首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bloom syndrome and Werner syndrome are genetic disorders in which an increased rate of chromosomal abnormality is observed. The genes responsible for these diseases, BLM and WRN, have been cloned and identified as homologs of the Escherichia coli recQ genes. We studied the effect of recQ mutations on illegitimate recombination, which is an aberrant biological event related to the chromosomal abnormality in humans, and found that a variety of recQ mutations increased spontaneous illegitimate recombination by 20- to 300-fold and increased UV light-induced illegitimate recombination by 10- to 100-fold. Most λbio or λpro transducing phages are formed by the recombination events at several hot spots, which are enhanced by the recQ mutation. The analysis of nucleotide sequences at the recombination junction in the transducing phages indicates that recombination at the hot spot sites as well as the non-hot spot sites takes place between short homologous sequences. Enhancement of the recombination in the recQ mutants also occurs in the recA, recBC sbcBC, or recBC sbcA backgrounds, indicating that these recombination events are mediated by none of the known recombination pathways, RecBC, RecF, and RecE. We therefore concluded that the RecQ function suppresses illegitimate recombination that depends on short homologous regions. We discuss a model, based on the 3′-to-5′ helicase activity of RecQ, to explain the role of this protein as a suppressor of illegitimate recombination.  相似文献   

2.
3.
The Escherichia coli Rep protein is a 3' to 5' SF1 DNA helicase required for replication of bacteriophage phiX174 in E. coli, and is structurally homologous to the E. coli UvrD helicase and the Bacillus stearothermophilus PcrA helicase. Previous crystallographic studies of Rep protein bound to single-stranded DNA revealed that it can undergo a large conformational change consisting of an approximately 130 degrees rotation of its 2B subdomain about a hinge region connected to the 2A subdomain. Based on crystallographic studies of PcrA, its 2B subdomain has been proposed to form part of its duplex DNA binding site and to play a role in duplex destabilization. To test the role of the 2B subdomain in Rep-catalyzed duplex DNA unwinding, we have deleted its 2B subdomain, replacing it with three glycines, to form the RepDelta2B protein. This RepDelta2B protein can support phiX174 replication in a rep(-) E. coli strain, although the growth rate of E. coli containing the repDelta2B gene is approximately 1.5-fold slower than with the wild-type rep gene. Pre-steady-state, single-turnover DNA unwinding kinetics experiments show that purified RepDelta2B protein has DNA helicase activity in vitro and unwinds an 18-bp DNA duplex with rates at least as fast as wild-type Rep, and with higher extents of unwinding and higher affinity for the DNA substrate. These studies show that the 2B domain of Rep is not required for DNA helicase activity in vivo or in vitro, and that it does not facilitate DNA unwinding in vitro.  相似文献   

4.
RAD3 protein of Saccharomyces cerevisiae is a DNA helicase.   总被引:35,自引:8,他引:35       下载免费PDF全文
The Saccharomyces cerevisiae RAD3 gene, which is required for cell viability and excision repair of damaged DNA, encodes an 89-kDa protein that has a single-stranded DNA-dependent ATPase activity. We now show that the RAD3 protein also possesses a helicase activity that unwinds duplex regions in DNA substrates constructed by annealing DNA fragments of 71-851 nucleotides to circular, single-stranded M13 DNA. The DNA helicase activity is dependent on the hydrolysis of ATP, has a pH optimum of approximately 5.6, and is inhibited by antibodies raised against a truncated RAD3 protein produced in Escherichia coli. The RAD3 helicase translocates along single-stranded DNA in the 5'----3' direction. The direction of RAD3 helicase movement is consistent with the possibility that it unwinds DNA duplexes in advance of the replication fork during DNA replication.  相似文献   

5.
The Escherichia coli uvrD gene product, helicase II, is required for both methyl-directed mismatch and uvrABC excision repair and is believed to function by unwinding duplex DNA. Initiation of unwinding may occur specifically at either a mismatch or a nick, although no direct evidence for this has previously been reported. It has recently been shown that helicase II can unwind fully duplex linear and nicked circular DNA with lengths of at least approximately 2700 base pairs in vitro; hence, a flanking region of single-stranded DNA is not required to initiate DNA unwinding. In studies with uniquely nicked duplex DNA, we present EM evidence that helicase II protein initiates DNA unwinding at the nick, with unwinding proceeding bidirectionally. We also show that helicase II protein initiates DNA unwinding at the blunt ends of linear DNA, rather than in internal regions. These data provide direct evidence that helicase II protein can initiate unwinding of duplex DNA at a nick, in the absence of auxiliary proteins. We propose that helicase II may initiate unwinding from a nick in a number of DNA repair processes.  相似文献   

6.
The SOS-inducible ruvA and ruvB gene products of Escherichia coli are required for normal levels of genetic recombination and DNA repair. In vitro, RuvA protein interacts specifically with Holliday junctions and, together with RuvB (an ATPase), promotes their movement along DNA. This process, known as branch migration, is important for the formation of heteroduplex DNA. In this paper, we show that the RuvA and RuvB proteins promote the unwinding of partially duplex DNA. Using single-stranded circular DNA substrates with annealed fragments (52-558 nucleotides in length), we show that RuvA and RuvB promote strand displacement with a 5'-->3' polarity. The reaction is ATP-dependent and its efficiency is inversely related to the length of the duplex DNA. These results show that the ruvA and ruvB genes encode a DNA helicase that specifically recognizes Holliday junctions and promotes branch migration.  相似文献   

7.
FtsZ is an essential cell division protein in Escherichia coli that forms a ring structure at the division site under cell cycle control. The dynamic nature of the FtsZ ring suggests possible similarities to eukaryotic filament forming proteins such as tubulin. In this study we have determined that FtsZ is a GTP/GDP binding protein with GTPase activity. A short segment of FtsZ is homologous to a segment in tubulin believed to be involved in the interaction between tubulin and guanine nucleotides. A lethal ftsZ mutation, ftsZ3 (Rsa), that leads to an amino acid alteration in this homologous segment decreased GTP binding and hydrolysis, suggesting that interaction with GTP is essential for ftsZ function.  相似文献   

8.
To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.  相似文献   

9.
Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, knowledge of its mechanism is necessary for the understanding of more complex translocation-based activities, including nucleoprotein displacement, strand separation (unwinding), and branch migration. Here, we report the key properties of the ssDNA translocation mechanism of Escherichia coli RecQ helicase, the prototype of the RecQ family. We monitored the pre-steady-state kinetics of ATP hydrolysis by RecQ and the dissociation of the enzyme from ssDNA during single-round translocation. We also gained information on the translocation mechanism from the ssDNA length dependence of the steady-state ssDNA-activated ATPase activity. We show that RecQ occludes 18 ± 2 nt on ssDNA during translocation. The hydrolysis of ATP is noncooperative in the presence of ssDNA, indicating that RecQ active sites work independently during translocation. In the applied conditions, the enzyme hydrolyzes 35 ± 4 ATP molecules per second during ssDNA translocation. RecQ translocates at a moderate processivity, with a mean run length of 100-320 nt on ssDNA. The determined tight mechanochemical coupling of 1.1 ± 0.2 ATP consumed per nucleotide traveled indicates an inchworm-type mechanism.  相似文献   

10.
The primosome is a mobile multienzyme DNA replication-priming complex that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC, dnaG, and dnaT genes as well as proteins n and n" and replication factor Y). It has been shown previously that the primosome, in combination with the E. coli DNA polymerase III holoenzyme, can form replication forks in vitro that move at rates similar to those measured in vivo and that the primosome and one of the components of the primosome, the DNA B protein, have DNA helicase activity. Evidence is presented here that another component of the primosome, replication factor Y, possesses DNA helicase activity as well. Factor Y helicase activity requires the presence of E. coli single-stranded DNA binding protein, Mg2+, and hydrolyzable ATP or dATP. Helicase activity is stimulated 15-fold when the enzyme is actively loaded onto single-stranded DNA through a primosome assembly site, and duplex DNA is unwound unidirectionally, 3'----5', along the DNA strand to which the protein is bound.  相似文献   

11.
An Escherichia coli mutant, temperature-sensitive for DNA synthesis in vivo and in vitro, is defective in single-strand binding protein (SSB; DNA-binding protein). Conversion of phage G4 single strands to the duplex form is defective in crude enzyme fractions of the mutant and is complemented by pure wild-type SSB. Radioimmunoassays of mutant extracts show normal levels of material crossreacting with anti-SSB antibody. SSB purified to homogeneity from the mutant is active, with lower specific activity, in the reconstituted G4 replication assay at 30 degrees C, but virtually inactive at 42 degrees C. Surprisingly, the mutant protein, like the wild-type protein, survives heating at 100 degrees C. Thus, mutant SSB is structurally heat-resistant but is functionally thermosensitive in vitro and in vivo. Both the in vivo and in vitro defects are tightly linked in transductions by phage P1. The mutation in the binding protein, designated ssb-1, is located between 90 and 91 min on the E. coli genetic map.  相似文献   

12.
DNA helicase II is a well-characterized Escherichia coli enzyme capable of unwinding duplex DNA and known to be involved in both methyl-directed mismatch repair and excision repair of pyrimidine dimers. Here it is shown that this enzyme also catalyzes the ATP-dependent unwinding of a DNA.RNA hybrid consisting of a radioactively labeled RNA molecule annealed on M13 single-stranded DNA. The DNA.RNA unwinding reaction required less protein to unwind more base pairs than the corresponding unwinding of duplex DNA. In addition, the rate of unwinding of the DNA.RNA hybrid was more than an order of magnitude faster than unwinding of a DNA partial duplex of similar length. The unwinding of the DNA.RNA hybrid is a property unique to helicase II since helicase I, Rep protein, and helicase IV failed to catalyze the reaction. In light of these results it seems likely that helicase II is involved in some previously unrecognized aspect of nucleic acid metabolism, in addition to its known roles in DNA repair reactions.  相似文献   

13.
The Escherichia coli mutS gene product is involved in mismatch correction in this organism. We have purified a biologically active form of the 97,000 Mr protein to near homogeneity from an overproducing strain. Enzymatic and chemical protection ("footprinting") experiments have demonstrated that mutS-encoded protein specifically binds to DNA regions containing a single base-pair mismatch. The protein displayed variable affinity for the limited set of mismatches tested (G-T greater than G-A approximately equal to A-C greater than T-C).  相似文献   

14.
Escherichia coli nucleoside diphosphate kinase (eNDK) is an XTP:XDP phosphotransferase that plays an important role in the regulation of cellular nucleoside triphosphate concentrations. It is also one of several recently discovered DNases belonging to the NM23/NDK family. E. coli cells disrupted in the ndk gene display a spontaneous mutator phenotype, which has been attributed to the mutagenic effects of imbalanced nucleotide pools and errors made by replicative DNA polymerases. Another explanation for the increased mutation rates is that endk- cells lack the nuclease activity of the NDK protein that is essential for a DNA repair pathway. Here, we show that purified, cloned endk is a DNA repair nuclease whose substrate is uracil misincorporated into DNA. We have identified three new catalytic activities in eNDK that act sequentially to repair the uracil lesion: (i) uracil-DNA glycosylase that excises uracil from single-stranded and from U/A and U/G mispairs in double-stranded DNA; (ii) apyrimidinic endonuclease that cleaves double-stranded DNA as a lyase by forming a covalent enzyme-DNA intermediate complex with the apyrimidinic site created by the glycosylase; and (iii) DNA repair phosphodiesterase that removes 3'-blocking residues from the ends of duplex DNA. All three of these activities, as well as the nucleoside-diphosphate kinase, reside in the same protein. Based on these findings, we propose an editing function for eNDK as a mechanism by which the enzyme prevents mutations in DNA.  相似文献   

15.
The minichromosome maintenance (MCM) proteins are essential for DNA replication in eukaryotes. Thus far, all eukaryotes have been shown to contain six highly related MCMs that apparently function together in DNA replication. Sequencing of the entire genome of the thermophilic archaeon Methanobacterium thermoautotrophicum has allowed us to identify only a single MCM-like gene (ORF Mt1770). This gene is most similar to MCM4 in eukaryotic cells. Here we have expressed and purified the M. thermoautotrophicum MCM protein. The purified protein forms a complex that has a molecular mass of approximately 850 kDa, consistent with formation of a double hexamer. The protein has an ATP-independent DNA-binding activity, a DNA-stimulated ATPase activity that discriminates between single- and double-stranded DNA, and a strand-displacement (helicase) activity that can unwind up to 500 base pairs. The 3' to 5' helicase activity requires both ATP hydrolysis and a functional nucleotide-binding site. Moreover, the double hexamer form is the active helicase. It is therefore likely that an MCM complex acts as the replicative DNA helicase in eukaryotes and archaea. The simplified replication machinery in archaea may provide a simplified model for assembly of the machinery required for initiation of eukaryotic DNA replication.  相似文献   

16.
Recombinational DNA repair by the RecF pathway of Escherichia coli requires the coordinated activities of RecA, RecFOR, RecQ, RecJ, and single-strand DNA binding (SSB) proteins. These proteins facilitate formation of homologously paired joint molecules between linear double-stranded (dsDNA) and supercoiled DNA. Repair starts with resection of the broken dsDNA by RecQ, a 3′→5′ helicase, RecJ, a 5′→3′ exonuclease, and SSB protein. The ends of a dsDNA break can be blunt-ended, or they may possess either 5′- or 3′-single-stranded DNA (ssDNA) overhangs of undefined length. Here we show that RecJ nuclease alone can initiate nucleolytic resection of DNA with 5′-ssDNA overhangs, and that RecQ helicase can initiate resection of DNA with blunt-ends or 3′-ssDNA overhangs by DNA unwinding. We establish that in addition to its well-known ssDNA exonuclease activity, RecJ can display dsDNA exonuclease activity, degrading 100–200 nucleotides of the strand terminating with a 5′-ssDNA overhang. The dsDNA product, with a 3′-ssDNA overhang, is an optimal substrate for RecQ, which unwinds this intermediate to reveal the complementary DNA strand with a 5′-end that is degraded iteratively by RecJ. On the other hand, RecJ cannot resect duplex DNA that is either blunt-ended or terminated with 3′-ssDNA; however, such DNA is unwound by RecQ to create ssDNA for RecJ exonuclease. RecJ requires interaction with SSB for exonucleolytic degradation of ssDNA but not dsDNA. Thus, complementary action by RecJ and RecQ permits initiation of recombinational repair from all dsDNA ends: 5′-overhangs, blunt, or 3′-overhangs. Such helicase–nuclease coordination is a common mechanism underlying resection in all organisms.Homologous recombination is a relatively error-free mechanism to repair double-stranded DNA (dsDNA) breaks (DSBs) and single-stranded DNA (ssDNA) gaps, which are produced by UV light, γ-irradiation, and chemical mutagens (1). In wild-type Escherichia coli, the labor of recombinational repair is divided between the RecBCD and RecF pathways of recombination, which are responsible for the repair of DSBs and ssDNA gaps, respectively (25). However, the proteins of the RecF pathway are capable of DSB repair, as well as ssDNA gap repair: in recBC mutant cells containing the suppressor mutations, sbcB and sbcC (suppressors of recBC), the proteins of the RecF pathways provide the needed recombinational DNA repair functions (2, 6).The RecF pathway in E. coli involves the functions of RecA, RecF, RecG, RecJ, RecN, RecO, RecQ, RecR, RuvA, RuvB, RuvC, and single-strand DNA binding (SSB) proteins (1, 7). The RecF pathway of recombination is evolutionarily conserved across Bacteria, with most of components present in all bacteria (8). In addition, orthologs of RecF pathway proteins are found in Eukarya. RecA promotes DNA strand invasion and exchange (911), as does eukaryotic Rad51 (12, 13). RecO can both anneal SSB–ssDNA complexes (14, 15) and, in conjunction with RecR (and RecF), mediate loading of RecA onto SSB–ssDNA complexes (1618). Saccharomyces cerevisiae Rad52 is a functional homolog of RecO in that it also displays both DNA-annealing and Rad51-loading activities (1922). The RecFOR complex promotes the loading of RecA onto SSB-coated gapped DNA at ssDNA–dsDNA junctions (17, 18) and, when mutated, is suppressed by hyperactive alleles of recA (23), a property that is shared with the yeast Rad55/57 proteins (24). Furthermore, human BRCA2 protein and a fungal analog, Brh2, are partial functional analogs of the RecFOR proteins (2527).RecQ helicase plays several roles in both early and late steps of recombination (28, 29), as do the RecQ-family helicases in Eukarya [e.g., Sgs1 and Bloom Syndrome helicase (BLM)] (3032). In addition, eukaryotic Exonuclease 1 (Exo1) and Dna2 helicase/nuclease function somewhat analogously, although not identically, to RecJ nuclease (3336). The in vitro reconstitution of DSB repair in E. coli, yeast, and human have shown that resection involves specific pairs of a helicase and nuclease for DNA end resection: RecQ/RecJ, Sgs1/Dna2, BLM/DNA2, and BLM/EXO1 (28, 3739).A comparison of DSB repair by the RecBCD and RecF pathways shows that repair starts with the processing a DSB into resected dsDNA with a 3′-ssDNA overhang (7). RecJ has a 5′ to 3′ exonuclease activity on ssDNA and the action of RecJ is facilitated by RecQ, which has a 3′ to 5′ helicase activity (40, 41). The resulting processed DNA has a 3′-ssDNA overhang. The RecFOR complex binds to the 5′-end at the junction between ssDNA and dsDNA, and loads RecA protein onto the adjacent ssDNA (17, 18). Finally, the RecA nucleoprotein filament promotes pairing with homologous dsDNA (9). These steps have been reconstituted in vitro in a coordinated reaction using RecAFORQJ and SSB proteins (28).Despite progress, most studies have used DNA substrates with simple blunt-ends. However, in vivo, there are many potential structures at the end of a DSB. When the DSB is created by a replication fork encountering nicked DNA, the break can be blunt-ended (5). However, related mechanisms can produce dsDNA with either 5′- or 3′-ssDNA overhangs. Similarly, the actual intermediates of DNA processing may result in dsDNA with either 5′- or 3′-ssDNA ends. Clearly, a DNA repair pathway must be capable of dealing with such a variety of DNA end structures. In this study, we investigated the processing of DSBs by RecJ and RecQ, both individually and together. We found that a DNA with a 5′-ssDNA overhang end was degraded by RecJ nuclease and converted into an intermediate with a 3′-ssDNA overhang. Although this intermediate was no longer a substrate for RecJ, RecQ could bind to this intermediate and initiate unwinding, thereby supplying 5′-tailed ssDNA for further resection by RecJ. In addition, we established that RecQ allows RecJ to initiate nucleolytic resection on otherwise poor substrates (e.g., blunt-end DNA or DNA with 3′-ssDNA overhangs). Thus, RecQ and RecJ cooperate biochemically to create DNA intermediates for one another that enable resection of all types of broken DNA molecules.  相似文献   

17.
18.
Electron microscopy shows that complexes of the single-strand DNA binding protein (SSB) of Escherichia coli and phage fd DNA appear as beaded fiber loops containing an average of 38 beads, 1 per 170 bases of DNA. Extensive digestion of native unfixed SSB-fd DNA complexes with micrococcal nuclease reveals a protected DNA fragment of 145 bases, while shorter digestion periods result in a sequence of fragments in multiples of 160 +/- 25 bases. Digestion of these complexes with DNase I produces a repeating pattern of bands, multiples of approximately 15 bases with strong bands at 60, 105, 118, 130, 145, 150, and 210 bases. Isopycnic banding in CsCl solution yields densities of 1.272 and 1.700 g/ml, respectively, for SSB alone and for fd DNA and, after fixation, of 1.388 g/ml for fd DNA-SSB beaded fibers and 1.373 g/ml for the individual protein-DNA beads. Based on these data and the molecular weights of SSB and fd DNA, we suggest that the nucleoprotein chain consists of eight molecules of SSB bound to 145 bases of DNA, with these units linked by roughly 30 bases of protein-free DNA. The excellent concord between results obtained by enzyme digestion of unfixed native samples and, after fixation, by electron microscopy and density banding supports the conclusion that SSB organizes single-stranded DNA in a manner similar to the organization of duplex DNA by histones.  相似文献   

19.
20.
Active DNA helicase I (Mr 180,000) can be isolated from Escherichia coli F+ strains but not F- strains. The transfer of the F sex factor to F- strains by conjugation permits the purification of the enzyme from the transconjugant strains. We conclude from this that helicase I is coded for by a portion of the F factor. Results also obtained by using recombinant plasmids carrying different DNA fragments of the F factor transfer region suggest that DNA helicase I is identical to the product of traI, one of the transfer genes of the F factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号