首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perinatal hyperoxia attenuates the hypoxic ventilatory response in rats by altering development of the carotid body and its chemoafferent neurons. In this study, we tested the hypothesis that hyperoxia elicits this plasticity through the increased production of reactive oxygen species (ROS). Rats were born and raised in 60% O(2) for the first two postnatal weeks while treated with one of two antioxidants: vitamin E (via milk from mothers whose diet was enriched with 1000 IU vitamin E kg(-1)) or a superoxide dismutase mimetic, manganese(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; via daily intraperitoneal injection of 5-10 mg kg(-1)); rats were subsequently raised in room air until studied as adults. Peripheral chemoreflexes, assessed by carotid sinus nerve responses to cyanide, asphyxia, anoxia and isocapnic hypoxia (vitamin E experiments) or by hypoxic ventilatory responses (MnTMPyP experiments), were reduced after perinatal hyperoxia compared to those of normoxia-reared controls (all P<0.01); antioxidant treatment had no effect on these responses. Similarly, the carotid bodies of hyperoxia-reared rats were only one-third the volume of carotid bodies from normoxia-reared controls (P <0.001), regardless of antioxidant treatment. Protein carbonyl concentrations in the blood plasma, measured as an indicator of oxidative stress, were not increased in neonatal rats (2 and 8 days of age) exposed to 60% O(2) from birth. Collectively, these data do not support the hypothesis that perinatal hyperoxia impairs peripheral chemoreceptor development through ROS-mediated oxygen toxicity.  相似文献   

2.
Adult rats have decreased carotid body volume and reduced carotid sinus nerve, phrenic nerve, and ventilatory responses to acute hypoxic stimulation after exposure to postnatal hyperoxia (60% O2, PNH) during the first 4 weeks of life. Moreover, sustained hypoxic exposure (12%, 7 days) partially reverses functional impairment of the acute hypoxic phrenic nerve response in these rats. Similarly, 2 weeks of PNH results in the same phenomena as above except that ventilatory responses to acute hypoxia have not been measured in awake rats. Thus, we hypothesized that 2-week PNH-treated rats would also exhibit blunted chemoafferent responses to acute hypoxia, but would exhibit ventilatory acclimatization to sustained hypoxia. Rats were born into, and exposed to PNH for 2 weeks, followed by chronic room-air exposure. At 3-4 months of age, two studies were performed to assess: (1) carotid sinus nerve responses to asphyxia and sodium cyanide in anesthetized rats and (2) ventilatory and blood gas responses in awake rats before (d0), during (d1 and d7), and 1 day following (d8) sustained hypoxia. Carotid sinus nerve responses to i.v. NaCN and asphyxia (10 s) were significantly reduced in PNH-treated versus control rats; however, neither the acute hypoxic ventilatory response nor the time course or magnitude of ventilatory acclimatization differed between PNH and control rats despite similar levels of PaO2 . Although carotid body volume was reduced in PNH rats, carotid body volumes increased during sustained hypoxia in both PNH and control rats. We conclude that normal acute and chronic ventilatory responses are related to retained (though impaired) carotid body chemoafferent function combined with central neural mechanisms which may include brainstem hypoxia-sensitive neurons and/or brainstem integrative plasticity relating both central and peripheral inputs.  相似文献   

3.
Early life experiences can influence development of the respiratory control system. We hypothesized that chronic hyperoxia (60% O(2)) during development would attenuate the hypoxic ventilatory response (HVR) of Japanese quail (Coturnix japonica), similar to the effects of developmental hyperoxia in mammals. Quail were exposed to hyperoxia during prenatal development, during postnatal development, or during both prenatal and postnatal development (for approximately 2 or 4 weeks). HVR (11% O(2)) was subsequently assessed in adults (>6 weeks old) via barometric plethysmography and compared to quail raised in normoxia (i.e., control). The HVR of quail exposed to hyperoxia both prenatally and postnatally was reduced 50-60% compared to control quail whereas postnatally exposed quail exhibited normal HVR. The effects of prenatal hyperoxia on HVR were equivocal and depended on how HVR was expressed. We conclude that developmental exposure to 60% O(2) attenuates the HVR in quail and that the critical period for this plasticity encompasses the late prenatal and early postnatal periods.  相似文献   

4.
The effects of dermorphin, a mu-selective opioid agonist, on respiratory responses to altered O(2) and CO(2) during postnatal development were investigated in conscious, unrestrained Wistar rats aged 2-21 days. Respiration was recorded by barometric plethysmography. Dermorphin (4 mg kg(-1)) was administered subcutaneously, and the ventilatory responses to hypoxia (11% O(2), 89% N(2)) in 2-21-day-old pups and hyperoxia (100% O(2)), and hypercapnia (8% CO(2), 92% O(2)) in 2-13-day-old pups were assessed in the presence and absence of the mu(1) receptor antagonist naloxonazine (10 mg kg(-1) s.c.) administered 1 day before testing. Six minutes of hypoxia increased ventilation in all age groups, largely via an increase in frequency. Dermorphin inhibited the ventilatory response to hypoxia, and this inhibition was insensitive to naloxonazine. After 5 min of hyperoxia, ventilation was the same as with air breathing except in the presence of dermorphin, when hyperoxic ventilation was depressed by a naloxonazine-insensitive decrease in frequency. Following this 5 min 100% O(2) exposure, pups were exposed to hypercapnia, and respiratory parameters were measured 5 min later. The ventilatory response to CO(2) was inhibited by dermorphin in a naloxonazine-insensitive manner. There was no evidence for endogenous mu(1) receptor modulation of the ventilatory responses to altered gases in rat pups of any age. Thus, mu opioid-induced inhibition of the hypoxic and hypercapnic responses in young rats does not occur via activation of mu(1) opioid receptors.  相似文献   

5.
The effects of dermorphin, a mu-selective opioid agonist, on respiratory responses to altered O(2) and CO(2) during postnatal development were investigated in conscious, unrestrained Wistar rats aged 2-21 days. Respiration was recorded by barometric plethysmography. Dermorphin (4 mg kg(-1)) was administered subcutaneously, and the ventilatory responses to hypoxia (11% O(2), 89% N(2)) in 2-21-day-old pups and hyperoxia (100% O(2)), and hypercapnia (8% CO(2), 92% O(2)) in 2-13-day-old pups were assessed in the presence and absence of the mu(1) receptor antagonist naloxonazine (10 mg kg(-1) s.c.) administered 1 day before testing. Six minutes of hypoxia increased ventilation in all age groups, largely via an increase in frequency. Dermorphin inhibited the ventilatory response to hypoxia, and this inhibition was insensitive to naloxonazine. After 5 min of hyperoxia, ventilation was the same as with air breathing except in the presence of dermorphin, when hyperoxic ventilation was depressed by a naloxonazine-insensitive decrease in frequency. Following this 5 min 100% O(2) exposure, pups were exposed to hypercapnia, and respiratory parameters were measured 5 min later. The ventilatory response to CO(2) was inhibited by dermorphin in a naloxonazine-insensitive manner. There was no evidence for endogenous mu(1) receptor modulation of the ventilatory responses to altered gases in rat pups of any age. Thus, mu opioid-induced inhibition of the hypoxic and hypercapnic responses in young rats does not occur via activation of mu(1) opioid receptors.  相似文献   

6.
Environmental conditions during early life may have profound effects on respiratory control development. We hypothesized that perinatal hypercapnia would exert lasting effects on the mammalian hypercapnic ventilatory response, but that these effects would differ between males and females. Rats were exposed to 5% CO2 from 1 to 3 days before birth through postnatal week 2 and ventilation was subsequently measured by whole-body plethysmography. In both male and female rats exposed to perinatal hypercapnia, a rapid, shallow breathing pattern was observed for the first 2 weeks after return to normocapnia, but ventilation was unchanged. Acute hypercapnic ventilatory responses (3% and 5% CO2) were reduced 27% immediately following perinatal hypercapnia, but these responses were normal after 2 weeks of recovery in both sexes and remained normal as adults. Collectively, these data suggest that perinatal hypercapnia elicits only transient respiratory plasticity in both male and female rats. This plasticity appears similar to that observed after chronic hypercapnia in adult animals and, therefore, is not unique to development.  相似文献   

7.
Developmental hyperoxia impairs carotid chemoreceptor development and induces long-lasting reduction in carotid sinus nerve (CSN) responses to hypoxia in adult rats. Studies were carried out to determine if CSN responses to acute hypoxia would exhibit hypoxia-induced plasticity in adult 3-5-months-old rats previously treated with postnatal hyperoxia (60% O2, PNH) of 1, 2, or 4 weeks duration. CSN responses to acute hypoxia were assessed in adult rats exposed to 1 week of sustained hypoxia (12% O2, SH). In normal adult rats and adult rats treated with 1 week of PNH, CSN responses to acute hypoxia were significantly increased in urethane-anesthetized rats when studied 3-5 h after SH. Apparent increases in CSN responses to hypoxia were not significant in rats treated with 2 weeks of PNH and were clearly absent after 4 weeks of PNH, but exponential analysis suggests a PNH duration-dependent plasticity of the CSN response to acute hypoxia after SH. In a second study rats exposed to 2 weeks of PNH were treated with SH for 1 week as adults and acute hypoxic responses were tested 4-5 months later. CSN responses in these rats were unaffected by SH suggesting a lack of persistent SH-induced functional plasticity. We conclude that rats treated with 1 week of PNH retain the capacity for hypoxia-induced plasticity of carotid chemoafferent function and some potential for plasticity may be present after 2 weeks of PNH, whereas 4 weeks of PNH impairs the capability of rats to exhibit plasticity following 1 week of SH.  相似文献   

8.
Both genetic and environmental factors influence the normal development of the respiratory control system. This review examines the role perinatal O2 plays in the development of normoxic breathing and the hypoxic ventilatory response in mammals. Hyperoxia and hypoxia elicit plasticity in respiratory control that is unique to development and may persist weeks to years after return to normoxia. Specifically, both hyperoxia and hypoxia during early postnatal development attenuate the adult hypoxic ventilatory response, but the underlying mechanisms for this plasticity differ. Hyperoxia attenuates the hypoxic ventilatory response through potentially life-long changes in carotid body function. Neonatal hypoxia appears to have short-term effects on carotid body function, but persistent changes in the hypoxic ventilatory response may instead reflect changes in respiratory mechanics or related neural pathways. Overall, it appears that a relatively narrow range of environmental O2 is consistent with "normal" postnatal respiratory control development, predisposing animals to potentially maladaptive plasticity in the face of disease or atypical environmental conditions.  相似文献   

9.
The O(2) sensitivity of the neonatal rat carotid body is increased after 1 day in moderate hyperoxia (60% O(2)) (Donnelly et al., 2009). We investigated whether this enhanced peripheral chemosensitivity increases the hypoxic ventilatory response (HVR) and tested the hypothesis that this plasticity is mediated by the superoxide anion. Neonatal rats (7 d old) were injected with saline or MnTMPyP, a superoxide scavenger, and placed into 60% O(2) for 23-28h. Baseline ventilation was reduced and the acute HVR (12% O(2)) was enhanced in hyperoxia-treated rats relative to age-matched controls; MnTMPyP did not block these effects. An additional group of rats was studied after only 30min in 60% O(2). This shorter exposure had no effect on normoxic ventilation or the HVR. We conclude that 1 d, but not 30min, of 60% O(2) augments the HVR of neonatal rats and that production of the superoxide anion does not contribute to this plasticity.  相似文献   

10.
Hypoxia sustained during the prenatal period lowers the ventilatory (V˙(E)) response to hypoxia of the newborn. This phenomenon probably results from a disturbance in the normal development of the peripheral chemoreceptors, as shown to be the case postnatally after sustained period of low or high oxygen. To test the possibility that prolonged prenatal hyperoxia may have a similar effect, the breathing pattern and the V˙(E) responses to hypoxia or hypercapnia were measured by a modification of the barometric technique in 1-day old chicken hatchlings exposed to 40% O2 or 60% O2 (N=16 each) during the last week of incubation (hatching included), and in controls incubated in normoxia (N=16). During air breathing and moderate hypoxia (15% O2), neither group differed from controls. However, the V˙(E) response to 10% O2 was reduced to less than half normal in both groups of prenatal-hyperoxia hatchlings. The hypoxic drop in oxygen consumption V˙(O2) was more marked than in controls, which probably helped to limit the degree of hypoxemia and to sustain the hyperventilation (increase in V˙(E)-V˙(O2) ratio). The V˙(E) response to hypercapnia was almost normal, suggesting that there was no mechanical limitation on V˙(E). The degree of blunting in the V˙(E) response to hypoxia was very similar to that previously measured in hatchlings exposed to hypoxia during the last week of incubation. The results support to the view that sustained changes in oxygenation during the prenatal period reduce the newborn's V˙(E) response to hypoxia probably because of a major dysfunction of the carotid bodies.  相似文献   

11.
Chronic postnatal hyperoxia attenuates the hypoxic ventilatory response (HVR) of rats. To determine whether the ability to detect deficits in the HVR depends on the degree of hypoxia, we assessed the HVR at several levels of hypoxia in adult rats reared in 60% O(2) for the first two postnatal weeks. Hyperoxia-treated rats exhibited smaller increases in ventilation than control rats at 12% O(2) (30±8 vs. 53±4% baseline, mean±SEM; P=0.02) but not at 10% O(2) (83±11 vs. 96±14% baseline; P=0.47). Interestingly, 10% O(2) was used as the test gas in the only study to assess HVR in mice exposed to developmental hyperoxia, and that study reported normal HVR (Dauger et al., Chest 123 (2003), 530-538). Therefore, we assessed the HVR at 12.5% O(2) in adult mice reared in 60% O(2) for the first two postnatal weeks. Hyperoxia-treated mice exhibited smaller increases in ventilation (28±7 vs. 58±8% baseline; P<0.01) and smaller carotid bodies than control mice. We conclude that hyperoxia impairs the HVR in both rats and mice, but this effect is most evident at moderate levels of hypoxia.  相似文献   

12.
Hypoxia increases the release of neurotransmitters from chemoreceptor cells of the carotid body (CB) and the activity in the carotid sinus nerve (CSN) sensory fibers, elevating ventilatory drive. According to previous reports, perinatal hyperoxia causes CSN hypotrophy and varied diminishment of CB function and the hypoxic ventilatory response. The present study aimed to characterize the presumptive hyperoxic damage. Hyperoxic rats were born and reared for 28 days in 55%–60% O2; subsequent growth (to 3.5–4.5 months) was in a normal atmosphere. Hyperoxic and control rats (born and reared in a normal atmosphere) responded with a similar increase in ventilatory frequency to hypoxia and hypercapnia. In comparison with the controls, hyperoxic CBs showed (1) half the size, but comparable percentage area positive to tyrosine hydroxylase (chemoreceptor cells) in histological sections; (2) a twofold increase in dopamine (DA) concentration, but a 50% reduction in DA synthesis rate; (3) a 75% reduction in hypoxia-evoked DA release, but normal high [K+]0-evoked release; (4) a 75% reduction in the number of hypoxia-sensitive CSN fibers (although responding units displayed a nearly normal hypoxic response); and (5) a smaller percentage of chemoreceptor cells that increased [Ca2+]1 in hypoxia, although responses were within the normal range. We conclude that perinatal hyperoxia causes atrophy of the CB–CSN complex, resulting in a smaller number of chemoreceptor cells and fibers. Additionally, hyperoxia damages O2-sensing, but not exocytotic, machinery in most surviving chemoreceptor cells. Although hyperoxic CBs contain substantially smaller numbers of chemoreceptor cells/sensory fibers responsive to hypoxia they appear sufficient to evoke normal increases in ventilatory frequency.  相似文献   

13.
We examined the ventilatory response to CO2 at two levels of oxygenation during wakefulness and sleep in healthy young adults before and after the ingestion of a single dose of 30 mg flurazepam. Progressive hypercapnia was produced at two levels of arterial O2 saturation (greater than 99 and 87%) by having subjects re-breathe from a tight-fitting face mask and a reservoir bag containing gas mixtures with two different O2 concentrations. Ventilation was measured with an inductive plethysmograph. O2 saturation was measured with an ear oximeter. Sleep was monitored using standard techniques by recording the electroencephalogram, eye movements, and chin electromyogram. During wakefulness, hypoxia increased the slope of the ventilatory response to CO2 and shifted the response slightly to the left. NREM sleep lowered the slope of the CO2 response under both hyperoxic and hypoxic conditions. The slope of the hyperoxic CO2 response curve was not affected by flurazepam during wakefulness or sleep. After administration of flurazepam to the subjects, the shift of the CO2 response curve to the left produced by hypoxia (additive effect) during NREM sleep was slightly less as compared to control, but hypoxia still increased the slope of the CO2 ventilatory response. During hypoxic hypercapnia, the PCO2 at arousal from sleep was significantly lower than during hyperoxic hypercapnia, but the level of ventilation at arousal during hypercapnia was similar in the control condition and after flurazepam. We conclude that (a) both natural and flurazepam-induced sleep depress ventilatory responses to hyperoxic and hypoxic hypercapnia and alter, in a complex fashion, the effects of hypoxia and hypercapnia on ventilation; and (b) hypoxia and hypercapnia interact as arousal stimuli in both natural and flurazepam-induced sleep.  相似文献   

14.
The present study examined the effects of severe hypothermia in the absence of anesthesia on breathing pattern, ventilatory control and chemosensitivity in a cold tolerant species capable of seasonal hibernation. Hypothermia was induced in ground squirrels and ventilation and heart rate were recorded in animals breathing air at a body temperature (Tb) of 5 and 10 degrees C. The animals were then exposed to hypercapnic (2, 4 and 6% CO(2)) and hypoxic (12, 10, 8 and 4% O(2)) gas mixtures. We found that severe hypothermia in ground squirrels caused the breathing pattern to change from a continuous pattern to patterns that are commonly observed during hibernation. This suggests that temperature and metabolism alone are important factors in producing these patterns. The relative ventilatory sensitivity to hypercapnia was retained in the ground squirrel during hypothermia while ventilatory sensitivity to hypoxia was totally abolished. This is in contrast to hibernation where a small but significant hypoxic ventilatory response is present along with an enhanced relative response to hypercapnia. This suggests that changes in Tb alone can not account for the changes seen in ventilatory sensitivity during hibernation.  相似文献   

15.
16.
Neonatal hypoxia alters the development of the hypoxic ventilatory response in rats and other mammals. Here we demonstrate that neonatal hypoxia impairs the hypoxic ventilatory response in adult male, but not adult female, rats. Rats were raised in 10% O2 for the first postnatal week, beginning within 12 h after birth. Subsequently, ventilatory responses were assessed in 7- to 9-week-old unanaesthetized rats via whole-body plethysmography. In response to 12% O2, male rats exposed to neonatal hypoxia increased ventilation less than untreated control rats (mean ± s.e.m. 35.2 ± 7.7% versus 67.4 ± 9.1%, respectively; P = 0.01). In contrast, neonatal hypoxia had no lasting effect on hypoxic ventilatory responses in female rats (67.9 ± 12.6% versus 61.2 ± 11.7% increase in hypoxia-treated and control rats, respectively; P > 0.05). Normoxic ventilation was unaffected by neonatal hypoxia in either sex at 7–9 weeks of age ( P > 0.05). Since we hypothesized that neonatal hypoxia alters the hypoxic ventilatory response at the level of peripheral chemoreceptors or the central neural integration of chemoafferent activity, integrated phrenic responses to isocapnic hypoxia were investigated in urethane-anaesthetized, paralysed and ventilated rats. Phrenic responses were unaffected by neonatal hypoxia in rats of either sex ( P > 0.05), suggesting that neonatal hypoxia-induced plasticity occurs between the phrenic nerve and the generation of airflow (e.g. neuromuscular junction, respiratory muscles or respiratory mechanics) and is not due to persistent changes in hypoxic chemosensitivity or central neural integration. The basis of sex differences in this developmental plasticity is unknown.  相似文献   

17.
This study examined the effect of acute hypoxic and hypercapnic cardiorespiratory stimuli, superimposed on existing cardiorespiratory disturbances in tambaqui. In their natural habitat, these fish often encounter periods of hypoxic hypercapnia that can be acutely exacerbated by water turnover. Tambaqui were exposed to periods of normoxia, hypoxia, hyperoxia and hypercapnia during which, externally oriented O2 and CO2 chemoreceptors were further stimulated, by administration into the inspired water of sodium cyanide and CO2-equilibrated water, respectively. Hyperoxic water increased the sensitivity of the NaCN-evoked increase in breathing frequency (f(R)) and decrease in heart rate. Hypoxia and hypercapnia attenuated the increase in f(R) but, aside from blood pressure, did not influence the magnitude of NaCN-evoked cardiovascular changes. Water PO2 influenced the magnitude of the CO2-evoked cardiorespiratory changes and the sensitivity of CO2-evoked changes in heart rate and blood flow. The results indicate that existing respiratory disturbances modulate cardiorespiratory responses to further respiratory challenges reflecting both changes in chemosensitivity and the capacity for further change.  相似文献   

18.
Chronic postnatal hyperoxia blunts the hypoxic ventilatory response (HVR) in rats, an effect that persists for months after return to normoxia. To determine whether decreased carotid body O(2) sensitivity contributes to this lasting impairment, single-unit chemoafferent nerve and glomus cell calcium responses to hypoxia were recorded from rats reared in 60% O(2) through 7d of age (P7) and then returned to normoxia. Single-unit nerve responses were attenuated by P4 and remained low through P7. After return to normoxia, hypoxic responses were partially recovered within 3d and fully recovered within 7-8d (i.e., at P14-15). Glomus cell calcium responses recovered with a similar time course. Hyperoxia altered carotid body mRNA expression for O(2)-sensitive K(+) channels TASK-1, TASK-3, and BK(Ca), but only TASK-1 mRNA paralleled changes in chemosensitivity (i.e., downregulation by P7, partial recovery by P14). Collectively, these data do not support a role for reduced O(2) sensitivity of individual chemoreceptor cells in long-lasting reduction of the HVR after developmental hyperoxia.  相似文献   

19.
To determine whether development of ventilatory control in zebrafish (Danio rerio) exhibits plasticity, embryos were exposed to hypoxia, hyperoxia or hypercapnia for the first 7 days post-fertilization. Their acute reflex breathing responses to ventilatory stimuli (hypoxia, hypercapnia and external cyanide) were assessed when they had reached maturity (3 months or older). Zebrafish reared under hyperoxic conditions exhibited significantly higher breathing frequencies at rest (283+/-27min(-1) versus 212+/-16min(-1) in control fish); breathing frequency was unaffected in adult fish subjected to hyperoxia for 7 days. The respiratory responses of fish reared in hyperoxic water to acute hypoxia, hypercapnia or external cyanide were blunted (hypoxia, cyanide) or eliminated (hypercapnia). Adult fish exposed for 7 days to hyperoxia showed no change in acute responses to these stimuli. The respiratory responses to acute hypoxia, hypercapnia or external cyanide of fish reared under hypoxic or hypercapnic conditions were similar to those in fish reared under normal conditions. A subset of all fish examined exhibited episodic breathing; an analysis of breathing patterns demonstrated that fish reared under hypercapnic conditions had an increased tendency to display episodic breathing. The results of this study reveal that there is flexibility in the design and functioning of the embryonic or larval respiratory system in zebrafish.  相似文献   

20.
It is not clear what the effects of different types of intermittent hypoxia have on human exercise ventilation. The purpose of this study was to determine whether short-duration intermittent hypoxia, and the subsequent augmentation of the hypoxic ventilatory response (HVR), would lead to an increase in ventilatory responses during exercise at sea level. It was hypothesized that subjects exposed to short-duration intermittent hypoxia would have a greater increase in the ventilatory response to exercise compared to those exposed to long-duration intermittent hypoxia. Subjects (n = 17, male) were randomly assigned to short-duration intermittent hypoxia (SDIH: 5 min of 12% O2 separated by 5 min of normoxia for 1 h) or long-duration intermittent hypoxia (LDIH: 30 min of 12% O2). Both groups had 10 exposures over a 12 day period. The HVR was measured on days 1 and 12. Maximal oxygen consumption (VO2max) was determined using a ramped cycle exercise test. Maximal exercise data were not different (P > 0.05) between SDIH and LDIH groups or following intermittent hypoxia. Minute ventilation, tidal volume and respiratory frequency were compared at 20, 40, 60, 80 and 100% of VO2max . There was no difference in the ventilatory responses at any intensity of exercise following the intermittent hypoxia period. The HVR was significantly increased following the intermittent hypoxia intervention (P < 0.05) but was not different between SDIH and LDIH (P > 0.05). The relationships between HVR and VO2max were non-significant on day 1 (r = 0.30) and day 12 (r = 0.47; P > 0.05). Our findings point to a lack of functional significance of increasing HVR via intermittent hypoxia on ventilatory responses to exercise at sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号