首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Down syndrome (DS) is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677 (C-->T) mutation in the methylene-tetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for DS. Frequency of the MTHFR 677 (C-->T) and 1298 (A-->C) mutations was evaluated in 36 mothers of children with DS and in 200 controls. The results are consistent with the observation that the MTHFR 677 (C-->T) and 1298 (A-->C) mutations are more prevalent among mothers of children with DS than controls. In addition, the most prevalent genotype was the combination of both mutations. The results suggest that mutations in the MTHFR gene are associated with maternal risk for DS  相似文献   

2.
The cause of the non-disjunction leading to trisomy 21 remains unclear. Recent evidence has suggested that 5,10-methylenetetrahydrofolate reductase (MTHFR) and/or methionine synthase reductase (MTRR) might contribute to the maternal risk of trisomy 21. The purpose of the present study was to analyse these findings among the French population and to investigate whether common polymorphisms in genes of the folate and homocysteine pathway, including the MTHFR 677C > T, MTHFR 1298A > C, the methionine synthase (MTR) 2756A > G, the cystathionine beta-synthase (CBS) 844Ins68 and the reduced folate carrier (RFC-1) 80G > A polymorphisms, contribute to the risk of trisomy 21. The risk was studied by analysing independent and combined genotypes in 119 case mothers and 119 control mothers. The MTHFR 677T, MTHFR 1298C, MTR2756G, MTRR66G, CBSIns68+ and the RFC-1 80G allele frequencies were not significantly different among French case mothers, compared with control mothers. The risk of having a child with trisomy 21 did not appear to be linked to polymorphisms in genes associated with folate and homocysteine metabolism.  相似文献   

3.
BACKGROUND: Abnormalities of folate and homocysteine metabolism are associated with a number of pediatric and adult disorders. Folate intake and genetic polymorphisms encoding folate-metabolizing enzymes influence blood folate and homocysteine concentrations, but the effects and interactions of these factors have not been studied on a population-wide basis. OBJECTIVE: The objective was to assess the prevalence of these genetic polymorphisms and their relation to serum folate and homocysteine concentrations. DESIGN: DNA samples from 6793 participants in the third National Health and Nutrition Examination Survey (NHANES III) during 1991-1994 were genotyped for polymorphisms of genes coding for folate pathway enzymes 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T and 1298A-->C, methionine synthase reductase (MTRR) 66A-->G, and cystathionine-beta-synthase 844ins68. The influence of these genetic variants on serum folate and homocysteine concentrations was analyzed by age, sex, and folate intake in 3 race-ethnicity groups. RESULTS: For all race-ethnicity groups, serum folate and homocysteine concentrations were significantly related to the MTHFR 677C-->T genotype but not to the other polymorphisms. Persons with the MTHFR 677 TT genotype had a 22.1% (95% CI: 14.6%, 28.9%) lower serum folate and a 25.7% (95% CI: 18.6%, 33.2%) higher homocysteine concentration than did persons with the CC genotype. Moderate daily folic acid intake (mean: 150 microg/d; 95% CI: 138, 162) significantly reduced the difference in mean homocysteine concentrations between those with the MTHFR 677 CC and TT genotypes. We found a significant interaction between MTHFR 677C-->T and MTRR 66A-->G on serum homocysteine concentrations among non-Hispanic whites. CONCLUSIONS: The MTHFR 677C-->T polymorphism was associated with significant differences in serum folate and homocysteine concentrations in the US population before folic acid fortification. The effect of MTHFR 677C-->T on homocysteine concentrations was reduced by moderate daily folic acid intake.  相似文献   

4.
Glycine N-methyltransferase (GNMT) is a key regulatory protein in folate metabolism, methionine availability, and transmethylation reactions. Perturbations in GNMT may lead to aberrations in homocysteine metabolism, a marker of numerous pathologies. The primary objective of this study was to examine the influence of the GNMT 1289 C-->T alone, and in combination with the methylenetetrahydrofolate reductase (MTHFR) 677 C-->T variant, on plasma total homocysteine concentrations in healthy young women (n = 114). Plasma total homocysteine was measured at baseline (wk 0) and after 2 wk of controlled folate restriction (135 microg/d as dietary folate equivalents). Plasma homocysteine concentrations did not differ among the GNMT C1289T genotypes at baseline. However, after folate restriction, women with the GNMT 1289 TT genotype (n = 16) had higher (P = 0.019) homocysteine concentrations than women with the CT (n = 51) or CC (n = 47) genotype. The influence of the GNMT 1289 C-->T variant on homocysteine was dependent on the MTHFR C677T genotype. In subjects with the MTHFR 677 CC genotype, homocysteine was greater (P < or = 0.05) for GNMT 1289 TT subjects relative to 1289 CT or CC subjects. However, in subjects with the MTHFR 677 TT genotype, plasma homocysteine concentrations did not differ among the GNMT C1289T genotypes. Overall, these data suggest that the GNMT 1289 C-->T polymorphism influences plasma homocysteine and is responsive to folate intake.  相似文献   

5.
The effects of folate status and the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism on the kinetics of homocysteine metabolism are unclear. We measured the effects of dietary folate restriction on the kinetics of homocysteine remethylation and synthesis in healthy women (20-30 y old) with the MTHFR 677 C/C or T/T genotypes (n = 9/genotype) using i.v. primed, constant infusions of [(13)C(5)]methionine, [3-(13)C]serine, and [(2)H(3)]leucine before and after 7 wk of dietary folate restriction (115 mug dietary folate equivalents/d). Dietary folate restriction significantly reduced folate status ( approximately 65% reduction in serum folate) in both genotypes. Total remethylation flux was not affected by dietary folate restriction, the MTHFR 677C-->T polymorphism, or their combination. However, the percentage of remethylation from serine was reduced approximately 15% (P = 0.031) by folate restriction in C/C subjects. Further, homocysteine synthesis rates of T/T subjects and folate-restricted C/C subjects were twice that of C/C subjects at baseline. In conclusion, elevated homocysteine synthesis is a cause of mild hyperhomocysteinemia in women with marginal folate status, particularly those with the MTHFR 677 T/T genotype.  相似文献   

6.
Summary. Background: Japan has been considered as a folate sufficient area, since traditional Japanese food contains an adequate amount of folic acid. However, the recent westernized food style of young Japanese mothers may affect the intake of folic acid among them. This food style may contribute to the occurrence of Down syndrome, which has proved to be linked to abnormal folate and homocysteine metabolisms. Aim of the study: To preliminarily evaluate the levels of folic acid,homocysteine and other relevant factors which are associated with folate metabolism, among Japanese women who had pregnancies affected by Down syndrome. Methods: Blood samples from 31 women who had pregnancies affected by Down syndrome (DS) were obtained. 60 age-matched control blood samples were also obtained from mothers who had not experienced miscarriages or abnormal pregnancies (CONT). Plasma homocysteine and serum folic acid, vitamin B12, and B6 were measured and compared between DS and CONT. Furthermore, the frequency of MTHFR polymorphism (C677T) was also investigated. Results: Plasma levels of homocysteine were significantly increased in DS mothers (p = 0.004). In contrast, serum levels of folic acid were significantly decreased in DS mothers (p = 0.0001). There were no significant differences in the vitamin B12 and B6 levels between DS and CONT. Also, the frequency of 5,10-methylenetetrahydrofolate reductase gene (MTHFR) homozygous polymorphism showed no differences between DS and CONT. Conclusion: Different levels of serum folic acid and plasma homocysteine between both groups may contribute to the occurrence of Down syndrome even in Japan. Although there was no significant difference in the frequency of MTHFR polymorphism between the groups, probably because of an inadequate number of samples, further studies may contribute to the understanding of the occurrence of Down syndrome in Japan.  相似文献   

7.
BACKGROUND: The effects of supplementation with B vitamins and of common polymorphisms in genes involved in homocysteine metabolism on plasma total homocysteine (tHcy) concentrations in trisomy 21 are unknown. OBJECTIVES: We aimed to determine the effects of orally administered folic acid and of folic acid combined with vitamin B-12, vitamin B-6, or both on tHcy in adults with trisomy 21. The study was also intended to analyze the possible influence of gene polymorphisms. DESIGN: One hundred sixty adults with trisomy 21 and 160 healthy, unrelated subjects aged 26 +/- 4 y were included. Plasma tHcy, red blood cell folate, serum folate, and vitamin B-12 were measured. Genotyping for the common methylenetetrahydrofolate reductase (MTHFR) 677C-->T, MTHFR 1298A-->C, cystathionine beta-synthase 844Ins68, methionine synthase 2756A-->C, methionine synthase reductase 66A-->G, and reduced folate carrier 80G-->A polymorphisms was carried out. RESULTS: The mean tHcy concentration (9.8 +/- 0.7 micromol/L) of cases who did not use vitamins was not significantly different from that of controls (9.4 +/- 0.3 micromol/L). Plasma tHcy concentrations (7.6 +/- 0.3 mmol/L) in cases who used folic acid were significantly lower than in cases who did not. Folic acid combined with vitamin B-12 did not significantly change tHcy concentrations compared with those in cases who used only folic acid. Folic acid combined with vitamins B-6 and B-12 significantly lowered tHcy (6.5 +/- 0.5 micromol/L). The difference in tHcy according to MTHFR genotype was not significant. However, tHcy concentrations were slightly higher in TT homozygotes among the controls but not among the cases. CONCLUSION: This study provides information on the relation between several polymorphisms in genes involved in homocysteine and folate metabolism in adults with trisomy 21.  相似文献   

8.
Hyperhomocysteinemia is an independent risk factor for coronary artery disease (CAD). The aim of this study was to investigate the relations between the methylenetetrafolate reductase (MTHFR) 677C-->T genotypes, B-vitamins (folate, vitamin B-12 and B-6), homocysteine and the risk of CAD. In this case-control study, patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n=121). Healthy individuals with normal blood biochemical values were assigned to the control group (n=155). Healthy subjects were matched to case subjects for age. The concentrations of plasma homocysteine, serum folate, vitamin B-12, plasma pyridoxal 5'- phosphate (PLP) and MTHFR 677C-->T gene polymorphism were obtained. The T-allele carriers had significantly higher plasma homocysteine concentration compared to subjects with the 677CC genotype. The MTHFR 677C-->T genotypes were associated with plasma homocysteine after adjusting for various potential risk factors in the case and pooled groups. The MTHFR genotypes were found to have no associations with the risk of CAD. However, plasma homocysteine (>or= 12.5 micromol/L) (OR, 3.49; 95% CI, 1.23-9.88) had a significant association with increased risk of CAD even after additionally adjusted folate status. High plasma homocysteine concentration had a direct effect on the risk of CAD independent of MTHFR 677C-->T genotypes.  相似文献   

9.
The 677cytosine mutation identified in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene has been frequently associated with an elevated plasma homocysteine concentration. The aim of the present study was to determine the impact of this MTHFR common mutation on plasma and erythrocyte folate (RCF) and plasma total homocysteine (tHcy) concentrations in healthy French adults. A cohort of 291 subjects living in the Paris area and participating in the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) study were analysed to assess the impact of MTHFR polymorphism 677C-->T on folate status and plasma tHcy concentration. The frequency of the mutant homozygote for 677C-->T polymorphism (677TT genotype) in the present cohort was 16.8%. There were significant differences in plasma tHcy between 677CC, 677CT and 677TT genotype groups. The RCF concentrations were significantly different between each genotype, the lowest levels being associated with the 677TT genotype. When segregated by gender, no differences in tHcy between homozygous 677TT, heterozygous 677CT and wild-type 677CC genotype groups in women were observed. The fasting tHcy in women was unrelated to the 677C-->T mutation. However, tHcy was significantly increased in men with the homozygous 677TT genotype. We also analysed the possible implication of a second new MTHFR polymorphism (1298A-->C) in subjects with mild hyperhomocysteinaemia (4th quartile of homocysteinaemia; tHcy >11.1 micromol/l). The polymorphism 1298A-->C did not have a notable effect on tHcy or on the RCF levels. Our observations confirm a relatively high frequency of the 677TT genotype in the French population. Women with this genotype did not show the same increase in tHcy observed in men. In the present study dietary folate intake was not measured. Thus, the interaction of dietary folate with the MTHFR genotype in the French population needs further study.  相似文献   

10.
Whether folate status and the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism interact to affect methionine-cycle metabolite concentrations is uncertain. We evaluated the effects of dietary folate restriction on relations among folate status indices and plasma concentrations of methionine cycle metabolites in women with the MTHFR 677 C/C and T/T genotypes. Healthy, normohomocysteinemic women (n = 18; 20-30 y old) of adequate B vitamin status, and equally divided according to MTHFR 677C-->T genotype (9 C/C and 9 T/T) were recruited. Folate status indices and methionine cycle metabolites were measured in blood samples collected at baseline and after 7 wk of dietary folate restriction (115 microg dietary folate equivalents/d). Significant negative correlations between plasma total homocysteine concentrations and total or 5-methyl folate concentrations (P = 0.041 and 0.023, respectively) in RBCs were found only in T/T subjects. Formylated folates were detected in RBCs of T/T subjects only, and their abundance was predictive of plasma total homocysteine concentration despite no significant alteration by folate restriction. Plasma concentrations of S-adenosylmethionine and S-adenosylhomocysteine were not significantly affected by dietary folate restriction and the MTHFR 677 T/T genotype. In conclusion, plasma total homocysteine concentrations in subjects with the MTHFR 677 T/T genotype were inversely related to 5-methyl folate concentrations and directly related to formylated folate concentrations in RBCs, even though the latter were not significantly affected by moderate folate restriction.  相似文献   

11.
BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism is heterogeneously distributed worldwide, with the highest and lowest frequencies of the T allele in Mexico and Africa, respectively, and a south-to-north gradient in Europe. Distribution of MTHFR 1298A-->C is less well known. It has been hypothesized that 677T frequency could result in part from gene-nutrient interactions. OBJECTIVE: The objective was to compare the association of 677T and 1298C alleles with plasma concentrations of homocysteine, folate, and vitamin B-12 in geographical areas with contrasting 677T allele frequencies. DESIGN: Healthy young adults (n = 1277) were recruited in Mexico City, the West African countries of Bénin and Togo, France, and Sicily (Italy). Homocysteine, folate, and vitamin B-12 were measured in plasma, and MTHFR polymorphisms were measured in genomic DNA. RESULTS: Mexico City and Sicily reported the highest and Bénin and Togo reported the lowest plasma concentrations of folate. Mexico City had the highest 677T allele prevalence and the lowest influence of 677TT genotype on homocysteine, whereas the opposite was observed in Africa. The prevalence of the 1298C allele was lowest in the Mexicans and Africans and highest in the French. The percentage of the 677T genotype was significantly associated with the folate concentrations in 677CC carriers in a univariate analysis (R = 0.976; 95% CI: 0.797, 0.996; P < 0.0002) and in a multiple regression model that included homocysteine, vitamin B-12, and age (P = 0.0002). CONCLUSION: Our data agree with the hypothesis of a gene-nutrient interaction between MTHFR 677C-->T polymorphism and folate status that may confer a selective advantage of TT-homozygous genotype when dietary intake of folate is adequate, at least in the areas studied.  相似文献   

12.
BACKGROUND: Homocysteine concentrations are influenced by vitamin status and genetics, especially several polymorphisms in folate-metabolizing genes. OBJECTIVE: We examined the interactions and associations with serum total homocysteine (tHcy) and folate concentrations of polymorphisms in the following folate-metabolizing genes: methylenetetrahydrofolate reductase (MTHFR), reduced folate carrier 1 (RFC1), and glutamate carboxypeptidase II (GCPII). DESIGN: Healthy volunteers (436 men and 606 women; mean age: 77.9 y) were randomly selected from among residents of Oxford, United Kingdom. We determined the individual effects and interactions of the MTHFR 677C-->T, MTHFR 1298A-->C, RFC1 80G-->A, and GCPII 1561C-->T polymorphisms on serum tHcy and folate concentrations. RESULTS: Subjects with the MTHFR 677TT genotype had higher serum tHcy concentrations than did those with the MTHFR 677CC genotype (P < 0.001), and this effect was greater in subjects with low serum folate status (P for interaction = 0.026). The MTHFR 1298A-->C, RFC1 80G-->A, and GCPII 1561C-->T polymorphisms had no individual effects on serum tHcy or folate concentrations. There was no interactive effect of the MTHFR 677C-->T and MTHFR 1298A-->C polymorphisms on tHcy concentrations. An interaction (P = 0.05) was observed between the MTHFR 677TT and RFC1 80GG genotypes, whereby persons with this genotype combination had a mean (+/-SEM) serum tHcy concentration (18.5 +/- 1.2 micromol/L) that was 5.1 micromol/L greater than the mean value of 13.4 +/- 0.2 micromol/L for the whole population. CONCLUSIONS: Folate and tHcy concentrations were not affected individually by the MTHFR 1298A-->C, RFC1 80G-->A, or GCPII 1561C-->T polymorphisms or by combinations of the MTHFR 677C-->T and MTHFR 1298A-->C genotypes. An interaction between the MTHFR 677TT and RFC1 80GG genotypes was observed whereby persons with this combination had higher serum tHcy.  相似文献   

13.
Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) are important for homocysteine remethylation. This study was designed to determine the influence of genetic variants (MTHFR 677C-->T, MTHFR 1298A-->C, and MTRR 66A-->G), folate, and vitamin B-12 status on plasma homocysteine in women (20-30 y; n = 362). Plasma homocysteine was inversely (P < 0.0001) associated with serum folate and plasma vitamin B-12 regardless of genotype. Plasma homocysteine was higher (P < 0.05) for women with the MTHFR 677 TT/1298 AA genotype combination compared with the CC/AA, CC/AC, and CT/AA genotypes. Women with the MTHFR 677 TT/MTRR 66 AG genotype had higher (P < 0.05) plasma homocysteine than all other genotype combinations except the TT/AA and TT/GG genotypes. There were 5.4-, 4.3-, and 3.8-fold increases (P < 0.001) in risk for plasma homocysteine in the top 5, 10, and 20%, respectively, of the homocysteine distribution for subjects with the MTHFR 677 TT compared with the CC and CT genotypes. Predicted plasma homocysteine was inversely associated with serum folate (P = 0.003) and plasma vitamin B-12 (P = 0.002), with the degree of correlation dependent on MTHFR 677C-->T genotype. These data suggest that coexistence of the MTHFR 677 TT genotype with the MTRR 66A-->G polymorphism may exacerbate the effect of the MTHFR variant alone. The potential negative effect of combined polymorphisms of the MTHFR and MTRR genes on plasma homocysteine in at-risk population groups with low folate and/or vitamin B-12 status, such as women of reproductive potential, deserves further investigation.  相似文献   

14.
Total homocysteine and its predictors in Dutch children   总被引:2,自引:0,他引:2  
BACKGROUND: Vitamin status, methylenentetrahydrofolate reductase (MTHFR) genotype, age, sex, and lifestyle factors are all predictors of total homocysteine (tHcy) concentrations in adults. Limited data are available about the influence of these factors on tHcy in children. OBJECTIVE: The objective was to describe tHcy and its predictors in Dutch children. DESIGN: A sample of 234 white children aged 0-19 y was analyzed cross-sectionally. RESULTS: The geometric mean tHcy concentrations were 5.1 (95% CI: 4.6, 5.6), 4.6 (4.2, 5.1), 6.2 (5.6, 6.9), 7.3 (6.7, 8.0), and 8.7 (7.9, 9.6) micromol/L in the 0-1, 2-5, 6-10, 11-14, and 15-19 y groups, respectively. Plasma folate and vitamin B-12 concentrations decreased markedly with age. The inverse association between tHcy and plasma folate seen at all ages was stronger than that between tHcy and plasma vitamin B-12. A negative association of plasma folate with tHcy was confined to folate concentrations <20 nmol/L. Homozygosity for the MTHFR 677C-->T polymorphism was identified in 8.2% of the children. The homocysteine concentration did not differ significantly between the MTHFR genotypes. CONCLUSIONS: This study provided age-specific data regarding tHcy concentrations and their predictors in the whole range of childhood. The tHcy concentration increased as a function of age in both sexes. Plasma folate was a concentration-dependent predictor of tHcy. The MTHFR 677C-->T polymorphism played a minor role in determining tHcy concentrations in children.  相似文献   

15.
The 677 C-->T polymorphism in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene interacts with folate status in determining elevated total plasma levels of homocysteine, a risk factor for coronary atherosclerotic disease (CAD). The present study had the following goals: 1) to define the 677 C-->T genotype-specific threshold values of both plasma and RBC folate, associated with hyperhomocysteinemia (>15 micro mol/L); and 2) to determine the risk of CAD among subjects with levels of folate below the genotype-specific threshold considered at risk for hyperhomocysteinemia. We examined 655 subjects, with (433) or without (222) angiographically documented CAD. The MTHFR 677 C-->T genotype-specific threshold values of plasma folate corresponded to the 40th, 30th and 10th percentile in the TT, CT and CC genotype, respectively. A multivariate logistic regression analysis showed that the risk of CAD among subjects with plasma folate levels below the genotype-specific thresholds was 1.6 (95% CI, 1.04-2.46). Similar results were obtained when RBC folate was considered as a measure of folate status (odds ratio = 1.8, 95% CI, 1.03-3.15). A gene-nutrient interaction that defines a higher risk for CAD is determined by folate levels below specific thresholds, which differ depending on the MTHFR 677 C-->T genotype.  相似文献   

16.
This study was designed to evaluate the effect of the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism on folate and homocysteine response in non-Hispanic women consuming a low folate diet followed by a diet providing the Recommended Dietary Allowance (RDA) for folate. Women (aged 20-30 y old) with either the TT (n = 19) or CC (n = 22) MTHFR 677C-->T genotype participated in a folate depletion-repletion study (7 wk, 115 microg dietary folate equivalents (DFE)/d; 7 wk, 400 microg DFE/d). Overall serum folate decreased (P < 0.0001) during depletion and increased (P < 0.0001) during repletion with lower (P = 0.03) postdepletion serum folate in women with the TT versus CC genotype. Folate status was low (serum folate < 13.6 nmol/L) in more women with the TT (59%) compared with the CC genotype (15%) postdepletion. Red blood cell folate for all subjects decreased during depletion (P < 0.0001) and repletion (P = 0.02) with lower (P = 0.04) red blood cell folate in women with the TT compared with the CC genotype postrepletion. Homocysteine increased (P < 0.0001) for both genotype groups postdepletion and decreased (P = 0.02) postrepletion for the CC genotype group only. Homocysteine concentrations tended to be higher (P = 0.09) in the TT versus CC genotype group postdepletion and postrepletion. These data suggest that the MTHFR 677C-->T polymorphism negatively affects the folate and homocysteine response in women consuming low folate diets followed by repletion with the RDA. These results may be important when evaluating the impact of the MTHFR 677C-->T polymorphism in countries in which low folate diets are chronically consumed.  相似文献   

17.
We have studied the effect of common mutations (677C-->T and 1298A-->C) of the methylenetetrahydrofolate reductase (MTHFR) gene in sixty-six healthy French subjects, aged 27-47 years. Serum folate, vitamin B12, and plasma total homocysteine were measured as well as the specific activity of MTHFR in lymphocytes. The frequency of subjects homozygous for the 677TT genotype was 18%, and that of those homozygous for the 1298CC genotype was 12.5%. The frequency of individuals heterozygous for both mutations was 23.5%. The 1298A-->C mutation was associated with decreased MTHFR specific activity in subjects with both 677CC and 677CT genotypes. This activity was 60% for the 677CC/1298AC genotype and 52% for the 677CC/1298CC genotype when compared with the MTHFR specific activity of the 677CC/1298AA genotype. Heterozygotes for both mutations (677CT/1298AC genotype) had 36% of the reference specific activity. Although homocysteine levels in 677TT and 1298CC genotype subjects were higher than for other genotypes, no significant differences were observed among different genotypes. This may be due to high serum folate level in our samples, and suggests that folate therapy may be useful to prevent hyperhomocysteinaemia in homozygous mutant subjects.  相似文献   

18.
Genetic variation in folate-regulating enzymes contributes to the risk of cardiovascular disease (CVD). The cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme is proposed to regulate a key metabolic intersection in folate metabolism. We hypothesized that a variant in cSHMT (cSHMT 1420C-->T) affects CVD risk, and that the effect depends on a linked step in the metabolic pathway catalyzed by methylenetetrahydrofolate reductase (MTHFR). A nested case-control study of incident CVD was conducted within the all-male Normative Aging Study cohort. Of the incident CVD cases, 507 had DNA samples; 2 controls/case were selected by risk set sampling (matched on age and birth year). A significant gene-gene interaction (P-values 0.0013, 0.0064) was found between MTHFR and cSHMT, and there was little or no change in the coefficients in covariate-adjusted models. The effect of MTHFR 677C-->T genotype on CVD risk varied by cSHMT 1420C-->T genotype. Among men with cSHMT 1420C-->T TT genotype, the odds ratios (OR) for CVD risk for MTHFR 677C-->T CT and TT genotypes compared with the MTHFR 677C-->T CC genotype were 3.6 (95% CI, 1.7-7.8) and 10.6 (95% CI, 2.5-46.0), respectively. Among men with the cSHMT 1420C-->T CC/CT genotype, the corresponding ORs were 1.0 (95% CI, 0.8-1.2) and 1.3 (95% CI, 0.9-1.8). Plasma total homocysteine concentrations were highest in the subgroup of men with both polymorphisms, MTHFR 677C-->T TT and cSHMT 1420C-->T TT, consistent with a higher risk of CVD in this subgroup. A more complete understanding of the molecular mechanism awaits identification of the functional effect of the polymorphism.  相似文献   

19.
BACKGROUND: The 5,10-methylenetetrahydrofolate reductase gene (MTHFR) 677C-->T polymorphism modifies the risk of coronary artery disease and colon cancer and is related to plasma concentrations of total homocysteine (tHcy). Riboflavin status modifies the metabolic effect of the polymorphism, and thyroid hormones increase the synthesis of flavin cofactors. OBJECTIVE: The aim of the study was to investigate the phenotypic expression of the MTHFR 677C-->T polymorphism in terms of plasma tHcy concentrations in patients with thyroid dysfunction. DESIGN: The study population consisted of 182 patients with hyperthyroidism. We studied plasma tHcy in relation to MTHFR genotype, riboflavin, and folate before and during 6 mo of treatment with antithyroid drugs. RESULTS: Before treatment, tHcy was higher in patients with the mutant enzyme than in those with the wild-type enzyme. A genotype effect was observed only at low riboflavin or folate concentrations (P T polymorphism, possibly by modifying the availability of flavin cofactors.  相似文献   

20.
BACKGROUND: Vitamin B-6 exists in different forms; one of those forms, pyridoxal 5'-phosphate (PLP), serves a cofactor in many enzyme reactions, including the transsulfuration pathway, in which homocysteine is converted to cystathionine and then to cysteine. Data on the relations between indexes of vitamin B-6 status and transsulfuration metabolites in plasma are sparse and conflicting. OBJECTIVE: We investigated the distribution and associations of various vitamin B-6 species in plasma and their relation to plasma concentrations of transsulfuration metabolites. DESIGN: Nonfasting blood samples from 10 601 healthy subjects with a mean age of 56.4 y were analyzed for all known vitamin B-6 vitamers, folate, cobalamin, riboflavin, total homocysteine, cystathionine, total cysteine, methionine, and creatinine. All subjects were genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism. RESULTS: Plasma concentrations of the main vitamin B-6 vitamers--PLP, pyridoxal, and 4-pyridoxic acid--were strongly correlated. Among the vitamin B-6 vitamers, PLP showed the strongest and most consistent inverse relation to total homocysteine and cystathionine, but the dose response was different for the 2 metabolites. The PLP-total homocysteine relation was significant only in the lowest quartile of the vitamin B-6 distribution and was strongest in subjects with the MTHFR 677TT genotype, whereas cystathionine showed a graded response throughout the range of vitamin B-6 vitamer concentrations, and the effect was not modified by the MTHFR 677C-->T genotype. CONCLUSION: This large population-based study provided precise estimates of the relation between plasma concentrations of vitamin B-6 forms and transsulfuration metabolites as modified by the MTHFR 677C-->T genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号