首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinsonism occurs in approximately 35 to 40% of patients with Alzheimer's disease (AD) even with little or no neuronal degeneration in the substantia nigra, which in idiopathic Parkinson's disease (PD) results in the severe loss of striatal dopamine transporter sites. It is not known if there is a loss of striatal dopamine transporter sites in AD with coexistent parkinsonism (AD/parkinsonism). We quantified the pattern of these sites in the striatum and midbrain of patients with the clinical diagnosis of PD, AD, and AD/parkinsonism in comparison with a group of age-matched control subjects. We also quantified the number of D2 receptors and the levels of tyrosine hydroxylase in the substantia nigra and ventral tegmental area of same groups. The results showed that in AD the loss of dopamine transporter sites was restricted to the nucleus accumbens. The loss of these sites in the AD/parkinsonism group was more extensive than in the AD group, with the most severe losses in the rostral caudate and putamen and least in the caudal caudate and putamen. While the PD group showed an equally severe reduction in numbers of sites, the caudal to rostral gradient of loss differed from that in the AD/parkinsonism group. The PD group also showed a marked loss of dopamine transporter sites, tyrosine hydroxylase, and D2 autoreceptors (located on dopamine neurons) in the substantia nigra and ventral tegmental area. In contrast, no reductions in dopamine transporter sites, tyrosine hydroxylase, and D2 autoreceptors were observed in the substantia nigra and ventral tegmental area of the AD or AD/parkinsonism groups. Thus, the loss of striatal dopamine transporter sites in AD/parkinsonism may be related to the clinical parkinsonian symptoms. However, the loss is not simply the result of neuronal degeneration in the substantia nigra, but must derive from other processes.  相似文献   

2.
OBJECTIVE: To study dopamine D1 and D2 receptors in the putamen and the caudate nucleus in patients with AD and age-matched healthy controls by means of PET. METHODS: A dopamine D1 receptor antagonist ([11C]NNC 756) and a D2 receptor antagonist ([11C]raclopride) were used as ligands. The uptake of these ligands was calculated as a distribution volume ratio of the putamen and the caudate nucleus to the cerebellum. RESULTS: The mean [11C]NNC 756 uptake in AD was reduced by 14% from the mean control value both in the putamen (p = 0.004) and the caudate nucleus (p = 0.009). There was no significant reduction in the mean [11C]raclopride uptake in either the putamen or the caudate nucleus in AD. There was no correlation between [11C]NNC 756 or [11C]raclopride uptake and Mini-Mental State Examination or motor Unified PD Rating Scale scores in patients with AD. CONCLUSIONS: There are changes in striatal D1 but not in D2 receptors in AD.  相似文献   

3.
We have investigated striatal dopamine D1 and D2 receptor binding in asymptomatic subjects from Huntington's disease (HD) families using positron emission tomography. Nineteen adult subjects at risk of developing HD were scanned with 11C-SCH 23390 and 11C-raclopride to calculate the D1 and D2 receptor binding potential, respectively. Eight of the 19 were shown to have the HD mutation; of these, 4 subjects had significant reductions in striatal dopamine receptor binding. Abnormalities were more common in older subjects and were not correlated with the size of the HD mutation. There was a strong coefficient of correlation between individual levels of striatal D1 and D2 binding in subjects with the mutation. Of 6 other cases with a 50% risk of carrying the HD gene, 1 showed subclinical loss of caudate and putamen D2 binding. Our study suggests that both striatal D1 and D2 dopamine receptors are lost in parallel from both cauudate and putamen in presymptomatic HD and that dopamine receptor binding provides a sensitive means of detecting subclinical striatal dysfunction.  相似文献   

4.
Brain tissue from 44 patients with Parkinson's disease (PD) and 36 age-matched controls was examined for choline acetyltransferase (ChAT) activity, and for densities of D1 and D2 dopamine receptors. Brain samples were examined for Alzheimer' disease (AD) type changes and for Lewy bodies (LBs), and for apolipoprotein E genotype. Patients were evaluated for the stage of cognitive impairment using Reisberg's global deterioration scale. ChAT activity in PD was reduced in all brain areas examined, being 51% of the control mean in the hippocampus (P<0.001), 57% in the prefrontal cortex (P< 0.001) and 64% in the temporal cortex (P<0.001). The number of LBs had a significant negative correlation with ChAT activity in both prefrontal (r=-0.33, P<0.05) and temporal cortex (r=-0.32, P<0.05). The reduction in ChAT activity in the prefrontal cortex had a significant negative correlation (r=-0.38, P=0.012) with the extent of cognitive impairment. When the CERAD class 'C' was excluded, cognitive impairment correlated significantly with both prefrontal ChAT activity (r=-0.52, P=0.0051) and the density of D1 dopamine receptors in the caudate nucleus (r=-0.40, P=0.037). The number of D1 and D2 dopamine receptors was reduced in both caudate nucleus and putamen in PD patients without neuroleptics as compared to controls. An increased D2 receptor number was found in the caudate nucleus and putamen in PD patients treated with neuroleptics. The present study showed that cognitive decline in PD is associated with reduced ChAT activity in the prefrontal cortex and the D1 dopamine receptor number in the caudate nucleus, even in the absence of AD-type pathology.  相似文献   

5.
We used positron emission tomography (PET) with (+)-[(11)C]dihydrotetrabenazine ([+]-[(11)C]DTBZ) to examine striatal monoaminergic presynaptic terminal density in 20 patients with dementia with Lewy bodies (DLB), 25 with Alzheimer's disease (AD), and 19 normal elderly controls. Six DLB patients developed parkinsonism at least 1 year before dementia (DLB/PD) and 14 developed dementia before parkinsonism or at about the same time (DLB/AD). Striatal mean binding potential was decreased by 62 to 77% in the DLB/PD group and 45 to 67% in the DLB/AD compared to AD and control. Binding was lower in the DLB/PD group than the DLB/AD, but the differences reached only marginal significance in the caudate nucleus. No differences were found between AD and control groups though a few AD patients had binding values below the range of the controls. Subsequent neuropathological examination in one AD patient revealed both AD and DLB changes despite the absence of clinical parkinsonism. Both DLB groups had an anterior to posterior binding deficit gradient relative to controls, largest in posterior putamen, smaller in anterior putamen, smallest in caudate nucleus. The DLB/AD group showed significant binding asymmetry only in posterior putamen. We conclude that PET with (+)-[(11)C]DTBZ differentiates DLB from AD, and decreased binding in AD may indicate subclinical DLB pathology in addition to AD pathology.  相似文献   

6.
The objective of this study was to identify dopamine (DA) metabolism pattern in Lewy body Parkinson's disease (PD) patients with dyskinesia (Dysk) only, with wearing-off (WO) only, or no motor complications (NMC) induced by levodopa (LD). DA, homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 3-methoxytyramine (3-MT) were measured individual basal ganglia nuclei of nine PD patients who received LD for 6-18 years. Three patients had only Dysk, three only WO, and three had neither Dysk nor WO. Biochemical measurements in PD brains were compared with four non-neurological control brains from individuals matched for age and post-mortem retrieval time. DA levels in the PD were reduced in the caudate by 87% and putamen by 99%. In the caudates, the HVA/DA molar ratio as an index of DA metabolism was similar in the WO and the Dysk patients. However, in the putamen, the ratio of HVA/DA was significantly higher in the WO compared with the Dysk (p = 0.03)and the NMC (p = 0.04) groups of patients. In the putamen, the DOPAC levels were higher in the WO cases while in the Dysk cases, 3-MT levels were higher. The results suggest that in the WO only cases, the putaminal DA was in large measure metabolized intraneuronally while the DA metabolism in our Dysk only patients was mainly extraneuronal. We conclude that the magnitude and the site (intra vs. extraneuronal) of the synaptic DA metabolism in the putamen plays a significant role in LD-induced Dysk and WO.  相似文献   

7.
In this study, we assessed the changes of endogenous dopamine (DA) levels in response to methylphenidate in 5 patients with idiopathic Parkinson's disease (PD) and 6 healthy controls. Three-dimensional positron emission tomography was performed with the D2 receptor antagonist [11C]raclopride (RAC) at baseline and 1 hour following the administration of oral methylphenidate (0.8 mg/kg) to assess changes in dopamine levels indirectly. Oral methylphenidate produced no significant change in extracellular DA levels in the putamen, as estimated by comparing changes in RAC binding at baseline and 1 hour following its administration in PD subjects and healthy controls. However, there were small changes in RAC binding of opposite direction in caudate and ventral striatal regions compared between the two groups. Although there was no consistent improvement in motor function in the PD group, some patients did experience a subjective high in response to methylphenidate (MP). Failure of oral MP to alter extracellular DA levels in putamen could result from degeneration of presynaptic dopaminergic terminals, with consequent severe reductions in the levels of endogenous DA and dopamine transporter in PD subjects. Our data provide in vivo neurochemical support for the lack of clinical efficacy following MP in PD patients and are also in keeping with reduced DA release following amphetamine in PD subjects.  相似文献   

8.
OBJECTIVE: To evaluate the integrity of the dorsal striatal dopaminergic innervation in rigid and choreic Huntington disease (HD). BACKGROUND: Some patients with HD have an akinetic-rigid phenotype. It has been suggested that nigrostriatal in addition to striatal pathology is present in this subgroup. The authors sought to determine whether in vivo measures of striatal vesicular monoamine transporter type-2 (VMAT2) binding could distinguish patients with akinetic-rigid (HDr) from typical choreiform (HDc) HD. METHODS: Nineteen patients with HD (mean age 48 +/- 16 years) and 64 normal controls (mean age 50 +/- 14 years) underwent (+)-alpha-[11C]dihydrotetrabenazine (DTBZ) PET imaging. DTBZ blood to brain ligand transport (K1) and tissue to plasma distribution volume (DV) in the caudate nucleus, anterior putamen, and posterior putamen were normalized to the occipital cortex. RESULTS: The normalized striatal specific DV was reduced in HDr (n = 6) when compared with controls: caudate nucleus -33% (p < 0.001), anterior putamen -56% (p < 0.0001), and posterior putamen -75% (p < 0.0001). Patients with HDc (n = 13) also had reduced striatal DV: caudate nucleus -6% (NS), anterior putamen -19% (p < 0.01), and posterior putamen -35% (p < 0.0001). Patients with HDr had significantly lower striatal (+)-alpha-[11C]DTBZ binding than HDc patients. After correction for tissue atrophy effects, normalized DV differences were less significant, with values somewhat increased in the caudate, slightly reduced in the anterior putamen, and moderately decreased in the posterior putamen. There were no significant regional differences in K1 reductions among caudate, anterior, and posterior putamen in HD. CONCLUSIONS: Reduced striatal VMAT2 binding suggests nigrostriatal pathology in HD, most severely in the HDr phenotype. Striatal DV reductions were most prominent in the posterior putamen, similar to PD.  相似文献   

9.
Summary. Striatal dopamine reuptake sites were studied in brain samples from 14 Alzheimer's disease (AD) patients. A cocaine analogue, [3H]CFT (WIN 35,428, 2β-carbomethoxy-3β-(4-fluorophenyl)-tropane) was used as a radioligand to determine the number of [3H]CFT binding sites (Bmax) and their dissociation constant (Kd). In patients with AD the reduction in [3H]CFT binding in the putamen was about 50% compared to age-matched controls. In the caudate nucleus the reduction was about 33%. Thus, the putamen was more severely affected. No change was observed in Kd values between AD patients and controls. Brain samples from 37 healthy controls (aged from 8 to 91 years) were used to study the changes in striatal [3H]CFT binding with increasing age. The Bmax of [3H]CFT uptake was reduced both in the putamen and in the caudate nucleus. The average decline per decade was greater in the caudate nucleus (7.3%) than in the putamen (5.5%). In conclusion, the pattern of changes in AD is different from that seen during normal ageing, which seems to affect more severely the caudate nucleus than the putamen. Received June 26, 2000; accepted January 8, 2001  相似文献   

10.
Using (11)C-raclopride positron emission tomography after methamphetamine challenge, we have evaluated regional brain changes in synaptic dopamine (DA) levels in six volunteers and six advanced Parkinson's disease (PD) patients. The pharmacological challenge induced significant release of endogenous DA in putamen not only in the normal subjects, as reflected by a 25.2% reduction in (11)C-raclopride binding potential as compared with placebo, but also in the PD patients (6.8%). In individual PD patients, we found a correlation between putamen DA release and DA storage, as measured by (18)F-dopa uptake. Localization of significant changes in (11)C-raclopride binding after methamphetamine at a voxel level with statistical parametric mapping identified striatal and prefrontal DA release in both cohorts. Statistical comparisons between normal subjects and PD confirmed significantly reduced DA release in striatal areas in PD, but normal levels of prefrontal DA release. In conclusion, significant endogenous DA release can still be induced by pharmacological challenges in the putamen of advanced PD patients, and this release correlates with residual DA storage capacity. Our data also show that the capacity to release normal DA levels in prefrontal areas after a pharmacological challenge is preserved in severe stages of the disease.  相似文献   

11.
OBJECTIVE: To differentiate the patterns of dopamine transporter loss between idiopathic PD and progressive supranuclear palsy (PSP). METHODS: We used the radiotracer [11C]-WIN 35,428 and PET. Regional striatal dopamine transporter binding was measured in the caudate, anterior putamen, and posterior putamen of six patients with L-dopa-responsive stage 2 PD, six patients with PSP, and six age-comparable healthy controls. RESULTS: In patients with idiopathic PD, the most marked abnormality was observed in the posterior putamen (77% reduction), whereas transporter density in the anterior putamen (60% reduction) and the caudate (44% reduction) was less affected. Unlike the patients with PD, the PSP group showed a relatively uniform degree of involvement in the caudate (40% reduction), anterior putamen (47% reduction), and posterior putamen (51% reduction). When posterior putamen/caudate ratios were calculated, these values were significantly lower in patients with PD than they were in patients with PSP (p = 0.0008) and the control group (p < 0.0001). CONCLUSIONS: Patients with PD have a more pronounced loss of dopamine transporters in the posterior putamen due to a subdivisional involvement of nigrostriatal dopaminergic projections in idiopathic PD. This technique is useful in the determination of neurochemical changes underlying PD and PSP, thus differentiating between them.  相似文献   

12.
The technique of quantitative autoradiography was used to examine the effects of Huntington's disease (HD) and schizophrenia on the organization of striatal dopamine (DA) D1 and D2 receptors. Whereas the striatum of HD cases showed a reduction in the density of D1 ([3H]SCH 23390) and D2 ([3H]spiroperidol) receptors, the patterning of D2 receptor loss did not match that of the D1 receptor loss. The HD loss of D1 D1 receptors (65%) is far greater than the loss of D2 receptors (28%). Whereas there was a dorsal-ventral gradient of effect on both receptor subtypes, the effects of HD on D2 receptors in the ventral putamen (PUT) and nucleus accumben septi (NAS) were minimal. Similarly, muscarinic M1 and M2 receptors demonstrate different patterns of alteration in HD. The M2 subtype, labeled with [3H]N-methylscopolamine (in the presence of excess pirenzepine to occlude M1 sites), was depleted far more than the M1 receptor subtype, labeled with [3H]pirenzepine. Although the effects of HD on [3H]mazindol labeling of DA terminals were more heterogeneous, there appeared to be a relative preservation of this afferent input to the striatum of the HD cases. In the schizophrenic cases, our autoradiographic studies confirm previous reports of an elevation of D2 receptor density in the striata of many schizophrenics. This increase was evident even though two of the three cases were known to have not been treated with neuroleptics, and the third case may also have been drug naive. However, the increase was far greater in the NAS (164%) and ventral PUT (173%) than more dorsally in the striatum (68%). The density of D1 receptors and DA terminals labeled with [3H]mazindol in the striatum of schizophrenics was not significantly different from that of control cases. Thus in both HD and schizophrenia, the ratio of D2/D1 receptors is altered in favor of the D2 population, particularly in the NAS.  相似文献   

13.
The binding of the dopamine uptake inhibitor [3H]GBR-12935 to postmortem putamen from a control group and patients with Alzheimer's disease/senile dementia of Alzheimer type (AD/SDAT) or vascular dementia (VD) was studied. The binding density (Bmax) in AD/SDAT was significantly reduced to 50% of control. A reduction of Bmax in VD was also noted, but it did not reach statistical significance. No differences in apparent binding affinity (Kd) between controls and dementia groups were obtained. The concentrations of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT) and homovanillic acid were also determined. The concentrations of DA and DOPAC were reduced by 30-40% in AD/SDAT and VD, but the reductions did not reach statistical significance. The concentration of 3-MT was reduced by 40% in AD/SDAT and by 30% in VD. The [3H]GBR-12935-binding densities correlated significantly with corresponding concentrations of DA in control brains. It is suggested that the loss of [3H]GBR-12935-binding sites in human putamen in AD/SDAT reflects a degeneration of dopamine neurites.  相似文献   

14.
It is often difficult to differentiate clinically between Parkinson's disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP).The objective of this work was to investigate whether combined pre‐ and postsynaptic dopaminergic single photon emission computed tomography (SPECT) scanning can reliably demonstrate changes in the nigrostriatal dopaminergic system and help differentiate between normal controls, PD, MSA, and PSP patients. We performed SPECT evaluation of the dopamine transporter (DAT) and dopamine D2 receptors (D2). SPECT scans using [123I]β‐CIT (for DAT) and [123I]IBF (for D2) were performed in 18 patients with PD (12 dopa‐naïve and 6 on levodopa and/or dopamine agonists), 7 with MSA of the striatonigral degeneration type, 6 with PSP, and 29 normal controls. Antiparkinsonian drugs were withheld for at least 12 hours before the scans. DAT and D2 binding potentials (Rv = V3/V2) were measured for caudate, anterior, and posterior putamen on the sides ipsilateral and contralateral to the worst motor symptoms. DAT binding in the posterior putamen was markedly reduced in all patients. However, D2 binding in posterior putamen was significantly increased in dopa‐untreated PD, being greater than the normal range in 4 of 12 (33%), and it was significantly reduced in MSA, being below the normal range in 5 of 7 (71%). None of the patients with PD showed reduced D2 binding below the normal range in posterior putamen. The degree of DAT binding could not discriminate between the patient groups. The ratio of posterior putamen to caudate percentage D2 Rv compared with the controls showed an opposite pattern between PD or PSP and MSA; the caudate was greater in 16 of 18 with PD and 6 of 6 with PSP, whereas caudate was less in 5 of 7 with MSA. These findings suggest that DAT SPECT may be useful in differentiating parkinsonism from controls and D2 SPECT in further differentiating MSA from Parkinson's disease and possibly PSP. © 2002 Movement Disorder Society.  相似文献   

15.
The densities of dopamine D1 and D2 receptors were measured by using [3H]SCH23390 and [3H]raclopride, respectively, in the rabbit cingulate, visual, sensorimotor, and entorhinal-piriform cortical areas; the dorsal and ventral hippocampus; and the putamen as well as the medial and lateral caudate. Endogenous dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), and 3-methoxytyramine (3-MT) were assayed by HPLC with electrochemical detection. The distributions of [3H]SCH23390 and [3H]raclopride binding were heterogenous with the greatest densities in the neostriatum. The concentrations of DA and its metabolites were also highest in this structure. Regions with low DA content, i.e., cortex and hippocampus, had lower densities of [3H]SCH23390 and [3H]raclopride binding. Furthermore, these sites were differentially localized within the various regions and there were substantially more D1 than D2 receptors. The functional significance and heterogeneities in the distribution of D1 and D2 receptors are discussed in relation to the dopaminergic innervation and the turnover estimated by the ratios between endogenous DA and its metabolites.  相似文献   

16.
Imaging in Parkinson's disease: the role of monoamines in behavior.   总被引:11,自引:0,他引:11  
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) can measure striatal dopamine (DA) terminal function in vivo as reflected by DA storage capacity and transporter binding. In Parkinson's disease (PD) posterior dorsal putamen DA terminals are initially targeted, the anterior putamen and head of caudate subsequently becoming affected. In contrast, dopaminergic function in pallidal, amygdala, and cingulate regions is upregulated in early PD and only later becomes reduced. Rigidity and bradykinesia in PD have been shown to correlate with loss of putamen dopaminergic function, whereas performance on executive and working memory tasks correlates with integrity of caudate dopaminergic terminals. 11C-RTI32 PET, a marker of noradrenergic and dopaminergic transporter binding, can be used to assess noradrenergic along with dopaminergic terminal function. Serotonergic transporter binding can be assessed with 11C-DASB PET and 123I-beta CIT SPECT, whereas HT1A binding can be measured with 11C-WAY100635 PET. With these modalities, the relationship between mood, noradrenergic and serotonergic function can be examined in PD. The functional effects of focal DA replacement on DA storage capacity and patterns of brain activation via implantation of fetal midbrain cells or glial derived neurotrophic factor (GDNF) infusion into putamen of PD patients has been examined with PET. Both approaches lead to consistently increased levels of putamen 18F-dopa uptake, and cell implantation can restore levels of frontal activation. Clinical outcome, however, has proved to be variable and off-medication dyskinesias are an unwanted side effect in transplanted cases. Dopamine release after pharmacological challenges or during behavioral tasks can be assessed indirectly by studying changes in receptor availability to PET radioligands. Stereotyped sequential movements are associated with striatal DA release, and this increases with more complex behaviors and the presence of financial incentives, which also increase frontal DA levels. Parkinson patients release less putamen DA than healthy control subjects during stereotyped finger movements. Interestingly, those PD patients who develop a dopa dependency syndrome, craving their medication, generate significantly greater levels of ventral striatal DA compared with similarly disabled patients without such a psychological dependency. In the future, functional imaging is likely to throw light on the roles of peptide transmission in regulating mood and behavior as non-peptide analogue ligands become available. Novel markers of amyloid plaque load will also help clarify the etiology of dementia in PD.  相似文献   

17.
The plasma membrane dopamine transporter (DAT) is considered to be a reliable marker of presynaptic dopaminergic terminal loss. Previous in vivo imaging and postmortem binding studies have detected a loss in striatal DAT binding in Parkinson's diseased (PD) brain; however, these techniques have poor spatial resolution and may suffer from nonspecific binding of some ligands. In this study, we use novel highly specific monoclonal antibodies to distinct epitopes of human DAT to quantify and localize the protein. Western blot analysis revealed marked reductions in DAT immunoreactivity in putamen, caudate, and nucleus accumbens of PD brain compared with control cases, and the reductions were significantly correlated to disease duration. Immunohistochemistry revealed DAT-immunoreactive fibers and puncta that were dense throughout the striatum of control brains but that were drastically reduced in putamen of PD brains. Caudate from PD brains showed a significant degree of sparing along the border of the ventricle, and the nucleus accumbens was relatively preserved. An unexpected finding was that discrete islands of DAT immunoreactivity were preserved within the matrix of PD putamen. Thus, immunological analysis of DAT protein provides novel and sensitive means for localizing and quantifying DAT protein in PD and other neurological disorders involving dopaminergic systems.  相似文献   

18.
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.  相似文献   

19.
The molecular characteristics of midbrain dopamine (DA) neurons have been extensively studied in Parkinson's disease (PD). No such studies of the characteristics of midbrain DA neurons in Alzheimer's disease (AD) or Alzheimer's disease with parkinsonism (AD/Park) have been published. We examined the levels of tyrosine hydroxylase (TH) protein, and the expression of TH and dopamine transporter (DAT) mRNAs, in midbrain neurons of PD, AD, and AD/Park cases. In PD, the loss of TH protein in the ventral tier of the substantia nigra pars compacta (SNpc) of the PD group is accompanied by severe losses in the number of neurons that express TH mRNA and DAT mRNA (74% loss). Remaining neurons show a shift to higher concentrations of TH mRNA but a shift to lower concentrations of DAT mRNA per cell. Hence, there is evidence that compensation in the remaining neurons can elevate concentrations of TH mRNA and lower DAT mRNA. Alternatively, there may be a predilection for a loss of neurons with high levels of DAT mRNA and low TH mRNA levels within the SNpc of PD cases. There was no change in TH protein but an elevation of TH mRNA concentrations per neuron without any change in concentrations of DAT mRNA in the AD group. The AD/Park group did not exhibit changes in the level of TH protein, but showed a small loss (26%) of neurons in the SNpc and a greater loss in other regions of the midbrain (43–53%). Remaining DA neurons showed a marked shift to lower concentrations of DAT mRNA per neuron and a nonsignificant shift in cellular concentration of TH mRNA to higher levels. This is consistent with our previous work showing that with AD/Park there is a significant reduction in the number of DAT sites located on DA terminals in the striatum, but the midbrain neurons have not died. Our results indicate that the differential regulation of mRNAs encoding TH and DAT is similar in the parkinsonian disorders (PD and AD/Park) even though the degree of cell death is very different. This might suggest that compensatory events occur in these DA neurons in AD/Park that are similar to those in PD and that result in differential effects on mRNAs encoding TH and DAT proteins.  相似文献   

20.
The administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to adult cats severely disrupts the dopaminergic innervation of the striatum. Animals display a parkinson-like syndrome, consisting of akinesia, bradykinesia, postural instability, and rigidity, which spontaneously recovers by 4–6 weeks after the last administration of MPTP. In this study we used quantitative receptor autoradiography to examine changes in DA uptake sites and DA receptors in the basal ganglia of normal, and symptomatic and recovered MPTP-treated cats. Consistent with the destruction of the nigrostriatal DA pathway, there was a severe loss of DA uptake sites, labeled with [3H]-mazindol, in the caudate nucleus (64–82%), nucleus accumbens (44%), putamen (63%), and substantia nigra pars compacta (SNc, 53%) of symptomatic cats. Following behavioral recovery, there were no significant changes in DA uptake site density. Significant increases of [3H]-SCH 23390 binding to D1 DA receptors were observed in the dorsal caudate (>24%; P < 0.05) of symptomatic cats and in all regions of the caudate-putamen (>30%; P < 0.05) of recovered animals. [3H]-SCH 23390 binding in tree substantia nigra pars reticulata was half of that in the striatum and showed no changes in symptomatic or recovered animals. No alterations in the binding of [1251]-epidepride to D2 receptors was observed in any region of the striatum in either, symptomatic or recovered animals. [1251]-Epidepride binding in the SNc was decreased by >36% (P < 0.05) following MPTP treatment. These data show that cats made parkinsonian by MPTP exposure have a significant decrease in the number of DA reuptake sites throughout the striatum and that recovery of sensorimotor function in these animals is not correlated with an increase in the number of striatal reuptake sites. Behavioral recovery, however, does seem to be correlated with a general elevation of Dl receptors throughout the striatal complex. The present data also show that direct correlations between changes in DA receptor regulation after a large DA depleting lesion and behavioral deficits or recovery from those deficits are difficult and that the relationships between DA receptors/transporters and behavior require further study. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号