首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-methyl-D-aspartate (NMDA) receptors (NMDARs) are implicated in synaptic plasticity and modulation of glutamatergic excitatory transmission. Effect of NMDAR activation on inhibitory GABAergic transmission remains largely unknown. Here, we report that a brief application of NMDA could induce two distinct actions in CA1 pyramidal neurons in mouse hippocampal slices: 1) an inward current attributed to activation of postsynaptic NMDARs; and 2) fast phasic synaptic currents, namely spontaneous inhibitory postsynaptic currents (sIPSCs), mediated by GABA(A) receptors in pyramidal neurons. The mean amplitude of sIPSCs was also increased by NMDA. This profound increase in the sIPSC frequency and amplitude was markedly suppressed by the sodium channel blocker TTX, whereas the frequency and mean amplitude of miniature IPSCs were not significantly affected by NMDA, suggesting that NMDA elicits repetitive firing in GABAergic interneurons, thereby leading to GABA release from multiple synaptic sites of single GABAergic axons. We found that the NMDAR open-channel blocker MK-801 injected into recorded pyramidal neurons suppressed the NMDA-induced increase of sIPSCs, which raises the possibility that the firing of interneurons may not be the sole factor and certain retrograde messengers may also be involved in the NMDA-mediated enhancement of GABAergic transmission. Our results from pharmacological tests suggest that the nitric oxide signaling pathway is mobilized by NMDAR activation in CA1 pyramidal neurons, which in turn retrogradely facilitates GABA release from the presynaptic terminals. Thus NMDARs at glutamatergic synapses on both CA1 pyramidal neurons and interneurons appear to exert feedback and feedforward inhibition for determining the spike timing of the hippocampal microcircuit.  相似文献   

2.
Proper operation of a neural circuit relies on both excitatory and inhibitory synapses. We previously showed that cell adhesion molecules nectin‐1 and nectin‐3 are localized at puncta adherentia junctions of the hippocampal mossy fiber glutamatergic excitatory synapses and that they do not regulate the excitatory synaptic transmission onto the CA3 pyramidal cells. We studied here the roles of these nectins in the GABAergic inhibitory synaptic transmission onto the CA3 pyramidal cells using nectin‐1‐deficient and nectin‐3‐deficient cultured mouse hippocampal slices. In these mutant slices, the amplitudes and frequencies of miniature excitatory postsynaptic currents were indistinguishable from those in the control slices. In the nectin‐1‐deficient slices, but not in the nectin‐3‐deficient slices, however, the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) was larger than that in the control slices, although the frequency of the mIPSCs was not different between these two groups of slices. In the dissociated culture of hippocampal neurons from the nectin‐1‐deficient mice, the amplitude and frequency of mIPSCs were indistinguishable from those in the control neurons. Nectin‐1 was not localized at or near the GABAergic inhibitory synapses. These results indicate that nectin‐1 regulates the neuronal activities in the CA3 region of the hippocampus by suppressing the GABAergic inhibitory synaptic transmission.  相似文献   

3.
During postnatal development neurones display discharge behaviours that are not present in the adult, yet they are essential for the normal maturation of the nervous system. Neonatal CA1 pyramidal cells, like their adult counterparts, fire regularly, but excitatory GABAergic transmission drives them to generate spontaneous high-frequency bursts until postnatal day (P) 15. Using intracellular recordings in hippocampal slices from rats at P8 to P25, we show herein that as the network-driven burst activity fades out, most CA1 pyramidal cells become intrinsically bursting neurones. The incidence of intrinsic bursters begins to rise at P11 and attains a peak of 74% by P18–P19, after which it decreases over the course of a week, disappearing almost entirely at P25. Analysis of the effects of different voltage-gated Ca2+ and Na+ channel antagonists, applied focally to proximal and distal parts of developing neurones, revealed a complex burst mechanism. Intrinsic bursting in developing neurones results from 'ping-pong' interplay between a back-propagating spike that activates T/R- and L-type voltage-gated Ca2+ channels in the distal apical dendrites and persistent voltage-gated Na+ channels in the somatic region. Thus, developing pyramidal neurones transitionally express not only distinctive synaptic properties, but also unique intrinsic firing patterns, that may contribute to the ongoing formation and refinement of synaptic connections.  相似文献   

4.
The expression and functions of kainate-type glutamate receptors (KARs) in the hippocampus are developmentally regulated. In particular, presynaptic KARs depressing glutamate release are tonically activated during early postnatal development, and this activity is down-regulated in parallel with maturation of the synaptic circuitry. In order to understand the physiological relevance of the tonic KAR-mediated signalling, we have here studied the effect of long-term pharmacological activation of KARs on glutamatergic synaptic connectivity in hippocampal slice cultures where presynaptic KARs are expressed but not endogenously activated. Prolonged (16–20 h) activation of the GluR5 subunit-containing KARs using the agonist ATPA (1 μ m ) caused a specific and enduring increase in the number of glutamatergic synapses in area CA1, evidenced as an increase in the frequency of action potential-independent spontaneous EPSCs (mEPSCs) and in immunostaining against synaptic marker proteins. The long-term ATPA treatment had no detectable effect on GABAergic transmission or on glutamate release probability. Further, the effect of ATPA on synaptic density was independent of action potential firing and dependent on protein kinase C. A critical role of endogenous KAR activity in synaptic development was revealed by chronic treatment of the cultures with the selective GluR5 antagonist LY382884, which caused a significant impairment of glutamatergic transmission to CA1 pyramidal neurons. Together, these data suggest a role for the GluR5 subunit-containing KARs in the formation and/or stabilization of functional glutamatergic synapses in area CA1.  相似文献   

5.
Intracellular recording and staining was applied to study non-pyramidal neurons in the guinea-pig hippocampus. To avoid accidental impalement of pyramidal or granule cells, two hippocampal regions known to be devoid of pyramidal or granule cells were chosen. In transverse and longitudinal slices, neurons of the deep hilar region (zone 4 of Amaral3), and in transverse slices, neurons of the stratum lacunosum-moleculare (CA3) were impaled. The intracellular staining with Lucifer Yellow revealed that of 20 neurons stained in these zones all were non-pyramidal neurons. Hilar neurons, situated just below the granular layer, differed from granule cells and CA3 neurons with respect to their action potential waveform and their current/voltage relationship. In contrast to granule cells, hilar neurons exhibited spontaneous bursts in the presence of bicuculline (25 microM). In all neurons impaled in the hilar region and the stratum lacunosum-moleculare (n = 42), inhibitory postsynaptic potentials could be elicited. These inhibitory postsynaptic potentials were blocked by bicuculline. In transverse slices, perforant path stimulation elicited inhibition preceding excitation in hilar neurons and excitation preceding inhibition in granule cells. Since non-pyramidal neurons are likely to be inhibitory neurons, our data suggest that GABAergic neurons in the hilus or in the stratum lacunosum-moleculare are controlled by inhibitory GABAergic synapses. This was verified by immunocytochemistry using antibodies against glutamate decarboxylase, the gamma-aminobutyric acid synthetizing enzyme. In both hippocampal regions studied, glutamate decarboxylase-positive synaptic terminals on glutamate decarboxylase-positive cells were observed. It is concluded that disinhibition is an important feature of information processing in the hippocampus, and that disinhibition is mediated by GABAergic synapses on GABAergic neurons.  相似文献   

6.
Neonatal hippocampus exhibits distinct patterns of network activity that are dependent on the interaction between inhibitory and excitatory transmission. Kainate receptors are ideally positioned to regulate this activity by virtue of their ability to regulate presynaptic function in GABAergic interneurones. Indeed, kainate receptors are highly expressed in neonatal hippocampal interneurones, yet the role and mechanisms by which they might regulate neonatal circuitry are unexplored. To address this we investigated the kainate receptor-dependent regulation of GABAergic transmission onto neonatal CA1 pyramidal neurones. Kainate receptor activation produced two distinct opposing effects, a very large increase in the frequency of spontaneous IPSCs, and a robust depression of evoked GABAergic transmission. The up-regulation of spontaneous transmission was due to activation of somatodendritic and axonal receptors while the depression of evoked transmission could be fully accounted for by a direct regulation of GABA release by kainate receptors located at the terminals. None of the effects of kainate receptor agonists were sensitive to GABAB receptor antagonists, nor was there any postsynaptic kainate receptor-dependent effects observed in CA1 pyramidal cells that could account for our findings. Our data demonstrate that kainate receptors profoundly regulate neonatal CA1 GABAergic circuitry by two distinct opposing mechanisms, and indicate that these two effects are mediated by functionally distinct populations of receptors. Thus kainate receptors are strategically located to play a critical role in shaping early hippocampal network activity and by virtue of this have a key role in hippocampal development.  相似文献   

7.
Adenosine is a widespread neuromodulator that can be directly released in the extracellular space during sustained network activity or can be generated as the breakdown product of adenosine triphosphate (ATP). Whole cell patch-clamp recordings were performed from CA3 principal cells and interneurons in hippocampal slices obtained from P2-P7 neonatal rats to study the modulatory effects of adenosine on giant depolarizing potentials (GDPs) that constitute the hallmark of developmental networks. We found that GDPs were extremely sensitive to the inhibitory action of adenosine (IC(50) = 0.52 microM). Adenosine also contributed to the depressant effect of ATP as indicated by DPCPX-sensitive changes of ATP-induced reduction of GDP frequency. Similarly, adenosine exerted a strong inhibitory action on spontaneous glutamatergic synaptic events recorded from GABAergic interneurons and on interictal bursts that developed in CA3 principal cells after blockade of gamma-aminobutyric acid type A (GABA(A)) receptors with bicuculline. All these effects were prevented by DPCPX, indicating the involvement of inhibitory A1 receptors. In contrast, GABAergic synaptic events were not changed by adenosine. Consistent with the endogenous role of adenosine on network activity, DPCPX per se increased the frequency of GDPs, interictal bursts, and spontaneous glutamatergic synaptic events recorded from GABAergic interneurons. Moreover, the adenosine transport inhibitor NBTI and the adenosine deaminase blocker EHNA decreased the frequency of GDPs, thus providing further evidence that endogenous adenosine exerts a powerful control on GDP generation. We conclude that, in the neonatal rat hippocampus, the inhibitory action of adenosine on GDPs arises from the negative control of glutamatergic, but not GABAergic, inputs.  相似文献   

8.
The development of GABAergic synapses is associated with an excitatory to inhibitory shift of the actions of GABA because of a reduction of [Cl]i. This is due to a delayed postnatal expression of the K+–Cl cotransporter KCC2, which has low levels at birth and peaks during the first few postnatal weeks. Whether the expression of the cotransporter and the excitatory to inhibitory shift have other consequences on the operation of GABAA receptors and synapses is not yet known. We have now expressed KCC2 in immature neurones at an early developmental stage and determined the consequences on the formation of GABA and glutamate synapses. We report that early expression of the cotransporter selectively enhances GABAergic synapses: there is a significant increase of the density of GABAA receptors and synapses and an increase of the frequency of GABAergic miniature postsynaptic currents. The density of glutamate synapses and frequency of AMPA miniature postsynaptic currents are not affected. We conclude that the expression of KCC2 and the reduction of [Cl]i play a critical role in the construction of GABAergic networks that extends beyond the excitatory to inhibitory shift of the actions of GABA.  相似文献   

9.
Central glutamatergic synapses are thought to initially form as immature, so-called silent synapses showing exclusively N-methyl-d-aspartate receptor-mediated synaptic transmission. Postsynaptic insertion of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors during further development leads to a conversion into functional, mature synapses. Here, we tested the hypothesis that, according to the "inside first-outside last" pattern of neocortical layer formation and synaptogenesis, pyramidal cells in the superficial layers might show a higher fraction of silent synapses compared with pyramidal cells in the deep layers. We performed an electrophysiological analysis of glutamatergic synapses in acute rat visual cortex slices during postnatal development. In layer VI pyramidal neurons the incidence of silent synapses was high during the first postnatal week and strongly declined during further development. Surprisingly, in superficial cortical plate pyramidal neurons (immature layers II/III), the fraction of silent synapses was initially very low and increased up to the second postnatal week. Thereafter, a similar decline as found in layer VI pyramidal neurons was observed. Thus the developmental regulation of silent synapses was clearly different in pyramidal neurons from different neocortical layers. The almost complete absence of silent synapses at early stages in layer II/III pyramidal neurons indicates that an initially formed subset of synapses is constitutively functional. This might be important to enable spontaneous activity and latter activity-dependent maturation of synapses.  相似文献   

10.
Cortical inhibitory interneurons set the pace of synchronous neuronal oscillations implicated in synaptic plasticity and various cognitive functions. The hyperpolarizing nature of inhibitory postsynaptic potentials (IPSPs) in interneurons has been considered crucial for the generation of oscillations at beta (15-30 Hz) and gamma (30-100 Hz) frequency. Hippocampal basket cells and axo-axonic cells in stratum pyramidale-oriens (S-PO) play a central role in the synchronization of the local interneuronal network as well as in pacing of glutamatergic principal cell firing. A lack of conventional forms of plasticity in excitatory synapses onto interneurons facilitates their function as stable neuronal oscillators. We have used gramicidin-perforated and whole cell clamp recordings to study properties of GABAAR-mediated transmission in CA3 SP-O interneurons and in CA3 pyramidal cells in rat hippocampal slices during electrical 5- to 100-Hz stimulation and during spontaneous activity. We show that GABAergic synapses onto SP-O interneurons can easily switch their mode from inhibitory to excitatory during heightened activity. This is based on a depolarizing shift in the GABAA reversal potential (EGABA-A), which is much faster and more pronounced in interneurons than in pyramidal cells. We also found that the shift in interneuronal function was frequency dependent, being most prominent at 20- to 40-Hz activation of the GABAergic synapses. After 40-Hz tetanic stimulation (100 pulses), GABAA responses remained depolarizing for approximately 45 s in the interneurons, promoting bursting in the GABAergic network. Hyperpolarizing EGABA-A was restored >60 s after the stimulus train. Similar but spontaneous GABAergic bursting was induced by application of 4-aminopyridine (100 microM) to slices. A shift to depolarizing IPSPs by the GABAAR permeant weak acid anion formate provoked interneuronal population bursting, supporting the role of GABAergic excitation in burst generation. Furthermore, depolarizing GABAergic potentials and synchronous interneuronal bursting were enhanced by pentobarbital (100 microM), a positive allosteric modulator of GABAARs, and were blocked by picrotoxin (100 microM). Intriguingly, GABAergic bursts displayed short (<1 s) oscillations at 15-40 Hz, even though only depolarizing GABAA responses were seen in the SP-O interneurons. This beta-gamma rhythmicity in the interneuron network was dependent on electrotonic coupling, and was abolished by blockade of gap junctions with carbenoxolone (200 microM). Results here implicate the rapid activity-dependent degradation of hyperpolarizing IPSPs in SP-O interneurons in setting the temporal limits for a given interneuron to participate in beta-gamma oscillations synchronized by GABAergic synapses. Furthermore, they imply that mutual GABAergic excitation provided by interneurons may be an integral part in the function of neuronal networks. We suggest that the use-dependent change in EGABA-A could represent a form of short-term plasticity in interneurons promoting coherent and sustained activation of local GABAergic networks.  相似文献   

11.
Anatomical studies have described inhibitory synaptic contacts on apical dendrites, and an abundant number of GABAergic synapses on the somata and proximal dendrites of CA1 pyramidal cells of the hippocampus. The number of inhibitory contacts decreases dramatically with distance from the soma, but the local electrophysiological characterization of these synapses at their site of origin in the dendrites is missing. We directly recorded dendritic GABA receptor-mediated inhibitory synaptic events in adult mouse hippocampal CA1 pyramidal neurons and compared them to excitatory synaptic currents recorded at the same sites. Miniature GABAergic events were evoked using localized application of a hyperosmotic solution to the apical dendrites in the vicinity of the dendritic whole-cell recording pipette. Glutamatergic synaptic events were blocked by kynurenic acid, leaving picrotoxin-sensitive IPSCs. We measured the amplitude and kinetic properties of mIPSCs at the soma and at three different dendritic locations. The amplitude of mIPSCs recorded at the various sites was similar along the somato-dendritic axis. The rise- and decay-times of local mIPSCs were also independent of the location of the synapses. The frequency of mIPSCs was 5 Hz at the soma, in contrast to < 0.5 Hz at dendritic sites, which could be increased to 10–20 Hz and 6–10 Hz, respectively, by our hyperosmotic stimulation protocol. Miniature glutamatergic events were evoked with the same protocol after blocking inhibitory synapses by bicucculine. The measured amplitudes increased along the somato-dendritic axis proportionally with their distance from the soma. The measured kinetic properties were independent of location. Consistent with the idea that IPSCs may have a restricted local effect in the dendrites, our data show a lack of distance-dependent scaling of miniature inhibitory synaptic events, in contrast to the scaling of excitatory events recorded at the same sites.  相似文献   

12.
The postnatal maturation pattern of glycine receptor channels (GlyRs) expressed by dopaminergic (DA) neurones of the rat substantia nigra pars compacta (SNc) was investigated using single-channel and whole-cell patch-clamp recordings in brain slices from rats aged 7–21 postnatal days (P). In neonatal rats (P7-P10), GlyRs exhibited a main conductance state of 100–110 pS with a mean open time of 16 ms. In juvenile rats (P19-P22), both the GlyR main conductance state (46-55 pS) and the mean open time (6.8 ms) were decreased. In neonatal rats, application of 30 μ m picrotoxin, which is known to block homomeric GlyRs, strongly reduced glycine-evoked responses, while it was much less effective in juvenile rats. These results suggest that these GlyRs correspond functionally to α2 homomeric GlyRs in neonatal rats and α1/β heteromeric GlyRs in juvenile rats. A drastic but transient decrease in the glycine responsiveness of DA neurones occurred around P17 concomitant to the functional switch from the homomeric state to the heteromeric state. This age corresponds to a maturation phase for DA neurones. The application of 1 μ m gabazine blocked spontaneous or evoked inhibitory synaptic current, while the addition of 1 μ m strychnine had no effect, suggesting a lack of functional glycinergic synapses on DA neurones. Although it has been proposed that taurine is co-released with GABA at GABAergic synapses on DA neurones, in the present study the stimulation of GABAergic fibres failed to activate GlyRs. Blockade of taurine transporters and applications of high K+ and hyposmotic solutions were also unable to induce any strychnine-sensitive current. We conclude that functional maturation of GlyRs can occur in the absence of any detectable GlyR activation in DA neurones of the SNc.  相似文献   

13.
The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at >20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population.  相似文献   

14.
Two types of GABAergic interneurone are known to express cholecystokinin-related peptides in the isocortex: basket cells, which preferentially innervate the somata and proximal dendrites of pyramidal cells; and double bouquet cells, which innervate distal dendrites and dendritic spines. In the hippocampus, cholecystokinin immunoreactivity has only been reported in basket cells. However, at least eight distinct GABAergic interneurone types terminate in the dendritic domain of CA1 pyramidal cells, some of them with as yet undetermined neurochemical characteristics. In order to establish whether more than one population of cholecystokinin-expressing interneurone exist in the hippocampus, we have performed whole-cell current clamp recordings from interneurones located in the stratum radiatum of the hippocampal CA1 region of developing rats. Recorded neurones were filled with biocytin to reveal their axonal targets, and were tested for the presence of pro-cholecystokinin immunoreactivity.The results show that two populations of cholecystokinin-immunoreactive interneurones exist in the CA1 area (n=15 positive cells). Cholecystokinin-positive basket cells (53%) preferentially innervate stratum pyramidale and adjacent strata oriens and radiatum. A second population of cholecystokinin-positive cells, previously described as Schaffer collateral-associated interneurones [Vida et al. (1998) J. Physiol. 506, 755-773], have axons that ramify almost exclusively in strata radiatum and oriens, overlapping with the Schaffer collateral/commissural pathway originating from CA3 pyramidal cells. Two of seven of the Schaffer collateral-associated cells were also immunopositive for calbindin. Soma position and orientation in stratum radiatum, the number and orientation of dendrites, and the passive and active membrane properties of the two cell populations are only slightly different. In addition, in stratum radiatum and its border with lacunosum of perfusion-fixed hippocampi, 31.6+/-3.8% (adult) or 26.8+/-2.9% (postnatal day 17-20) of cholecystokinin-positive cells were also immunoreactive for calbindin.Therefore, at least two populations of pro-cholecystokinin-immunopositive interneurones, basket and Schaffer collateral-associated cells, exist in the CA1 area of the hippocampus, and are probably homologous to cholecystokinin-immunopositive basket and double bouquet cells in the isocortex. It is not known if the GABAergic terminals of double bouquet cells are co-aligned with specific glutamatergic inputs. However, in the hippocampal CA1 area, it is clear that the terminals of Schaffer collateral-associated cells are co-stratified with the glutamatergic input from the CA3 area, with as yet unknown functional consequences. The division of the postsynaptic neuronal surface by two classes of GABAergic cell expressing cholecystokinin in both the hippocampus and isocortex provides further evidence for the uniform synaptic organisation of the cerebral cortex.  相似文献   

15.
The response to bath-applied noradrenaline (NA, 50 microM) was tested with conventional intracellular recordings in neurones of the mediolateral part of the lateral septum (LSml) by using guinea-pig brain slices. NA elicited direct hyperpolarizations and depolarizations and affected the frequency of tetrodotoxin (TTX)- and bicuculline-sensitive inhibitory post-synaptic potentials (IPSPs). Decrease or increase in IPSPs frequency was observed in 37.6 and 18.2% neurones respectively. Frequency of bicuculline-sensitive miniature IPSPs recorded under TTX was unchanged. Increase in IPSPs frequency was blocked by TTX and was observed during iontophoretic application of NA in the LSml. Taken together, these data suggest that NA hyperpolarizes or depolarizes local presynaptic GABAergic neurones to cause alterations in action potential-dependent transmitter release. NA-induced decrease or increase in IPSPs frequency were respectively mimicked by clonidine and L-phenylephrine and blocked by yohimbine and prazosin, indicating that NA modifies release of GABA by activation of alpha(2) and alpha(1) adrenoceptors at the somato-dendritic region of presynaptic GABAergic neurones. These findings show that, in addition to their direct input from NA afferents, LSml neurones receive a indirect input by way of GABAergic interneurones. These interneurones may serve as inhibitory relays for noradrenergic afferents originating from the locus coeruleus and may be involved in the NA control of LSml functions.  相似文献   

16.
In the immature hippocampus, the so-called 'giant depolarizing potentials' (GDPs) are network-driven synaptic events generated by the synergistic action of glutamate and GABA. Here we tested the hypothesis that ATP, a widely distributed neurotransmitter, directly contributes to the network activity during the first postnatal week. We found that in CA3 pyramidal cells, in the presence of the adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), ATP produced a transient facilitation of GDPs followed by a depressant effect. A similar biphasic effect was produced by blockade of the ectoATPase activity with 6- N,N -diethyl- d -β,γ-dibromomethylene ATP (ARL-67156). The effects of exogenous and endogenous ATP on GDPs were prevented by the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). On pyramidal cells, ATP upregulated spontaneous action-potential-dependent GABAA-mediated synaptic events (GABA-SPSPs), suggesting a network-driven effect. Recordings from interneurones allowed comparison of ATP effects on GABAergic and glutamatergic synaptic activity. While ATP depressed GABA-SPSPs via metabotropic P2Y1 receptors, it up- and downregulated glutamatergic SPSPs via PPADS-sensitive receptors. Thus, ATP exerts an excitatory action on CA3 pyramidal cells via facilitation of GDPs and SPSPs. This excitatory drive is propagated to pyramidal cells by interneurons that represent the 'common pathway' for generation of GDPs and SPSPs. Our results show that ATP operating via distinct P2X and P2Y receptors directly contributes to modulate network activity at the early stages of postnatal development.  相似文献   

17.
1. Evidence for local excitatory synaptic connections in CA1 of the rat hippocampus was obtained by recording excitatory postsynaptic potentials (EPSPs) intracellularly from pyramidal cells during local microapplications of glutamate. 2. Experiments were performed in hippocampal slices cut parallel to (transverse slice) or perpendicular to (longitudinal slice) alvear fibers. In normal solutions, glutamate microdrops (10-20 mM, 10-20 micron diam) applied in CA1 within 400 micron of recorded cells sometimes increased the frequency of inhibitory postsynaptic potentials for 5-10 s in both transverse and longitudinal slices. Increases in EPSP frequency were also occasionally observed, but only in transverse slices. Tetrodotoxin (1 microgram/ml) blocked glutamate-induced increases in PSP frequency, thus indicating that they were not caused by subthreshold effects on presynaptic terminals. Increases in PSP frequency were interpreted to result from glutamate activation of hippocampal neurons with inhibitory and excitatory connections to recorded neurons. 3. In both slice orientations, local excitatory circuits were studied in more isolated conditions by surgically separating CA1 from CA3 (transverse slices) and by blocking GABAergic inhibitory synapses with picrotoxin (5-10 microM). Microdrops were systematically applied at 200 and 400 micron on each side of the recording site. Significant glutamate-induced increases in EPSP frequency were observed in neurons from both slice orientations to microdrops in at least one of the locations. This provided evidence that excitatory synapses are present in both transverse and longitudinal slices. 4. Substantial increases in EPSP frequency only occurred in neurons from longitudinal slices when glutamate was microapplied 200 micron or less from the recording site. In transverse slices, however, large increases in EPSP frequency were observed to glutamate microapplications at 200 or 400 micron. These data suggest that CA1 local excitatory connections project for longer distances in the transverse than in the longitudinal plane of section. 5. Increases in EPSP frequency, averaged across cells, did not differ significantly in the four microapplication sites in either transverse or longitudinal slices. Thus local excitation in CA1 does not appear to be asymmetrically arranged in the way suggested for CA3. 6. The densities of local excitatory circuits in CA1 versus CA3 were studied by quantitatively comparing glutamate-induced increases in EPSP frequency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The hippocampus, a limbic brain region involved in the encoding and retrieval of memory, has a well-defined structural network assembled from excitatory principal neurons and inhibitory interneurons. Because the GABAergic interneurons form synapses onto both pyramidal neurons and interneurons, the activation of nicotinic acetylcholine receptors (nAChRs) present on certain interneurons could induce either inhibition or disinhibition in the hippocampal circuitry. To understand the role of nAChRs in controlling synaptic transmission in the hippocampus, we evaluated the magnitude of nAChR-modulated GABAergic postsynaptic currents (PSCs) in pyramidal neurons and various interneurons of the CA1 region. Using whole cell patch-clamp recording and post hoc identification of neuronal types in rat hippocampal slices, we show that brief (12-s) nAChR activation by ACh (1 mM) or choline (10 mM) enhances the frequency of GABAergic PSCs in both pyramidal neurons and CA1 interneurons. The magnitude of alpha7 nAChR-mediated GABAergic inhibition, as assessed by the net charge of choline-induced PSCs, was highest in stratum lacunosum moleculare interneurons followed by pyramidal neurons and s. radiatum interneurons. In contrast, the magnitude of alpha4beta2 nAChR-mediated GABAergic inhibition, as assessed by the difference between the net charge of PSCs induced by ACh and choline, was highest in pyramidal neurons followed by s. lacunosum moleculare and s. radiatum interneurons. The present results suggest that cholinergic cues transmitted via specific subtypes of nAChRs modify the synaptic function in the hippocampus by inducing a differential degree of GABAergic inhibition in the target neurons.  相似文献   

19.
In the adult hippocampus, two different forms of GABAA receptor-mediated inhibition have been identified: phasic and tonic. The first is due to the activation of GABAA receptors facing the presynaptic releasing sites, whereas the second is due to the activation of receptors localized away from the synapses. Because of their high affinity and low desensitization rate, extrasynaptic receptors are persistently able to sense low concentrations of GABA. Here we show that, early in postnatal life, between postnatal day (P) 2 and P6, CA1 and CA3 pyramidal cells but not stratum radiatum interneurons, express a tonic GABAA-mediated conductance. Block of the neuronal GABA transporter GAT-1 slightly enhanced the persistent GABA conductance in principal cells but not in GABAergic interneurons. However, in adulthood, a tonic GABAA-mediated conductance could be revealed in stratum radiatum interneurons, indicating that the ability of these cells to sense ambient GABA levels is developmentally regulated. Pharmacological analysis of the tonic conductance in principal cells demonstrated the involvement of β2/β3, α5 and γ2 GABAA receptor subunits. Removal of the tonic depolarizing action of GABA with picrotoxin, reduced the excitability and the glutamatergic drive of principal cells but did not modify the excitability of stratum radiatum interneurons. The increased cell excitability and synaptic activity following the activation of extrasynaptic GABAA receptors by ambient GABA would facilitate the induction of giant depolarizing potentials.  相似文献   

20.
The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号