   

11.
Axonal remyelination by cord blood stem cells after spinal cord injury   总被引:4,自引:0,他引:4  
Human umbilical cord blood stem cells (hUCB) hold great promise for therapeutic repair after spinal cord injury (SCI). Here, we present our preliminary investigations on axonal remyelination of injured spinal cord by transplanted hUCB. Adult male rats were subjected to moderate SCI using NYU Impactor, and hUCB were grafted into the site of injury one week after SCI. Immunohistochemical data provides evidence of differentiation of hUCB into several neural phenotypes including neurons, oligodendrocytes and astrocytes. Ultrastructural analysis of axons reveals that hUCB form morphologically normal appearing myelin sheaths around axons in the injured areas of spinal cord. Colocalization studies prove that oligodendrocytes derived from hUCB secrete neurotrophic hormones neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF). Cord blood stem cells aid in the synthesis of myelin basic protein (MBP) and proteolipid protein (PLP) of myelin in the injured areas, thereby facilitating the process of remyelination. Elevated levels of mRNA expression were observed for NT3, BDNF, MBP and PLP in hUCB-treated rats as revealed by fluorescent in situ hybridization (FISH) analysis. Recovery of hind limb locomotor function was also significantly enhanced in the hUCB-treated rats based on Basso-Beattie-Bresnahan (BBB) scores assessed 14 days after transplantation. These findings demonstrate that hUCB, when transplanted into the spinal cord 7 days after weight-drop injury, survive for at least 2 weeks, differentiate into oligodendrocytes and neurons, and enable improved locomotor function. Therefore, hUCB facilitate functional recovery after moderate SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.  相似文献   

12.
Prostaglandin E1 (PGE1), a potent vasodilator, was recently reported to inhibit both neutrophil activation and monocytic production of tumor necrosis factor-alpha (TNF-alpha) in vitro. We previously reported that TNF-alpha was critically involved in the development of motor disturbances by increasing the accumulation of neutrophils at the site of injury in rats subjected to compression trauma-induced spinal cord injury. Therefore, it is possible that PGE1 reduces motor disturbances by inhibiting neutrophil activation in rats subjected to spinal cord injury. We examined this possibility in a rat model of spinal cord injury (SCI). Motor disturbances induced by spinal cord compression were evaluated using the inclined plane test, and footprint analysis. Accumulation of neutrophils at the site of trauma was evaluated by measuring tissue myeloperoxydase (MPO) activity. Tissue levels of TNF-alpha were determined using an enzyme-linked immunosorbent assay. Motor disturbances induced by spinal cord compression were significantly attenuated in rats administered PGE1. A histological examination revealed that intramedullary hemorrhages, observed 24 h after trauma, were markedly reduced in animals administered PGE1. Increases in the tissue levels of TNF-alpha and MPO activity in the damaged segment of spinal cord were significantly inhibited in animals that had received PGE1. These observations suggested that PGE1 reduces motor disturbances by inhibiting neutrophil activation directly or indirectly through the inhibition of TNF-alpha production at the site of injury. These effects of PGE1 might at least partly contribute to therapeutic effect on SCI in rats.  相似文献   

13.
14.
BACKGROUND: It is still not known whether the spinal cytokine signaling pathways are involved in the pathophysiologic mechanism of the acute phase of heart disease. This study examines the expression pattern of tumor necrosis factor-alpha (TNF-alpha) and its two related mitogenic-activated protein kinases, p38 and Jun-N-terminal kinase (JNK), in the spinal cord in response to acute cardiac injury (ACI). METHODS: The ACI rat model was established by intra-myocardial injection of formalin. At the indicated times after the establishment of ACI, the thoracic segments of the spinal cord were harvested and Western blot was performed to determine the expression of TNF-alpha, p38 and JNK. The localization of the cytokine and the kinases was determined by immunohistochemistry and double immunofluorescence. RESULTS: In response to ACI, TNF-alpha protein was up-regulated and reached a peak level at 6 h after ACI. The up-regulated TNF-alpha was distributed in all the laminae in the spinal cord and mainly localized in the neurons, as determined by immunohistochemistry and double immunofluorescence. In response to ACI, p38 and JNK were also up-regulated in the spinal cord. The expression profiles of p38 and JNK were similar to that of activated TNF-alpha following ACI. CONCLUSIONS: This study shows that cardiac injury can induce the activation of spinal TNF-alpha, p38 and JNK. The activated spinal cytokine signaling may contribute to disease progression in the acute phase of cardiac injury in clinical practice.  相似文献   

15.
Inflammatory cellular responses to spinal cord injury are promoted by proinflammatory messengers. We have analyzed expression of endothelial monocyte activating polypeptide II (EMAP II), a proinflammatory, antiangiogenic cytokine in rats after spinal cord injury (SCI) in comparison to normal rat spinal cords. Immunohistochemical analysis demonstrated a highly significant (p < 0.0001) accumulation of EMAP II(+) microglia/macrophages at the lesion site compared to remote areas and uninjured controls. After peaking at day 3, EMAP II(+) microglia/macrophage cell numbers declined gradually until day 28 after SCI-but still remained elevated. Further, EMAP II(+) cells formed clusters in perivascular Virchow-Robin spaces reaching a maximum at day 3. Prolonged accumulation of EMAP II(+), ED1(+) microglia/macrophages suggest a role of EMAP II in the pathophysiology of secondary injury following SCI.  相似文献   

16.
Review of current evidence for apoptosis after spinal cord injury   总被引:28,自引:0,他引:28  
The initial mechanical tissue disruption of spinal cord injury (SCI) is followed by a period of secondary injury that increases the size of the lesion. The secondary injury has long been thought to be due to the continuation of cellular destruction through necrotic (or passive) cell death. Recent evidence from brain injury and ischemia suggested that cellular apoptosis, an active form of programmed cell death seen during development, could play a role in CNS injury in adulthood. Here, we review the evidence that apoptosis may be important in the pathophysiology of SCI. There is now strong morphological and biochemical evidence from a number of laboratories demonstrating the presence of apoptosis after SCI. Apoptosis occurs in populations of neurons, oligodendrocytes, microglia, and, perhaps, astrocytes. The death of oligodendrocytes in white matter tracts continues for many weeks after injury and may contribute to post-injury demyelination. The mediators of apoptosis after SCI are not well understood, but there is a close relationship between microglia and dying oligodendrocytes, suggesting that microglial activation may be involved. There is also evidence for the activation of important intracellular pathways known to be involved in apoptosis in other cells and systems. For example, some members of the caspase family of cysteine proteases are activated after SCI. It appears that the evolution of the lesion after SCI involves both necrosis and apoptosis. It is likely that better understanding of apoptosis after SCI will lead to novel strategies for therapeutic interventions that can diminish secondary injury.  相似文献   

17.
目的探讨急性脊髓损伤后促红细胞生成素(EPO)及其受体(EPO-R)在脊髓内的表达。方法Wistar大鼠69只,随机分为三组:正常对照组(5只,不手术,作为后两组的对照)、假手术组(仅行椎板切除术)和脊髓损伤组。根据术后时间点不同后两组又分为1h、6h、12h、24h、3d、7d、14d和28d八个亚组(每组4只)。采用RT-PCR、Western blot免疫印迹法和免疫组织化学染色法检测EPO及EPO-R的表达。结果正常对照组、假手术组和脊髓损伤组在各时相点均未发现有EPO表达。正常对照组、假手术组未发现EPO-R的表达,脊髓损伤组在伤后1h未见EPO-R mRNA和蛋白的表达,6h开始有表达,12h有明显的表达,至24h达到高峰,3d和7d时仍维持在高表达水平,未见减弱,14d开始下降,至28d时仍有EPO-R蛋白的表达。免疫组化显示EPO-R阳性细胞主要位于神经元、少突胶质细胞、血管内皮细胞和脊髓中央管内室管膜细胞。结论大鼠急性脊髓损伤后脊髓内大量表达EPO-R,这是外源性EPO与EPO-R结合产生神经保护作用的分子基础。  相似文献   

18.
Spinal cord injury (SCI) activates circulating leukocytes that migrate into the injured cord and bystander organs using adhesion molecule-mediated mechanisms. These cells cause oxidative damage, resulting in secondary injury to the spinal cord, as well as injury to bystander organs. This study was designed to examine, over a 6-h to 2-week period, changes in adhesion molecule surface expression on human peripheral leukocytes after SCI (9 subjects), using as controls 10 uninjured subjects and 6 general trauma patients (trauma controls, TC). Both the percentage of cells expressing a given adhesion molecule and the average level of its expression was quantified for both circulating neutrophils and monocytes. The percentage of neutrophils and monocytes expressing the selectin CD62L was unchanged in TC and SCI patients after injury compared to uninjured subjects. Concurrently, the amount of surface CD62L on neutrophils was decreased in SCI and TC subjects, and on monocytes after SCI. The percentage of neutrophils expressing α4 decreased in TC, but not in SCI, subjects. Likewise, the percentage of neutrophils and monocytes expressing CD11d decreased markedly in TC subjects, but not after SCI. In contrast, the mean surface expression of α4 and CD11d by neutrophils and monocytes increased after SCI compared with uninjured and TC subjects. The percentage of cells and surface expression of CD11b were similar in neutrophils of all three groups, whereas CD11b surface expression increased after SCI in monocytes. In summary, unlike changes found after general trauma, the proinflammatory stimulation induced by SCI increases the surface expression of adhesion molecules on circulating neutrophils and monocytes before they infiltrate the injured spinal cord and multiple organs of patients. Integrins may be excellent targets for anti-inflammatory treatment after human SCI.  相似文献   

19.
Chen H  Li X  Epstein PN 《Diabetes》2005,54(5):1437-1446
Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.  相似文献   

20.
Treatments for spinal cord injury may promote new spinal cord synapses. However, the potential for new synapses between descending somatomotor and spinal sympathetic neurons has not been investigated. We studied rats with intact spinal cords and rats after a chronic, bilateral, dorsal spinal hemisection. We identified sympathetically related spinal neurons by transynaptic, retrograde transport of renally injected pseudorabies virus. We counted retrogradely labeled sympathetic preganglionic neurons (SPN) and putative sympathetic interneurons (IN) that, under light microscopy, appeared closely apposed by anterogradely labeled axons of the corticospinal tract (CST) and by axons descending from the well-established sympathetic regulatory region in the rostral ventrolateral medulla (RVLM). Spinal sympathetic neurons that were closely apposed by CST axons were significantly more numerous in lesioned rats than in unlesioned rats. CST axons closely apposed 5.4% of SPN and 10.3% of IN in rats with intact spinal cords, and 38.0% of SPN and 37.3% of IN in rats with chronically lesioned spinal cords. Further, CST appositions in SCI rats consisted of many more varicosities than those in uninjured rats. SPN and IN closely apposed by axons from the RVLM were not more numerous in lesioned rats. However, RVLM axons apposed many more SPN than IN in both control and lesioned rats. Therefore, RVLM sympathoexcitation may be mediated largely by direct synapses on SPN. Although we have not determined the functional significance of close appositions between the CST and spinal sympathetic neurons, we suggest that future studies of spinal cord repair and regeneration include an evaluation of potential, new, somatic-autonomic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号