首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Lobeline interacts with the dopamine transporter and vesicular monoamine transporter, presynaptic proteins involved in dopamine storage and release. This study used rodent models to assess lobeline-induced inhibition of the neurochemical and behavioral effects of amphetamine. Rat striatal slices were preloaded with [(3)H]dopamine and superfused with lobeline for 30 min, and then with d-amphetamine (0.03-3.00 microM) plus lobeline for 60 min. As predicted, lobeline (1-3 microM) intrinsically increased (3)H overflow but did not inhibit d-amphetamine-evoked (3)H overflow. Consequently, the effect of lobeline on d-amphetamine-evoked endogenous dopamine and dihydroxyphenylacetic acid overflow was assessed. Lobeline (0.1-1 microM) inhibited d-amphetamine (1 microM)-evoked dopamine overflow but did not inhibit electrically evoked (3)H overflow, indicating a selective inhibition of this effect of d-amphetamine. To determine whether the in vitro results translated into in vivo inhibition, the effect of lobeline (0.3-10.0 mg/kg) pretreatment on d-amphetamine (0.1-1.0 mg/kg)-induced hyperactivity in rats and on d-methamphetamine (0.1-3.0 mg/kg)-induced hyperactivity in mice was determined. Doses of lobeline that produced no effect alone attenuated the stimulant-induced hyperactivity. Lobeline also attenuated the discriminative stimulus properties of d-methamphetamine in rats. Acute, intermittent, or continuous in vivo administration of lobeline (1-30 mg/kg) did not deplete striatal dopamine content. Thus, lobeline inhibits amphetamine-induced neurochemical and behavioral effects, and is not toxic to dopamine neurons. These results support the hypothesis that lobeline redistributes dopamine pools within the presynaptic terminal, reducing pools available for amphetamine-induced release. Collectively, the results support a role for lobeline as a potential pharmacotherapy for psychostimulant abuse.  相似文献   

2.
Gabapentin (GBP; Neurontin) has proven efficacy in several neurological and psychiatric disorders yet its mechanism of action remains elusive. This drug, and the related compounds pregabalin [PGB; CI-1008, S-(+)-3-isobutylgaba] and its enantiomer R-(-)-3-isobutylgaba, were tested in an in vitro superfusion model of stimulation-evoked neurotransmitter release using rat neocortical slices prelabeled with [(3)H]norepinephrine ([(3)H]NE). The variables addressed were stimulus type (i.e., electrical, K(+), veratridine) and intensity, concentration dependence, onset and reversibility of action, and commonality of mechanism. Both GBP and PGB inhibited electrically and K(+)-evoked [(3)H]NE release, but not that induced by veratridine. Inhibition by these drugs was most pronounced with the K(+) stimulus, allowing determination of concentration-effect relationships (viz., 25 mM K(+) stimulus: GBP IC(50) = 8.9 microM, PGB IC(50) = 11.8 microM). R-(-)-3-Isobutylgaba was less effective than PGB to decrease stimulation-evoked [(3)H]NE release. Other experiments with GBP demonstrated the dependence of [(3)H]NE release inhibition on optimal stimulus intensity. The inhibitory effect of GBP increased with longer slice exposure time before stimulation, and reversed upon washout. Combination experiments with GBP and PGB indicated a similar mechanism of action to inhibit K(+)-evoked [(3)H]NE release. GBP and PGB are concluded to act in a comparable, if not identical, manner to preferentially attenuate [(3)H]NE release evoked by stimuli effecting mild and prolonged depolarizations. This type of modulation of neurotransmitter release may be integral to the clinical pharmacology of these drugs.  相似文献   

3.
The role of protein kinase C and intracellular Ca(2+) on amphetamine-mediated dopamine release through the norepinephrine plasmalemmal transporter in undifferentiated PC12 cells was investigated. The selective protein kinase C inhibitor chelerythrine completely inhibited endogenous dopamine release elicited by 1 microM amphetamine. Direct activation of protein kinase C increased dopamine release in a Ca(2+)-insensitive, imipramine-sensitive manner and the release was not additive with amphetamine. Exocytosis was not involved since these events were not altered by either deletion of extracellular Ca(2+) or reserpine pretreatment. Down-regulation of protein kinase C activity by long-term phorbol ester treatment resulted in a dramatic decrease in amphetamine-mediated dopamine release with no apparent effect on [(3)H]dopamine uptake. To more completely examine a role for Ca(2+), intracellular Ca(2+) was chelated in the cells. Depletion of intracellular Ca(2+) considerably decreased dopamine release in response to 1 microM amphetamine compared with vehicle-treated cells, but had no effect on the [(3)H]dopamine uptake. Thus, our results suggest that amphetamine-mediated dopamine release through the plasmalemmal norepinephrine transporter is highly dependent on protein kinase C activity and intracellular but not extracellular Ca(2+). Furthermore, protein kinase C and intracellular Ca(2+) appear to regulate [(3)H]dopamine inward transport and amphetamine-mediated outward transport of dopamine independently in PC12 cells.  相似文献   

4.
We investigated whether selective inhibition of serotonin (5-hydroxytryptamine; 5-HT) transporter with citalopram leads to accumulation of 5-HT in catecholaminergic neurons. In the rabbit olfactory tubercle, citalopram (1-10 microM) inhibited [(3)H]5-HT uptake; however, the maximal degree of inhibition achieved was 70%. Addition of nomifensine (1-10 microM) was required for complete inhibition of [(3)H]5-HT uptake. In slices labeled with 0.1 microM [(3)H]5-HT, cold 5-HT (0.03-1 microM) induced a large increase in the efflux (release) of stored [(3)H]5-HT, an effect blocked by coperfusion with 1 microM citalopram. Similar concentrations (0.03-1 microM) of norepinephrine (NE) or dopamine (DA) failed to release [(3)H]5-HT. When labeling with 0.1 microM [(3)H]5-HT was carried out in the presence of citalopram, 1) low concentrations of 5-HT failed to release [(3)H]5-HT; 2) DA and NE were more potent and effective in releasing [(3)H]5-HT than in control slices; 3) coperfusion of NE, DA, or 5-HT with citalopram enhanced the release of [(3)H]5-HT induced by the catecholamines but not by 5-HT; and 4) coperfusion of NE or DA with nomifensine antagonized NE- and DA-evoked [(3)H]5-HT release, with a greater effect on NE than on DA. These results suggest that in the rabbit olfactory tubercle, where there is coexistence of 5-HT, NE, and DA neurons, inhibition of the 5-HT transporter led to accumulation of 5-HT in catecholaminergic terminals. Thus, during treatment with selective serotonin uptake inhibitors (SSRIs), 5-HT may be stored in catecholaminergic neurons acting as a false neurotransmitter and/or affecting the disposition of DA and/or NE. Transmitter relocation may be involved in the antidepressant action of SSRIs.  相似文献   

5.
Lobeline attenuates the behavioral effects of psychostimulants in rodents and inhibits the function of nicotinic receptors (nAChRs), dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Monoamine transporters are considered valid targets for drug development for the treatment of methamphetamine abuse. In the current study, a series of lobeline analogs were evaluated for affinity and selectivity at these targets. None of the analogs was more potent than nicotine at the [3H]methyllycaconitine binding site (alpha7* nAChR subtype). Lobeline tosylate was equipotent with lobeline in inhibiting [3H]nicotine binding but 70-fold more potent in inhibiting nicotine-evoked 86Rb+ efflux, demonstrating antagonism of alpha4beta2* nAChRs. Compared with lobeline, the defunctionalized analogs lobelane, mesotransdiene, and (-)-trans-transdiene showed dramatically reduced affinity at alpha4beta2* nAChRs and a 15- to 100-fold higher affinity (Ki = 1.95, 0.58, and 0.26 microM, respectively) at DATs. Mesotransdiene and (-)-trans-transdiene competitively inhibited DAT function, whereas lobelane and lobeline acted noncompetitively. 10S/10R-MEPP [N-methyl-2R-(2R/2S-hydroxy-2-phenylethyl)6S-(2-phenylethyl)piperidine] and 10R-MESP [N-methyl-2R-(2R-hydroxy-2-phenylethyl)6S-(2-phenylethen-1-yl)piperidine] were 2 to 3 orders of magnitude more potent (Ki = 0.01 and 0.04 microM, respectively) than lobeline in inhibiting [3H]serotonin uptake; 10S/10R-MEPP showed a 600-fold selectivity for this transporter. Uptake results using hDATs and human serotonin transporters expressed in human embryonic kidney-293 cells were consistent with native transporter assays. Lobelane and ketoalkene were 5-fold more potent (Ki = 0.92 and 1.35 microM, respectively) than lobeline (Ki = 5.46 microM) in inhibiting [3H]methoxytetrabenazine binding to VMAT2 in vesicle preparations. Thus, structural modification (defunctionalization) of the lobeline molecule markedly decreases affinity for alpha4beta2* and alpha7* nAChRs while increasing affinity for neurotransmitter transporters, affording analogs with enhanced selectivity for these transporters and providing new leads for the treatment of psychostimulant abuse.  相似文献   

6.
Nitric oxide has been shown to react under physiologic conditions with norepinephrine (NE) to produce 6-nitro-norepinephrine (6-NO(2)-NE), a compound that enhances NE release in the brain. Previous studies suggest that 6-NO(2)-NE is formed in the spinal cord and stimulates spinal NE release to produce analgesia. The purpose of the current studies was to examine the mechanisms by which 6-NO(2)-NE stimulates NE release in the spinal cord. Crude synaptosomes were prepared from spinal cords of male Sprague-Dawley rats and loaded with [(3)H]NE. Incubation of synaptosomes with 6-NO(2)-NE resulted in a release of NE, with a threshold of 1 microM 6-NO(2)-NE and a maximum effect of 30% fractional release. NE transporter inhibitors desipramine and nomifensine blocked NE release from 6-NO(2)-NE, and desipramine exhibited an IC(50) of 9.6 microM. NE release from 6-NO(2)-NE was dependent on external Na(+), but not Ca(2+) or the activity of guanylate cyclase. 6-NO(2)-NE also blocked uptake of [(3)H]NE into synaptosomes, with an IC(50) of 8.3 microM. These data are consistent with a direct action of 6-NO(2)-NE on noradrenergic terminals in the spinal cord to release NE. This action is independent of guanylate cyclase activation, and most likely shares a common mechanism with classic monoamine releasers such as amphetamine that cause direct release of NE from vesicles into the nerve terminal cytoplasm, leading to extracellular release by reverse transport.  相似文献   

7.
The possible interactions between activation of N-methyl-D-aspartic acid (NMDA) receptors and non-NMDA receptors regulating the release of [3H]norepinephrine [( 3H]NE) have been investigated in superfused synaptosomes from rat hippocampus. NMDA--at a concentration (100 microM) which, in a medium containing 1.2 mM Mg++ ions, did not evoke [3H]NE release--acquired releasing activity in the presence of equimolar concentrations of quisqualic acid (QA), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or kainic acid. The [3H] NE release evoked by NMDA plus QA in the presence of Mg++ ions was Ca(++)-dependent, partly tetrodotoxin-sensitive, inhibited by clonidine but insensitive to desipramine. The NMDA receptor antagonists D-2-amino-5-phosphonopentanoic acid (D-AP5) and (+)-5-methyl-10,11-dihydro-5-H-dibenzo[a,d]cycloepten-5,10-imine (MK-801) antagonized the NMDA-induced [3H]NE release in Mg(++)-free medium; the IC50 values amounted, respectively, to 81.4 microM and to 1.11 microM. When NMDA was tested in the presence of QA and Mg++ ions, the affinity of D-AP5 was enormously increased (IC50 = 40 nM; i.e., more than 6 orders of magnitude); the affinity of MK-801 was found to be augmented by 350-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To understand calcium regulation in smooth muscle, we studied both potassium- and norepinephrine-mediated alterations in the movement of calcium in the smooth muscle of rat vas deferens. We employed 45Ca to measure agonist-mediated calcium influx and efflux, as well as tissue calcium content. In addition we labeled tissues with [3H]myoinositol to measure the effect of norepinephrine on inositol phosphate generation. Stimulation of the vas deferens with 50 mM potassium caused a rapid influx of 45Ca (6-fold). Norepinephrine stimulation, even at a concentration maximal for contraction of the tissue (1 mM), did not result in any alteration in 45Ca influx by itself but inhibited potassium-stimulated 45Ca influx (IC50 = 3 microM). This alpha receptor-mediated effect of norepinephrine was not diminished by either pretreatment with reserpine or adrenergic denervation. Studies of the efflux of 45Ca from vas deferens revealed that efflux was not affected by potassium but was significantly stimulated by norepinephrine. Alpha receptor stimulation of vas deferens smooth muscle caused a marked elevation in the appearance of inositol phosphates, particularly inositol trisphosphate, that was not dependent on extracellular calcium. We conclude that norepinephrine does not stimulate calcium influx in vas deferens smooth muscle but leads to the release of calcium from intracellular stores via formation of inositol trisphosphate and that the resulting increase in intracellular calcium may lead to inactivation of the potential-dependent calcium channel.  相似文献   

9.
Release of norepinephrine (NE) and ATP from the guinea pig vas deferens evoked by ouabain in combination with monensin or by high KCl was measured by a high-pressure liquid chromatography-ECD and luciferin-luciferase assay, respectively. Ouabain (10-100 microM) induced a concentration-dependent liberation of NE, which was enhanced by 10 microM monensin, a Na+-ionophore. The marked NE release elicited by the combined administration of both the drugs was unaffected by Ca++-removal but was reduced by lowering Na+ from the medium. This NE release in the Ca++-free medium was diminished markedly after treatment with 6-hydroxydopamine or reserpine and in low-temperature (25 degrees C) medium. This release was also decreased by ruthenium red (10-30 microM), an uptake inhibitor of Ca++ to mitochondria, and carbonyl cyanide-m-chlorophenyl hydrazone (10 microM), a metabolic inhibitor. On the other hand, 100 mM KCl caused a moderate, extracellular Ca++-dependent release of NE. ATP-outflow from the tissue evoked by 100 microM ouabain plus 10 microM monensin was almost unaltered by Ca++-removal but was inhibited by 6-hydroxydopamine or prazosin (0.3 microM), whereas release induced by high KCl was reduced by 6-hydroxydopamine and Ca++-free medium but was unaffected by prazosin. ATP/NE ratios at respective maximum effluxes evoked by 100 mM KCl and ouabain plus monensin were 6.59 and 0.22, respectively. These findings suggest that there may be more than one site of corelease for NE and ATP. Ouabain plus monensin seems to produce an extracellular Ca++-independent neuronal release of NE and ATP from the cytoplasmic and vesicular storage sites which predominantly release NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this study we explored the effect of the stimulation of nicotinic acetylcholine receptors located on interneurons by measuring 4-amino-n-[2,3-(3)H]butyric acid ([(3)H]GABA) release and monitoring [Ca (2+)](i) in superfused hippocampal slices. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione, (+/-)-2-amino-5-phosphonopentanoic acid, and atropine, i.e., under the blockade of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate and muscarinic receptors, nicotine did not alter the spontaneous outflow of [(3)H]GABA, but significantly increased the stimulation-evoked [(3)H]GABA efflux. This effect of nicotine depended on the time interval between nicotine treatment and electrical stimulus, the concentration of nicotine (1-100 microM), and the parameters of electrical depolarization. Acetylcholine (0.03-3 mM), and the alpha 7 subtype-selective agonist choline (0.1-10 mM), also potentiated stimulus-evoked release of [(3)H]GABA, whereas 1,1-dimethyl-4-phenilpiperazinium iodide failed to increase the tritium outflow significantly. The effect of nicotine treatment was prevented by tetrodotoxin (1 microM) and by the nicotinic acetylcholine receptor antagonist mecamylamine (10 microM), and the alpha 7 subtype-selective antagonists alpha-bungarotoxin (100 nM) and methyllycaconitine (10 nM), whereas dihidro-beta-erythroidine (20 nM) was without effect. Perfusion of 100 microM nicotine caused a [Ca(2+)](i) transient in about one-third of the tested interneurons; however, the response to subsequent electrical stimulation remained unchanged. Inhibition of the GABA transporter system by nipecotic acid (1 mM) or by decreasing the bath temperature to 12 degrees C abolished completely the effect of nicotine to potentiate the stimulation-evoked release of GABA. These findings indicate that the activation of alpha 7-type nicotinic receptors of hippocampal interneurons results in a long-lasting ability of these cells to respond to depolarization with an increased release of GABA mediated by the transporter system.  相似文献   

11.
Bisprasin, a unique bromotyrosine derivative containing a disulfide linkage, was isolated from a marine sponge of Dysidea spp. This compound caused a concentration-dependent (from 10 to 30 microM) increase in the (45)Ca(2+) release from the heavy fraction of skeletal muscle sarcoplasmic reticulum (HSR) of rabbit skeletal muscle in the same way as does caffeine. The 50% effective concentrations of bisprasin and caffeine were approximately 18 microM and 1.2 mM, respectively, indicating that the (45)Ca(2+)-releasing activity of bisprasin was approximately 70 times more potent than that of caffeine in HSR. The bell-shaped profile of Ca(2+) dependence for bisprasin was almost the same as that for caffeine. Typical blockers of Ca(2+)-induced Ca(2+) release channels, such as Mg(2+), procaine, and ruthenium red, inhibited markedly bisprasin- and caffeine-induced (45)Ca(2+) release from HSR. This compound, like caffeine, significantly enhanced [(3)H]ryanodine binding to HSR. Scatchard analysis of [(3)H]ryanodine binding to HSR revealed that bisprasin and caffeine decreased the K(D) value without affecting the B(max) value, suggesting that both the drugs facilitate the opening of ryanodine receptor channels. The bisprasin- and caffeine-induced increases in [(3)H]ryanodine binding were further enhanced by adenosine-5'-(beta, gamma-methylene)triphosphate. These results suggest that the pharmacological properties of bisprasin are almost similar to those of caffeine, except for its 70-fold higher potency. Here, we present the first report on the pharmacological properties of bisprasin, which, like caffeine, induces Ca(2+) release from skeletal muscle SR mediated through the ryanodine receptor.  相似文献   

12.
The pleiotropic cytokine tumor necrosis factor-alpha (TNF) and alpha(2)-adrenergic receptor activation regulate norepinephrine (NE) release from neurons in the central nervous system. The present study substantiates the role of TNF as a neuromodulator and demonstrates a reciprocally permissive relationship between the biological effects of TNF and alpha(2)-adrenergic receptor activation as a mechanism of action of antidepressant drugs. Immunohistochemical analysis and in situ hybridization reveal that administration of the antidepressant drug desipramine decreases the accumulation of constitutively expressed TNF mRNA in neurons of the rat brain. Superfusion and electrical field stimulation were applied to a series of rat hippocampal brain slices to study the regulation of [(3)H]NE release. Superfusion of hippocampal slices obtained from rats chronically administered the antidepressant drug zimelidine demonstrates that TNF-mediated inhibition of [(3)H]NE release is transformed, such that [(3)H]NE release is potentiated in the presence of TNF, an effect that occurs in association with alpha(2)-adrenergic receptor activation. However, chronic zimelidine administration does not alter stimulation-evoked [(3)H]NE release, whereas chronic desipramine administration increases stimulation-evoked [(3)H]NE release and concomitantly decreases alpha(2)-adrenergic autoreceptor sensitivity. Collectively, these data support the hypothesis that chronic antidepressant drug administration alters alpha(2)-adrenergic receptor-dependent regulation of NE release. Additionally, these data demonstrate that administration of dissimilar antidepressant drugs similarly transform alpha(2)-adrenergic autoreceptors that are functionally associated with the neuromodulatory effects of TNF, suggesting a possible mechanism of action of antidepressant drugs.  相似文献   

13.
Alpha-2 adrenoceptors modulate [3H]dopamine release from rabbit retina   总被引:1,自引:0,他引:1  
In the rabbit retina, preloaded in vitro with [3H]dopamine, calcium-dependent release of radioactivity was elicited by a 1-min period of field stimulation at 3 Hz (20 mA, 2 msec). In the presence of the catecholamine uptake inhibitor nomifensine (30 microM), unlabeled catecholamines (0.01-3 microM), namely, dopamine, norepinephrine and epinephrine, inhibited in a concentration-dependent manner the field stimulation-evoked release of [3H]dopamine from the retina. The concentrations of dopamine, norepinephrine or epinephrine which inhibited by 50% the release of [3H]dopamine (IC50) were 0.30, 0.25 and 0.25 microM, respectively. In the presence of 30 microM nomifensine, S-sulpiride (1 microM) significantly increased the calcium-dependent release of [3H]dopamine, suggesting that this dopamine antagonist blocks a receptor tonically activated by endogenous dopamine in the rabbit retina. In contrast, the alpha receptor antagonist phentolamine (1 microM) alone did not affect the release of [3H]dopamine from the retina. The inhibitory effect of norepinephrine and epinephrine on [3H]dopamine overflow was not modified by S-sulpiride which, on the contrary, selectively antagonized the effect of exogenous dopamine. Phentolamine (1 microM) competitively antagonized the inhibitory effect of norepinephrine and epinephrine on [3H]dopamine release, suggesting that these catecholamines activate alpha adrenoceptors in retina. In the absence of nomifensine, the selective alpha-2 agonist clonidine (IC50 = 0.056 microM) inhibited the stimulation-evoked release of [3H]dopamine from retina, whereas the alpha agonist methoxamine was without effect. The inhibitory effect of clonidine was antagonized by yohimbine (1 microM), but not prazosin, suggesting that the release modulating alpha receptors of the retina are of the alpha-2 subtype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In myocardial ischemia, adrenergic terminals undergo ATP depletion, hypoxia, and intracellular pH reduction, causing the accumulation of axoplasmic norepinephrine (NE) and intracellular Na(+) [via the Na(+)-H(+) exchanger (NHE)]. This forces the reversal of the Na(+)- and Cl(-)-dependent NE transporter (NET), triggering massive carrier-mediated NE release and, thus, arrhythmias. We have now developed a cellular model of carrier-mediated NE release using an LLC-PK(1) cell line stably transfected with human NET cDNA (LLC-NET). LLC-NET cells transported [(3)H]NE and [(3)H]N-methyl-4-phenylpyridinium ([(3)H]MPP(+)) in an inward direction. This uptake was abolished by the NET inhibitors desipramine (100 nM) and mazindol (300 nM) and by extracellular Na(+) removal. Na(+)-gradient reversal induced an efflux of (3)H-substrate from preloaded LLC-NET cells. Desipramine and mazindol blocked this efflux. Because of its greater intracellular stability and higher sensitivity to Na(+)-gradient reversal, [(3)H]MPP(+) proved preferable to [(3)H]NE as an NET substrate; therefore, only [(3)H]MPP(+) was used for subsequent studies. The K(+)/H(+) ionophore nigericin (10 microM) evoked a large efflux of [(3)H]MPP(+). This efflux was potentiated by the Na(+),K(+)-ATPase inhibitor ouabain (100 microM), was sensitive to desipramine, and was blocked by the NHE inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 10 microM). In contrast, EIPA failed to inhibit the [(3)H]MPP(+) efflux elicited by the Na(+) ionophore gramicidin (10 microM). Furthermore, [(3)H]MPP(+) efflux induced by the NHE-stimulant proprionate (25 mM) was negatively modulated by imidazoline receptor activation. Our findings suggest that LLC-NET cells are a sensitive model for studying transductional processes of carrier-mediated NE release associated with myocardial ischemia.  相似文献   

15.
The mechanism of nicotinic acetylcholine receptor (nAChR)-induced hippocampal dopamine (DA) release was investigated using rat hippocampal slices. nAChRs involved in hippocampal DA and norepinephrine (NE) release were investigated using prototypical agonists and antagonists and several relatively novel compounds: ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine], (+/-)-UB-165 [(2-chloro-5-pyridyl)-9-azabicyclo [4.2.1]non2-ene], and MG 624 [N,N,N-triethyl-2-[4-(2 phenylethenyl)phenoxy]-ethanaminium iodine]. (+/-)-Epibatidine, (+/-)-UB-165, anatoxin-a, ABT-594, (-)-nicotine, 1,1-dimethyl-4-phenyl-piperazinium iodide, and (-)-cytisine (in decreasing order of potency) evoked [(3)H]DA release in a mecamylamine-sensitive manner. Aside from (+/-)-UB-165, all the agonists displayed full efficacy relative to 100 microM (-)-nicotine in [(3)H]DA release. In contrast, (+/-)-UB-165 was a partial agonist, evoking 58% of 100 microM (-)-nicotine response. Mecamylamine, MG 624, hexamethonium, d-tubocurare, and dihydro-beta-erythroidine (in decreasing order of potency), but not alpha-conotoxin-MII, methyllycaconitine, alpha-conotoxin-ImI, or alpha-bungarotoxin, attenuated 100 microM (-)-nicotine-evoked [(3)H]DA release in a concentration-dependent manner. (+/-)-UB-165, ABT-594, and MG 624 exhibited different pharmacologic profiles in the [(3)H]NE release assay when compared with their effect on [(3)H]DA release. ABT-594 was 4.5-fold more potent, and (+/-)-UB-165 was a full agonist in contrast to its partial agonism in [(3)H]DA release. MG 624 potently and completely blocked NE release evoked by 100 microM (-)-nicotine and 10 microM (+/-)-UB-165, whereas it only partially inhibited (-)-nicotine-evoked [(3)H]DA release. In conclusion, we provide evidence that [(3)H]DA can be evoked from the hippocampus and that the pharmacologic profile for nAChR-evoked hippocampal [(3)H]DA release suggests the involvement of alpha3beta4(*) and at least one other nAChR subtype, thus distinguishing it from that of nAChR-evoked hippocampal [(3)H]NE release.  相似文献   

16.
The role of presynaptic mechanisms in general anesthetic depression of excitatory glutamatergic neurotransmission and facilitation of GABA-mediated inhibitory neurotransmission is unclear. A dual isotope method allowed simultaneous comparisons of the effects of a representative volatile (isoflurane) and intravenous (propofol) anesthetic on the release of glutamate and GABA from isolated rat cerebrocortical nerve terminals (synaptosomes). Synaptosomes were prelabeled with L-[(3)H]glutamate and [(14)C]GABA, and release was determined by superfusion with pulses of 30 mM K(+) or 1 mM 4-aminopyridine (4AP) in the absence or presence of 1.9 mM free Ca(2+). Isoflurane maximally inhibited Ca(2+)-dependent 4AP-evoked L-[(3)H]glutamate release (99 +/- 8% inhibition) to a greater extent than [(14)C]GABA release (74 +/- 6% inhibition; P = 0.023). Greater inhibition of L-[(3)H]glutamate versus [(14)C]GABA release was also observed for the Na(+) channel antagonists tetrodotoxin (99 +/- 4 versus 63 +/- 5% inhibition; P < 0.001) and riluzole (84 +/- 5 versus 52 +/- 12% inhibition; P = 0.041). Propofol did not differ in its maximum inhibition of Ca(2+)-dependent 4AP-evoked L-[(3)H]glutamate release (76 +/- 12% inhibition) compared with [(14)C]GABA (84 +/- 31% inhibition; P = 0.99) release. Neither isoflurane (1 mM) nor propofol (15 microM) affected K(+)-evoked release, consistent with a molecular target upstream of the synaptic vesicle exocytotic machinery or voltage-gated Ca(2+) channels coupled to transmitter release. These findings support selective presynaptic depression of excitatory versus inhibitory neurotransmission by clinical concentrations of isoflurane, probably as a result of Na(+) channel blockade.  相似文献   

17.
Xestoquinone (XQN) (3 x 10(-7) to 3 x 10(-3) M), isolated from the sea sponge Xestospongia sapra, induced a concentration-dependent Ca(2+) release from the heavy fraction of fragmented sarcoplasmic reticulum (HSR) of rabbit skeletal muscle with an EC(50) value of approximately 30 microM. On the basis of the EC(50), XQN is 10 times more potent than caffeine. Dithiothreitol completely blocked XQN-induced Ca(2+) release from HSR without affecting that induced by caffeine. Caffeine-induced Ca(2+) release was reduced markedly by Mg(2+), procaine, and ruthenium red, agents that are known to block release of Ca(2+) from sarcoplasmic reticulum, whereas that induced by XQN was not inhibited. The bell-shaped profile of Ca(2+) dependence for XQN was significantly shifted upward in a wider range of pCa (between 7 and 3), whereas that for caffeine was shifted to the left in a narrower range of pCa (between 8 and 7). The maximum response to caffeine in (45)Ca(2+) release was not affected by 9-methyl-7-bromoeudistomin D, whereas the response was further increased by XQN. XQN caused a concentration-dependent decrease in [(3)H]ryanodine binding to HSR. This effect of XQN also was abolished in the presence of dithiothreitol. Scatchard analysis revealed that the mode of inhibition by XQN was noncompetitive in [(3)H]ryanodine binding to HSR. These results indicate that sulfhydryl groups are involved in both the XQN effect on ryanodine binding and on Ca(2+) release.  相似文献   

18.
The distribution of [3H]ryanodine binding in subcellular fractions isolated from rat vas deferens (RVD) paralleled that of NADPH cytochrome C reductase activity indicating an endoplasmic reticulum origin of the binding sites. Scatchard analysis of [3H] ryanodine binding indicated an homogenous site with a Kd value of 6.4 nM. The maximum number of ryanodine binding sites was 488 fmol of [3H]ryanodine per milligram of protein. Norepinephrine (NE) or ATP endogenously released after electrical field stimulation (tetrodoxin-sensitive responses), both produced a biphasic contraction of the RVD when the action of the other was blocked. When NE was the agonist (prazosin-sensitive response), the initial transient contraction was suppressed by 30 microM ryanodine whereas the secondary component was abolished by 2 microM nifedipine. When ATP was the agonist (P2 tachyphylaxis-sensitive response), both phases of the contraction were suppressed by 2 microM nifedipine. However, the initial phasic component of the contraction induced by endogenously released ATP was also inhibited by 30 microM ryanodine except at high stimulation frequency (10 Hz). Exogenously added NE and alpha, beta methylene ATP produced concentration-dependent contractions of the RVD. The effect of both agonists was inhibited by 2 microM nifedipine whereas 30 microM ryanodine had little effect except at high concentrations of NE. We conclude that ryanodine binding sites reside in RVD endoplasmic reticulum. There was a lack of uniformity in the effect of ryanodine and nifedipine against alpha adrenoceptor stimulation and purinoceptor stimulation indicating a difference in the stimulation-contraction coupling process between these two modes of stimulation.  相似文献   

19.
Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.  相似文献   

20.
The present study determined whether repeated administration of the antidepressant and selective norepinephrine (NE) uptake inhibitor reboxetine resulted in an adaptive modification of the function of the NE transporters (NETs), serotonin (5-HT) transporters, or dopamine (DA) transporters. Because antidepressants may be effective tobacco smoking cessation agents and because antidepressants have recently been shown to interact with nicotinic acetylcholine receptors (nAChRs), the interaction of reboxetine with nAChRs was also evaluated. Repeated administration of reboxetine (10 mg/kg i.p., twice daily for 14 days) did not alter the potency or selectivity of reboxetine inhibition of [(3)H]NE, [(3)H]DA, or [(3)H]5-HT uptake into striatal or hippocampal synaptosomes (IC(50) values = 8.5 nM, 89 microM, and 6.9 microM, respectively). In a separate series of experiments, reboxetine did not inhibit (K(i) > 1 microM) [(3)H]methyllycaconitine, [(3)H]cytisine, or [(3)H]epibatidine binding to rat whole brain membranes. However, at concentrations that did not exhibit intrinsic activity, reboxetine potently inhibited (IC(50) value = 7.29 nM) nicotine-evoked [(3)H]NE overflow from superfused hippocampal slices via a noncompetitive mechanism. In the latter experiments, the involvement of NET was eliminated by inclusion of desipramine (10 microM) in the superfusion buffer. Reboxetine also inhibited (IC(50) value = 650 nM) nicotine-evoked (86)Rb(+) efflux at reboxetine concentrations that did not exhibit intrinsic activity in this assay. Thus, in addition to inhibition of NET function, reboxetine inhibits nAChR function, suggesting that it may have potential as a smoking cessation agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号