首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Few studies have demonstrated in vivo alterations of human serotonin and dopamine transporters (SERTS and DATS) during antidepressant treatment. The current study measured these transporter availabilities with [(123)I]beta-CIT single photon emission computed tomography (SPECT) during administration of selective serotonin reuptake inhibitors (SSRIs) or a non-SSRI, bupropion. A total of 17 healthy human subjects were randomly assigned to two different treatment protocols: (1). citalopram (40 mg/day) followed by augmentation with bupropion (100 mg/day) or (2). bupropion (100-200 mg/day) for 16 days. Citalopram significantly inhibited [(123)I]beta-CIT binding to SERT in brainstem (51.4%) and diencephalon (39.4%) after 8 days of administration, which was similarly observed after 16 days. In contrast, citalopram significantly increased striatal DAT binding by 15-17% after 8 and 16 days of administration. Bupropion and its augmentation to citalopram did not have a significant effect on DAT or SERT. In 10 depressed patients who were treated with paroxetine (20 mg/day), a similar increase in DAT and inhibition of SERT were observed during 6 weeks treatment. The results demonstrated the inhibition of SERT by SSRI in human in vivo during the chronic treatment and, unexpectedly, an elevation of DAT. This apparent SSRI-induced modulation of the dopamine system may be associated with the side effects of these agents, including sexual dysfunction.  相似文献   

2.
Brain monoaminergic function is involved in the pathophysiology of psychiatric disorders. The loudness dependence (LD) of the N1/P2 component of auditory evoked potentials has been proposed as a noninvasive indicator of central serotonergic function, whereas single photon emission computed tomography (SPECT) and [123I]beta-CIT can be used to visualize both serotonin (SERT) and dopamine transporters (DAT). The aim of the study was to correlate LD and SPECT measures in patients with obsessive-compulsive disorder, a condition with evidence for a serotonergic dysfunction. A total of 10 subjects received both neurophysiological and imaging investigations. Evoked potentials were recorded following the application of acoustic stimuli with increasing intensities. The LD of the relevant subcomponents (tangential dipoles) was investigated using dipole source analysis. SPECT was performed 20-24 h after injection of a mean 140 MBq [123I]beta-CIT. As a measure of brain SERT and DAT availabilities, a ratio of specific to nonspecific [123I]beta-CIT binding for the midbrain . pons region (SERT) and the striatum (DAT) was used. The LD of the right tangential dipole correlated significantly with both SERT and DAT availabilities (Pearson's correlations: rho = 0.69, p < 0.05, and rho = 0.80, p < 0.01, respectively). The correlations remained significant after controlling for the effects of age, gender, and severity of clinical symptoms. Associations between LD and both SERT and DAT availabilities further validate the use of neurophysiological approaches as noninvasive indirect measures of neurochemical brain function and point at a hypothesized interconnection of central monoaminergic systems.  相似文献   

3.
Serotonin and dopamine transporter (SERT, DAT) availabilities have prospectively been investigated using [123I]beta-CIT and single photon emission computed tomography in subjects with obsessive-compulsive disorder under treatment with the selective serotonin reuptake inhibitor citalopram. SERT availability decreased by a mean 36.5%, whereas DAT availability increased by about 40%. The data point at a citalopram induced modulation of both serotonergic and dopaminergic activity and support the notion of functional interactions of monoaminergic systems in the human brain.  相似文献   

4.
Disturbances in the serotonin (5-HT) system are associated with various neuropsychiatric disorders. The 5-HT system can be studied in vivo by measuring 5-HT transporter (SERT) densities using (123)iodine-labeled 2beta-carbomethoxy-3beta(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission computed tomography (SPECT). Validation of this technique is important because [(123)I]beta-CIT does not bind selectively to SERTs. Some studies have validated this technique in vivo in the human brain in SERT-rich areas, but the technique has not been validated yet in SERT-low cortical areas. The aim of this study was to further validate [(123)I]beta-CIT SPECT in assessing SERTs in vivo in humans in both SERT-rich and SERT-low areas. A double-blind, placebo-controlled, crossover design was used with the selective 5-HT reuptake inhibitor (SSRI) citalopram. Six male subjects underwent two [(123)I]beta-CIT SPECT sessions: one after pretreatment with citalopram and one after placebo. Scans were acquired 4 h and 22-27 h p.i., and both region-of-interest and voxel-by-voxel analyses were performed. Citalopram reduced [(123)I]beta-CIT binding ratios in SERT-rich midbrain and (hypo)thalamus. Binding ratios were also lower after citalopram in SERT-low cortical areas, but statistical significance was only reached in several cortical areas using voxel-by-voxel analysis. In addition, citalopram increased binding ratios in the DAT-rich striatum and increased absolute uptake in the cerebellum. The results show that [(123)I]beta-CIT SPECT is a valid technique to study SERT binding in vivo in human brain in SERT-rich areas. Although we provide some evidence that [(123)I]beta-CIT SPECT may be used to measure SERTs in SERT-low cortical areas, these measurements must be interpreted with caution.  相似文献   

5.
2Beta-carbo(2-fluoroethoxy)-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (betaFEpZIENT, 1) was synthesized as a serotonin transporter (SERT) imaging agent for both positron emission tomography (PET) and single photon emission computerized tomography (SPECT). The binding affinity of 1 to human monoamine transporters showed a high affinity for the SERT (Ki = 0.08 nM) with respect to the dopamine transporter (DAT) (Ki = 13 nM) and the norepinephrine transporter (NET) (Ki = 28 nM). In vivo biodistribution and blocking studies performed in male rats demonstrated that [123I]1 was selective and specific for SERT. In vivo microPET brain imaging studies in an anesthetized monkey with [18F]1 showed high uptake in the diencephalon and brainstem with peak uptake achieved at 120 min. A chase study with (R,S)-citalopram.HBr displaced [18F]1 radioactivity from all SERT-rich brain regions. A chase study with the DAT ligand 2beta-carbophenoxy-3beta-(4-chlorophenyl)tropane (9, RTI-113) failed to displace [18F]1, indicating that [18F]1 is specific to the SERT. The in vivo evaluation of [18F]1 indicates that this radiotracer is a good candidate for mapping and quantifying CNS SERT.  相似文献   

6.
Background Escitalopram is a dual serotonin reuptake inhibitor (SSRI) approved for the treatment of depression and anxiety disorders. It is the S-enantiomer of citalopram, and is responsible for the serotonin reuptake activity, and thus for its pharmacological effects. Previous studies pointed out that clinically efficacious doses of other SSRIs produce an occupancy of the serotonin reuptake transporter (SERT) of about 80% or more. The novel radioligand [123I]ADAM and single photon emission computer tomography (SPECT) were used to measure midbrain SERT occupancies for different doses of escitalopram and citalopram.Methods Twenty-five healthy subjects received a single dose of escitalopram [5 mg (n=5), 10 mg (n=5), and 20 mg (n=5)] or citalopram [(10 mg (n=5) and 20 mg (n=5)]. Midbrain SERT binding was measured with [123I]ADAM and SPECT on two study days, once without study drug and once 6 h after single dose administration of the study drug. The ratio of midbrain-cerebellum/cerebellum was the outcome measure (V3”) for specific binding to SERT in midbrain. Subsequently, SERT occupancy levels were calculated using the untreated baseline level for each subject. An E max model was used to describe the relationship between S-citalopram concentrations and SERT occupancy values. Additionally, four subjects received placebo to determine test–retest variability.Results Single doses of 5, 10, or 20 mg escitalopram led to a mean SERT occupancy of 60±6, 64±6, and 75±5%, respectively. SERT occupancies for subjects treated with single doses of 10 and 20 mg citalopram were 65±10 and 70±6%, respectively. A statistically significant difference was found between SERT occupancies after application of 10 and 20 mg escitalopram, but not for 10 and 20 mg citalopram. There was no statistically significant difference between the SERT occupancies of either 10 mg citalopram or 10 mg escitalopram, or between 20 mg citalopram and 20 mg escitalopram. E max was slightly higher after administration of citalopram (84%) than escitalopram (79%). In the test–retest study, a mean SERT “occupancy” of 4% was found after administration of placebo, the intraclass correlation coefficient was 0.92, and the repeatability coefficient was 0.25.Conclusion SPECT and [123I]ADAM were used to investigate SERT occupancies after single doses of escitalopram or citalopram. The test–retest study revealed good reproducibility of SERT quantification. Similar SERT occupancies were found after administration of equal doses (in respect to mg) of escitalopram and citalopram, giving indirect evidence for a fractional blockade of SERT by the inactive R-citalopram.  相似文献   

7.
This study investigated the ability of a high-resolution pinhole single-photon emission computed tomography (SPECT) system, with [(123)I]beta-CIT as a radiotracer, to detect 3,4-methelenedioxymethamphetamine (MDMA, 'Ecstasy')-induced loss of serotonin transporters (SERTs) in the living rat brain. In vivo striatal and thalamic [(123)I]beta-CIT binding ratios, representing specific binding to dopamine and serotonin transporters, respectively, were determined 7 days before as well as 10 days after treatment of rats with neurotoxic doses of MDMA using SPECT. At the end of the experiment, radioactivity ratios were also determined ex vivo, and compared to control data. Both in vivo and ex vivo, thalamic, but not striatal, uptake ratios were statistical significantly reduced after MDMA treatment. These data show that [(123)I]beta-CIT SPECT may be able to detect MDMA-induced loss of SERTs. Therefore, this may be a promising technique to perform serial studies on MDMA-induced serotonergic neurotoxicity in living small animals.  相似文献   

8.
Objectives Previous studies have investigated the occupancy of the serotonin reuptake transporter (SERT) after clinical doses of citalopram and other selective serotonin reuptake inhibitors. In the present study, the occupancies of SERT after multiple doses of escitalopram and citalopram were compared using the radioligand [123I]ADAM and single photon emission computed tomography (SPECT). Methods Fifteen healthy subjects received escitalopram 10 mg/day (n = 6) or citalopram 20 mg/day (n = 9) for a total of 10 days. SERT occupancies in midbrain were determined with SPECT and [123I]ADAM at three different time points: at baseline (no medication) and at 6 and 54 h after last drug intake. Results At 6 h after the last dose, mean SERT occupancies were 81.5 ± 5.4% (mean±SD) for escitalopram and 64.0 ± 12.7% for citalopram (p < 0.01). At 54 h after the last dose, mean SERT occupancies were 63.3 ± 12.1% for escitalopram and 49.0 ± 11.7% for citalopram (p < 0.05). The plasma concentrations of the S-enantiomer were of the same magnitude in both substances. For both drugs, the elimination rate of the S-enantiomer in plasma was markedly higher than the occupancy decline rate in the midbrain. Conclusion The significantly higher occupancy of SERT after multiple doses of escitalopram compared to citalopram indicates an increased inhibition of SERT by escitalopram. The results can also be explained by an attenuating effect of R-citalopram on the occupancy of S-citalopram at the SERT.  相似文献   

9.
Abstract Rationale. Although selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of anxiety and depressive disorders, the occupancy of the serotonin reuptake transporter (SERT) achieved in humans at typical clinical doses by these agents remains poorly characterized. Objective. The purpose of this study was to determine the occupancy of the SERT achieved in vivo by the SSRI paroxetine in social phobia patients at typical antianxiety doses. Methods. Measures of SERT availability were obtained with positron emission tomography and the SERT radiotracer [11C](+)-McN 5652 in five patients with social phobia before and during treatment with paroxetine at usual therapeutic doses (20–40 mg per day). Results. Occupancy of the SERT by paroxetine was high in all subjects and in all regions measured after 3–6 months of continuous treatment. Conclusions. The results of this study in an anxiety disorder sample are consistent with previously reported results in a depressed sample and suggest that paroxetine at therapeutic doses achieves very high occupancy levels of the SERT. Electronic Publication  相似文献   

10.
[123I]ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) is a promising radioligand for in-vivo quantification of serotonin transporters (SERT) using single photon emission computed tomography (SPECT) in man. We performed tracer kinetic analysis in various brain regions to determine the optimum equilibrium time for SERT quantification with [123I]ADAM and SPECT. Radiosyntheses of [123I]ADAM were performed at MAP Medical Technologies Oy, Tikkakoski, Finland. Thirty healthy male volunteers (21-41 yr) received between 104 and 163 MBq [123I]ADAM intravenously as a bolus. Consecutively, multiple SPECT scans were performed between 14 and 420 min post-injection (p.i.) using a Siemens Multispect 3 camera. Reconstruction was performed applying filtered back projection with a Butterworth filter (cut-off 0.7, order 7) in 128x128 matrices. Regions of interest (ROI) were drawn manually on the individual T1-weighted magnetic resonance image (MRI) comprising midbrain/hypothalamus for specific binding to SERT, and the cerebellum as reference region. After re-orientation to the MRI, the ROI template was applied to SPECT studies. We generated time-activity curves for the ROI and calculated the ratio countstarget/countscerebellum minus 1 (=V3') as a measure for specific SERT binding. Counts were corrected for applied activity, acquisition time and body-weight. Peak uptakes were observed between 14 and 50 min after bolus injection. Counts per voxel were highest in the midbrain/hypothalamus, 798 (max. 872, min. 728), whereas 462 counts per voxel (max. 599, min. 412) were measured in the cerebellum at a mean time of 31 min p.i. Stable values for V3' reached 205-320 min p.i. Mean peak V3' value was 1.43 (95% CI 171-230) for the midbrain/hypothalamus at 205 min p.i. [123I]ADAM is a useful ligand for in-vivo quantification of human SERT by means of SPECT, with a comparatively better signal-to-noise ratio compared to beta-CIT. Our data suggest that the acquisition time for the SPECT scan is optimally, under pseudo-equilibrium conditions, between 205-320 min post-bolus injection of the tracer.  相似文献   

11.
The default mode network (DMN) is an important connectivity hub, and alterations may play a role in the pathophysiology of several neuropsychiatric disorders. Despite the growing body of research on DMN (dys)function, the underlying neurochemical substrate remains to be elucidated. The serotonergic neurotransmitter system has been suggested to play a substantial role in modulating the DMN. Therefore, we investigated the association between serotonin transporter (SERT) occupancy by the selective serotonin reuptake inhibitor citalopram and DMN functional connectivity. Forty-five healthy female volunteers (mean age?=?21.6y) participated in a double-dose study. The subjects were randomized to pre-treatment with placebo, a low (4?mg; ‘low group’) or clinically standard (16?mg; ‘high group’) oral citalopram dose (corresponding to 0%, ~40% and ~80% SERT occupancy, respectively). They underwent [123I]FP-CIT single-photon emission computed tomography (SPECT) imaging to assess SERT occupancy. In addition, resting-state functional magnetic resonance imaging was used to measure DMN connectivity. With non-parametric permutation testing we assessed the association between SERT occupancy and DMN connectivity. We found that SERT occupancy by citalopram was negatively associated with DMN connectivity with a number of cortical regions, including the anterior cingulate cortex (ACC), paracingulate gyrus, postcentral gyrus, superior parietal gyrus and temporal pole. These findings provide further neurochemical evidence that the serotonin system dose-dependently modulates DMN function.  相似文献   

12.
[3H]2-beta-carbomethoxy-3-beta-[4'-iodophenyl]tropane (beta-CIT) was prepared and evaluated. With rat forebrain tissue, [3H]beta-CIT showed high affinity for dopamine transporters (DAT), with selectivity for DAT over norepinephrine transporters, but not serotonin transporters, as well as DAT-stereoselectivity with beta-CIT, amphetamine and methylphenidate. Affinity and selectivity for 53 compounds assayed with [3H]beta-CIT and standard DAT radioligand [3H]GBR-12935 were highly correlated (r0.95). [3H]beta-CIT is proposed as a useful, high-affinity DAT radioprobe.  相似文献   

13.

Background:

Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters.

Methods:

We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor.

Results:

TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters. TD-9855 engaged norepinephrine transporters (NET) and serotonin transporters (SERT) in rat spinal cord, with a plasma EC50 of 11.7ng/mL and 50.8ng/mL, respectively, consistent with modest selectivity for NET in vivo.Accounting for species differences in protein binding, the projected human NET and SERT plasma EC50 values were 5.5ng/mL and 23.9ng/mL, respectively. A single-dose, open-label PET study (4–20mg TD-9855, oral) was conducted in eight healthy males using the radiotracers [11C]-3-amino-4- [2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzonitrile for SERT and [11C]-(S,S)-methylreboxetine for NET. The long pharmacokinetic half-life (30–40h) of TD-9855 allowed for sequential assessment of SERT and NET occupancy in the same subject. The plasma EC50 for NET was estimated to be 1.21ng/mL, and at doses of greater than 4mg the projected steady-state NET occupancy is high (>75%). After a single oral dose of 20mg, SERT occupancy was 25 (±8)% at a plasma level of 6.35ng/mL.

Conclusions:

These data establish the CNS penetration and transporter profile of TD-9855 and inform the selection of potential doses for future clinical evaluation.  相似文献   

14.
The aim of the present clinical positron emission tomography study was to examine if the 5-HTT is a common target, both for tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). Serotonin transporter (5-HTT) occupancy was estimated during treatment with TCA, SSRI and mirtazapine in 20 patients in remission from depression. The patients were recruited from out-patient units and deemed as responders to antidepressive treatment. The radioligand [11C]MADAM was used to determine the 5-HTT binding potential. The mean 5-HTT occupancy was 67% (range 28-86%). There was no significant difference in 5-HTT occupancy between TCA (n=5) and SSRI (n=14). 5-HTT affinity correlated with the recommended clinical dose. Mirtazapine did not occupy the serotonin transporter. The results support that TCAs and SSRIs have a shared mechanism of action by inhibition of 5-HTT.  相似文献   

15.
Numerous findings indicate alterations in brain serotonin systems in obsessive-compulsive disorder (OCD). We investigated the in vivo availability of thalamus-hypothalamus serotonin transporters (SERT) in patients with DSM-IV OCD who displayed prominent behavioral checking compulsions (OC-checkers). Four hours after injection of [(123)I]-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane ([(123)I]-beta-CIT), single photon emission computed tomography (SPECT) scans were performed in 24 medication-free non-depressed OC-checkers and 24 age- and gender-matched healthy controls. For quantification of brain serotonin transporter availability, a ratio of specific to non-displaceable [(123)I]-beta-CIT brain binding was used (V'(3)=(thalamus and hypothalamus-cerebellum)/cerebellum). Drug-free non-depressed OC-checkers showed an 18% reduced brain serotonin transporter availability in the thalamus and hypothalamus, as compared with healthy control subjects (1.38+/-0.19 vs 1.69+/-0.21; p<0.001). There was a strong negative correlation between severity of OC symptomatology (Y-BOCS scores) and SERT availability (r=-0.80; p<0.001). Moreover, we found a significant positive correlation between illness duration and serotonin transporter availability (r=0.43; p<0.05). This first report of significantly reduced [(123)I]-beta-CIT binding in the thalamus-hypothalamus region in OC-checkers suggests reduced brain serotonin transporter availability, which is more pronounced with increased severity of OC symptomatology and short duration of illness. The results provide direct evidence for an involvement of the serotonergic system in the pathophysiology of OCD.  相似文献   

16.

Rationale

BMS-820836, a novel triple monoamine reuptake inhibitor, is an experimental monotherapy for sufferers of major depressive disorder who have had an inadequate response to an existing antidepressant treatment.

Objectives

This study was conducted to evaluate the safety and tolerability, pharmacokinetics (PK), and serotonin transporter (SERT) and dopamine transporter (DAT) occupancy for single doses of BMS-820836 in healthy subjects.

Methods

Healthy subjects were assigned to seven BMS-820836 dose panels (0.025, 0.1, 0.5, 1, 2, 3, and 5 mg; n?=?8 each), in which subjects were randomly allocated 3:1 to a single BMS-820836 dose or matched placebo. Serial blood samples were collected on Days 1, 2, 3, 4, 7, and 14 to characterize the PK of BMS-820836. Following evaluation of the maximum tolerated dose, SERT occupancy was determined by applying [11C]DASB positron emission tomography (PET) after single-dose BMS-820836 (0.5 or 3 mg; n?=?3 each) and DAT occupancy by applying [11C]PE2I PET after single-dose BMS-820836 (3 mg; n?=?6).

Results

Single oral doses of BMS-820836 (0.025–3 mg) were generally safe and well tolerated. BMS-820836 had a median T max of 5.0–7.2 h and a mean apparent terminal T 1/2 of 34–57 h. Mean striatal SERT occupancies were 19?±?9 % and 82?±?8 % after single doses of 0.5 and 3 mg BMS-820836, respectively. The mean striatal DAT occupancy was 19?±?9 % after a single 3 mg BMS-820836 dose.

Conclusions

Single doses of BMS-820836 have meaningful SERT and DAT occupancy and demonstrate an acceptable safety and tolerability profile in healthy control subjects.  相似文献   

17.
Evidence indicates that monoaminergic neurotransmitter transporters are promiscuous, transporting substrates other than their cognate neurotransmitters. For example, serotonin is transported by the dopamine transporter (DAT) under conditions in which serotonin transporter (SERT) activity is eliminated (e.g., pharmacological inhibition). We performed a kinetic analysis of [3H]serotonin uptake in rat striatal synaptosomes (expressing DAT and SERT) and hippocampal synaptosomes (expressing SERT, but not DAT). Nonspecific [3H]serotonin uptake was defined as the amount of uptake remaining in the presence of fluoxetine (10 μM) or paroxetine (0.05 μM). In hippocampal synaptosomes, Km and Vmax values for [3H]serotonin uptake did not differ whether fluoxetine or paroxetine was used to define nonspecific uptake. However, in striatal synaptosomes, both Km and Vmax values for [3H]serotonin uptake were greater when fluoxetine, rather than paroxetine, was used to define nonspecific uptake. These data suggest that, at the concentrations employed, fluoxetine inhibits serotonin uptake at both DAT and SERT, whereas paroxetine only inhibits serotonin uptake at SERT. Thus, when DAT is inhibited by GBR 12909, kinetic parameters for serotonin uptake via SERT in striatum are not different from those obtained in hippocampus. These findings have important implications regarding the analysis of monoaminergic reuptake in brain regions exhibiting heterogeneous transporter expression.  相似文献   

18.
Triple reuptake inhibitors, which block the serotonin transporter (SERT), norepinephrine transporter (NET) and dopamine transporter (DAT) in the central nervous system have been described as therapeutic alternatives for classical selective serotonin reuptake inhibitors, with advantages due to their multiple mechanisms of action. JNJ-7925476 (trans-6-(4-ethynylphenyl)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline) is a selective and potent inhibitor of the SERT, NET, and DAT (K(i)=0.9, 17 and 5.2 nM, respectively). Following subcutaneous dosing in rat, JNJ-7925476 was rapidly absorbed into the plasma, and drug concentrations in the brain tracked with those in the plasma but were 7-fold higher. The ED(50) values for JNJ-7925476 occupancy of the SERT, NET, and DAT in rat brain were 0.18, 0.09 and 2.4 mg/kg, respectively. JNJ-7925476 (0.1-10 mg/kg, s.c.) rapidly induced a robust, dose-dependent increase in extracellular serotonin, dopamine, and norepinephrine levels in rat cerebral cortex. The compound also showed potent antidepressant-like activity in the mouse tail suspension test (ED(50)=0.3 mg/kg, i.p.). These results demonstrate that JNJ-7925476 is a triple reuptake inhibitor with in-vivo efficacy in biochemical and behavioral models of depression.  相似文献   

19.
The goal of this study was to develop and validate ex vivo binding assays for serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, and to use these assays to evaluate the binding site occupancy of triple and double monoamine reuptake inhibitors in rat brains. This study demonstrated that while autoradiographic methods provided anatomic precision and regional resolution, the homogenate binding method for site occupancy assessment yielded comparable sensitivity with markedly improved throughput. For ex vivo binding assays, the reduction of temperature and time during the in vitro process (primarily incubation with a radioligand) markedly decreased the dissociation of test agents from binding sites in brain tissues. This reduction, in turn, minimized the potential for underestimation of site occupancy in vivo especially for test compounds with affinity >10nM. The ratios of measured occupancy ED(50) values (doses at which 50% occupancy occurs) among SERT, NET and DAT sites for duloxetine, venlafaxine, nomifensine, indatraline, DOV 21,947 and DOV 216,303 were consistent with the ratios of the in vitro affinities between these target binding sites. The biological relevance of the monoamine transporter occupancy for these compounds is discussed.  相似文献   

20.

Introduction

Serotonin and norepinephrine reuptake inhibitors (SNRIs) are antidepressants which have high affinity to both serotonin transporter (SERT) and norepinephrine transporter (NET). In studies in vitro, SNRIs have been reported to show a large variability in the affinity ratio between SERT and NET. For instance, the reported affinity ratio is about 30 for venlafaxine and 1.6 for milnacipran. In this study in nonhuman primates, we aimed to investigate the relationship between SERT and NET affinity by measuring the in vivo occupancy at both transporters of venlafaxine and milnacipran.

Methods

PET measurements with [11C]MADAM and [18F]FMeNER-D2 were performed in two female cynomolgus monkeys at baseline and after pretreatment with venlafaxine and milnacipran, respectively. Relationships between dose, plasma concentration, and transporter occupancy were evaluated by saturation analysis using a hyperbolic function. Binding affinity (Kdplasma) was expressed by the dose or plasma concentration at which 50 % of the transporter was occupied.

Results

SERT and NET occupancy by venlafaxine and milnacipran increased in a dose and plasma concentration-dependent manner. The Kdplasma ratio of SERT to NET was 1.9 for venlafaxine and 0.6 for milnacipran.

Conclusions

In this nonhuman primate PET study, the affinity in vivo for SERT and NET, respectively, was shown to be at a similar level for venlafaxine and milnacipran. Both drugs were found to produce balanced inhibition of SERT and NET binding. This observation is not consistent with previous in vitro binding data and illustrates the need to characterize antidepressants at in vivo condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号