首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P-cadherin expression in breast carcinomas has been associated with tumors of high histologic grade and lacking estrogen receptor-alpha, suggesting a link between these proteins. In the MCF-7/AZ breast cancer cell line, blocking estrogen receptor-alpha signaling with the antiestrogen ICI 182,780 induced an increase of P-cadherin, which coincided with induction of in vitro invasion. Retroviral transduction of MCF-7/AZ cells, as well as HEK 293T cells, showed the proinvasive activity of P-cadherin, which requires the juxtamembrane domain of its cytoplasmic tail. This study establishes a direct link between P-cadherin expression and the lack of estrogen receptor-alpha signaling in breast cancer cells and suggests a role for P-cadherin in invasion, through its interaction with proteins bound to the juxtamembrane domain.  相似文献   

2.
The pure antiestrogen ICI 182,780 inhibits insulin-like growth factor (IGF)-dependent proliferation in hormone-responsive breast cancer cells. However, the interactions of ICI 182,780 with IGF-I receptor (IGF-IR) intracellular signaling have not been characterized. Here, we studied the effects of ICI 182,780 on IGF-IR signal transduction in MCF-7 breast cancer cells and in MCF-7-derived clones overexpressing either the IGF-IR or its 2 major substrates, insulin receptor substrate 1 (IRS-1) or src/collagen homology proteins (SHC). ICI 182,780 blocked the basal and IGF-I-induced growth in all studied cells in a dose-dependent manner; however, the clones with the greatest IRS-1 overexpression were clearly least sensitive to the drug. Pursuing ICI 182,780 interaction with IRS-1, we found that the antiestrogen reduced IRS-1 expression and tyrosine phosphorylation in several cell lines in the presence or absence of IGF-I. Moreover, in IRS-1-overexpressing cells, ICI 182,780 decreased IRS-1/p85 and IRS-1/GRB2 binding. The effects of ICI 182,780 on IGF-IR protein expression were not significant; however, the drug suppressed IGF-I-induced (but not basal) IGF-IR tyrosine phosphorylation. The expression and tyrosine phosphorylation of SHC as well as SHC/GRB binding were not influenced by ICI 182,780. In summary, downregulation of IRS-1 may represent one of the mechanisms by which ICI 182,780 inhibits the growth of breast cancer cells. Thus, overexpression of IRS-1 in breast tumors could contribute to the development of antiestrogen resistance.  相似文献   

3.
4.
5.
ICI 182,780, a potent, new steroidal antiestrogen without apparent agonist activity, appears to be a potent modulator of the classic multidrug resistance (MDR) phenotype in the CEM/A7, CEM/VLB100 and K562/VIN100 MDR cell lines. This reagent had no effect on the respective parental CCRF-CEM and K562 cell lines. The use of 1.25 M ICI 182,780 resulted in a 6- to 7-fold decrease in doxorubicin resistance in the CEM/A7 and CEM/VLB100 cell lines. A dose-response effect was observed at ICI 182,780 concentrations of up to 5 M. As compared with tamoxifen (TAM), ICI 182,780 was 2 and 4 times more effective in the K562/VIN100 and CEM/A7 cell lines, respectively. ICI 182,780 at 0.625 M increased [3H]-daunomycin uptake (P<0.0001) as effectively as 5 M TAM in the resistant CEM/A7 line. Drug-efflux studies showed that 5 M ICI 182,780 significantly decreased drug efflux as compared with 5 M TAM (P<0.0001). Estradiol (EST) at 10 M increased doxorubicin resistance by 1.2–1.3 times in the CEM/A7 and CEM/VLB100 cell lines and significantly decreased drug accumulation (P=0.002) and retention (P<0.001) in the CEM/A7 cell line. However, the addition of 10 M EST to 1–2 M ICI 182,780 did not inhibit the ability of ICI 182,780 to modulate doxorubicin resistance in the two resistant cell lines. Using reverse-phase high-performance liquid chromatography (HPLC) to measure lipophilicity, we found no apparent association between the ability of ICI 182,780, TAM or EST to modulate resistance and their relative hydrophobicity.This work was supported in part by grants from the Department of Veterans Affairs, Canberra, ICI Pharmaceuticals and the AntiCancer Council of Victoria, Australia  相似文献   

6.
ICI 182,780 (Faslodex): development of a novel, "pure" antiestrogen   总被引:14,自引:0,他引:14  
Howell A  Osborne CK  Morris C  Wakeling AE 《Cancer》2000,89(4):817-825
BACKGROUND: The nonsteroidal antiestrogen tamoxifen is well established as an effective treatment for patients with breast carcinoma, both for the treatment of metastatic disease and as an adjuvant to surgery for patients with primary breast carcinoma. In addition to exerting antagonistic effects on the estrogen receptor, tamoxifen and its derivatives act as partial agonists on certain tissues. These agonistic effects, for example, endometrial stimulation and stimulation of tumor growth after previous response to tamoxifen, may limit their clinical efficacy. ICI 182,780 (Faslodex) from AstraZeneca (Cheshire, United Kingdom) is a novel, steroidal estrogen antagonist that was designed to be devoid of estrogen agonist activity in preclinical models. METHODS: ICI 182,780 was tested in a large number of in vitro and in vivo preclinical models, and its value was assessed clinically when administered before surgery for breast carcinoma and hysterectomy for benign conditions and after failure of tamoxifen in patients with advanced breast carcinoma. RESULTS: All data indicated that ICI 182,780 is devoid of agonist activity in preclinical models and in clinical trials. It inhibits growth of the breast and endometrium. In animal models, it does not cross the blood-brain barrier and appears to be neutral with respect to lipids and bone. ICI 182,780 down-regulates the estrogen receptor and is active in tamoxifen-resistant breast carcinoma. In a small, Phase II study, durable responses were seen: Phase III clinical trials are in progress comparing ICI 182,780 with anastrozole and tamoxifen in the treatment of patients with advanced breast carcinoma. CONCLUSIONS: ICI 182,780 specifically down-regulates the estrogen receptor and, thus, represents the first of a new class of therapeutic agents. In this report, the authors present the current evidence that distinguishes ICI 182,780 from tamoxifen and related nonsteroidal compounds and establishes ICI 182,780 as the first in a new class of therapeutic agents.  相似文献   

7.
We studied the effects of ICI 182780 and bis(ethyl)norspermine (BE-3-3-3) on cell growth and apoptosis of estrogen receptor-positive MCF-7 breast cancer cells. Combination treatment with 100 nM ICI 182780 and 5 microM BE-3-3-3 for 6 days inhibited cell growth by 74.3+/-8.4% in MCF-7 cells, compared to that of 25.4+/-5.8 and 45.8+/-12.2%, respectively, when ICI 182780 and BE-3-3-3 were used as single agents. Treatment with 100 nM ICI 182780 and 5 microM BE-3-3-3 as single agents resulted in 9.1+/-1.0% and 35.1+/-4.5% apoptosis, respectively, as measured by APO-BRDU assay. When ICI 182780 and BE-3-3-3 were used in combination, the percentage of apoptosis was 60.6+/-3.8%. Improved efficacy of ICI 182780 and BE-3-3-3 combination on growth inhibition was observed for T-47D cells also. Western blot analysis showed that combinations of ICI 182780 and BE-3-3-3 caused down-regulation of the anti-apoptotic Bcl-2 and Bcl-XL proteins and increased the level of the pro-apoptotic Bax protein. Combination treatment also increased caspase-8 activation. Analysis of polyamine levels 48 h after combination treatment showed that spermidine and spermine levels were down regulated significantly. These studies indicate a potentially effective combination strategy for breast cancer treatment. Our results also link the down-regulation of polyamine pathway to apoptotic cell death and regulation of mediators of cell death.  相似文献   

8.
Inhibiting estrogen receptor (ER) function with specific estrogen receptor modulators (SERM) can achieve a primary response in cancer patients; however, intrinsic or subsequently acquired resistance to the therapy remains a major obstacle in treatment. The pure anti-estrogen fulvestrant has been shown to be a promising antagonist of ERα in treating advanced breast cancer. However, our knowledge of the mechanisms governing cellular responsiveness to this agent is limited. Here we show that down-regulation of the nonreceptor tyrosine kinase c-ABL enhanced sensitization to fulvestrant in breast cancer cells. Blocking c-ABL kinase activity with the inhibitor imatinib further increased ERα downregulation induced by fulvestrant, decreased the number of proliferating cells entering the cell cycle, and increased cellular sensitivity to fulvestrant treatment. Conversely, introducing kinase-activated c-ABL can rescue fulvestrant-induced ERα downregulation. Consistent with the effects of imatinib, the silencing of endogenous c-ABL increased the sensitivity of breast cancer cells to fulvestrant treatment. These results demonstrate a role for c-ABL in mediating resistance to the pure anti-estrogen fulvestrant.  相似文献   

9.
The effects of the anti-estrogens 4-hydroxytamoxifen (OHTam), ICI 164,384 and ICI 182,780 were tested on the MCF-7/LCC2 breast-carcinoma cell line, which grows significantly in the presence of OHTam and serves as a model for studying anti-estrogen resistance of estrogen-receptor-positive breast cancer. Cell proliferation and cathepsin-D secretion were strongly inhibited by either ICI 182,780 or ICI 164,384 alone or ICI 164,384 in combination with 17-p-estradiol (E2) or OHTam. ICI 164,384 alone did not affect the cathepsin-D and pS2 mRNA levels, but antagonized the stimulatory effects of E2 or OHTam on these 2 mRNAs. OHTam was more effective than E2 in increasing cathepsin-D mRNA levels, supporting the idea that anti-estrogen-resistant breast cancer continues to over-express cathepsin-D. These data show that the steroidal anti-estrogens ICI 164,384 and ICI 182,780 retain their ability to inhibit cell proliferation and the estrogen-responsiveness of cathepsin-D and pS2 genes in the OHTam-resistant MCF-7/ LCC2 cell line. These pure anti-estrogens may thus be efficient second-line treatments of some Tamoxifen-resistant tumors.  相似文献   

10.
11.
VEGF EXPRESSION IS INHIBITED BY APIGENIN IN HUMAN BREAST CANCER CELLS   总被引:1,自引:0,他引:1  
Objective: To study the effects of apigenin on vascular endothelial growth factor (VEGF) in human breast cancer cells (MDA-MB-231. Methods: MTT assay was used to detect the cell proliferation inhibitory effect of apigenin on MDA-MB-231 cell. ELISA was used to determine the protein level of VEGF secreted by MDA-MB-231 cells. RT-PCR was used to detect mRNA levels of VEGF in MDA-MB-231 cells. The protein levels of HIF-1α, p-AKT, p-ERK1/2, and p53 were detected by Western Blotting. Results: Apigenin did not inhibit the cell viability of MDA-MB-231 cell. Apigenin reduced the secretion and mRNA levels of VEGF in MDA-MB-231 cells. Additionally, apigenin decreased the expressions of HIF-1α, p-AKT and p-ERK1/2, but induced the expression of p53. Conclusion: Apigenin can inhibit VEGF expression in human breast cancer cells, and this may be achieved through decreasing HIF-1α.  相似文献   

12.
ICI 182,780 (Faslodex), considered a pure anti-estrogen, is approved for treatment of post-menopausal breast cancer patients who fail to respond to tamoxifen therapy. We recently reported that, like mifepristone, ICI 182,780 exhibits anti-progestin activity, blocking the progestin-dependent increase in endogenous vascular endothelial growth factor (VEGF) mRNA and protein release. Some anti-progestins have partial agonist-like activity in breast cancer cells expressing high levels of progesterone receptor B (PRB). Our results show that ICI 182,780 can also induce reporter activity from a plasmid containing a simple progestin responsive element (PRE) in these cells. Using small interfering RNA, we determined that induction is dependent on the presence of PR, estrogen receptor and SRC-1. Regulation of more complex progestin-responsive promoters was context-dependent; induction was observed from the MMTV promoter but not from the VEGF promoter. In contrast, ICI 182,780 increased the release of angiogenically active VEGF from cells expressing elevated levels of PRB. This effect was dependent on the phosphatidylinositol-3 kinase and ERK/MAPK signaling pathways. We hypothesize that these agonist-like properties of ICI 182,780 (one genomic and one non-genomic) may contribute to the acquisition of drug resistance, suggesting that both anti-hormonal and anti-angiogenic treatment may be appropriate in these patients.  相似文献   

13.
Apoptosis induction by the pure antiestrogen faslodex, also known as ICI 182780 (ICI), is associated with an effective down-regulation of Bcl-2 expression in the human breast cancer cell line MCF-7. Recent observations point out that beside members of the Bcl-2 family also the TNFR1 signaling pathway may be involved in apoptosis induction by antiestrogens. In this report we have analyzed the expression of members of the TNFR1 signaling pathway during the apoptotic process induced by the pure antiestrogen faslodex and by tamoxifen (Tam) in MCF-7 breast cancer cells. Treatment with 10–7M ICI or 10–7M Tam leads to a time dependent increase of TNFR1 and TRADD steady-state mRNA levels in MCF-7 cells. In contrast, Bcl-2 expression was strongly decreased following administration of ICI but only weakly after administration of Tam. Western blot analysis and studies by the use of fluorescence microscopy and flow cytometry revealed a time dependent induction of TNFR1 protein and cell surface expression in MCF-7 cells in response to treatment with ICI. To investigate if TNFR1 is functionally involved in apoptosis induction by antiestrogens, we tested whether TNFR1 blocking antibodies can counteract the growth inhibitory action of Tam and ICI. Coincubation of MCF-7 cells with antiestrogens (ICI or Tam) and blocking TNFR1 antibodies lead to an increase in cell viability. Our results provide evidence for a cross talk between the TNFR1 signaling pathway and antiestrogens during the process of apoptosis induction in MCF-7 breast cancer cells. The superiority of the pure antiestrogen ICI to induce apoptosis in MCF-7 cells may result from its capability to modulate the induction of apoptosis via Bcl-2 as well as TNF-associated signal transduction pathways.  相似文献   

14.
Epidemiological studies have shown that early first pregnancy is associated with a life-long reduction in breast cancer risk. The terminal differentiation associated with pregnancy and lactation has been proposed as a mechanism underlying the protective effect of pregnancy. We report that treatment of rats with ICI 182,780 (ICI) caused a marked reduction in epithelial cells and Ki-67 labelling index as compared to controls and testosterone enanthate-treated (TE) mammary glands. TE increased the Ki-67 labelling index, stimulated lobuloalveolar and ductal growth, as well as the secretory activity of acinar cells. Co-administration of TE and ICI resulted in a reduction in Ki-67 labelling index. Mammary epithelial cells became differentiated, resembling that observed at the end of pregnancy and during lactation as indicated by marked increase in secretory activity, lipid accumulation and presence of basal nuclei. The expression of differentiation markers such as whey acidic protein, mammary derived growth inhibitor, alpha-casein and beta-casein was detected only in TE plus ICI treated mammary tissues. Unlike TE, ICI caused a significant reduction in DMBA-induced tumour incidence, number of tumour bearing and tumour size. Tumour incidence was reduced to 8% when both ICI and TE were co-administered. Our data provide the novel molecular interactions between the estrogen and androgen in regulation of mammary growth and differentiation. These observations may give insight into novel actions of ICI and TE on breast differentiation and protection against carcinogenesis which may be useful in designing novel strategies for cancer prevention and/or treatment based on maximizing mammary epithelial cell differentiation.  相似文献   

15.
Summary 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent inducer of differentiation and an antiestrogen, is shown to suppressin vitro postconfluent cell accumulation in the estrogen-dependent MCF-7 human breast tumor cell line. This dose-responsive suppression is apparent by 14 days of exposure with an EC50 between 10–10 and 10–11 M TCDD, and is characterized by reduced cell density (approximately 60% of controls after 14 days). This was attributed to a reduced formation in TCDD-treated cultures of multicellular foci which are chracteristic of cancer cell growthin vitro (less than 1/mm2 compared to control levels of 40/mm2). Preconfluent cell growth and viability of MCF-7 cells is not affected by 10–9 M TCDD. These results suggest that the principle of TCDD's activity may be useful in the study and possibly the management of estrogen-dependent breast tumors.  相似文献   

16.
In this study the ability of the new pure anti-estrogen ICI 182,780 to modulate the cytotoxic action of adriamycin (ADR) on parental and ADR-resistant MCF-7 (MCF-7 ADRr) human breast-cancer cells was investigated and compared with that of tamoxifen (TAM). TAM enhanced ADR cytotoxicity in MCF-7 ADRr cells in a dose-related manner, but this effect was slight or absent in MCF-7 WT. In contrast, ICI 182,780 was able to enhance ADR toxicity both in MCF-7 ADRr and in the parental cell line. ICI 182,780 was up to 2.5-fold more effective than TAM in reducing the IC50 of ADR in MCF-7 ADRr cells. Analysis of the data by the isobole method showed that the combination ADR/TAM and ADR/ICI 182,780 produced synergistic anti-proliferative activity in MCF-7 ADRr cells. Because ADR resistance in these cells is associated with the expression of high levels of P-glycoprotein (Pgp), we evaluated the effect of anti-estrogens on Pgp expression and activity. Both ICI 182,780 and TAM failed to modulate Pgp expression as assessed by flow cytometry and Western-blot analysis, performed using the monoclonal antibodies MM4.17 and C219, which are specific for an external or an internal determinant respectively. Pgp activity was investigated by flow cytometry measuring the extrusion of ADR and the cationic dye Rhodamine 123 (Rh 123). ICI 182,780, but not TAM, reduced the activity of Pgp in MCF-7 ADRr cells. Flow cytometry was also used to investigate cell-cycle modifications induced by ADR in MCF-7 ADRr cells, both in the presence and in the absence of anti-estrogens. After 72 hr, higher doses induced an arrest of cells at the G2/M phase. The same effect was visible when lower doses of ADR were combined with ICI 182,780 or TAM. In terms of cell-cycle-blocking activity ICI 182,780 was largely more effective than TAM. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Protein kinase CK2 is involved in cell proliferation and survival, and found overexpressed in virtually all types of human cancer, including breast cancer. We demonstrate that inhibition of CK2 with 2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole (DMAT), a potent and specific CK2 inhibitor, results in caspase-mediated killing of human breast cancer cells with acquired resistance to antiestrogens, while DMAT fails to kill parental MCF-7 cells. The antiestrogen resistant breast cancer cells express reduced levels of Bcl-2 compared to MCF-7 cells. Reduced Bcl-2 protein level is also found in a tamoxifen resistant human breast tumor grown as a xenograft. We show that re-expression of Bcl-2 partially rescues antiestrogen resistant MCF-7 sublines from DMAT-induced cell death. In summary, our data suggest a novel role of CK2 in antiestrogen resistance.  相似文献   

18.
Shikonin (SK) has been isolated and identified as a key bioactive component in an herbal plant, Shikon (gromwell). In this study, we investigated antiestrogen activity of SK in breast cancer cells. In human breast cancer cells, we observed that treatment with SK inhibits tumor cell growth in estrogen receptor α (ERα)-positive, but not ERα-negative breast cancer cells. Estrogen-dependent cell growth was inhibited by co-treatment with SK. A potential molecular mechanism by which SK inhibits estrogen action was explored. We found that SK has no effect on ERα mRNA expression, but decreases its protein level. This effect is associated with an increase in ubiquitinated ERα for degradation. Our results suggest that SK downregulates ERα protein through a proteasome-mediated pathway. We also found that the treatment with SK inhibits estrogen-induced estrogen response elements reporter gene activity. Furthermore, SK inhibits recruitment of ERα at the estrogen-dependent gene promoters, and subsequently suppresses gene expression. Finally, co-treatment with SK enhanced sensitivity of breast cancer cells to endocrine therapy. Collectively, our studies suggested that SK has a potential for antihormone therapy in ERα-positive breast cancer cells, and should serve as a target for new drug developments.  相似文献   

19.
20.
Although antiestrogen therapy is effective in the treatment of hormone-responsive breast tumors, approximately 40% of the patients with estrogen receptor-positive tumors fail to respond to antiestrogens. To better understand the mechanisms by which antiestrogens inhibit the growth of hormone-dependent breast cancers, we have investigated the physicochemical properties and binding characteristics of the estrogen receptors with estradiol and antiestrogens and the occurrence of estrogen-noncompetible antiestrogen binding sites in two estrogen-sensitive but tamoxifen-growth-resistant estrogen receptor-positive MCF-7 cell variant clones, R3-98 and R27. In the variant cells, estradiol (10(-8) M) significantly stimulates cell proliferation as in the parent MCF-7 cells, but the antiestrogen tamoxifen (10(-6) M) has no significant effect on growth of the variant cells, whereas antiestrogen strongly inhibits proliferation of the parent MCF-7 cells. All three cell types contain high concentrations of estrogen receptor (150 to 250 fmol/mg protein), and competition binding analysis shows that the relative binding affinity of a series of compounds for estrogen receptor is similar among the three cell types with the affinity of trans-hydroxytamoxifen greater than estradiol greater than alpha-[4-pyrrolidinoethoxy]phenyl-4-hydroxy-alpha'-nitrostilben e greater than tamoxifen. Salt-extracted nuclear receptor complexes prepared from the three cell types showed similar sedimentation behavior on 0.4 M KCl-containing sucrose gradients with [3H]estradiol-labeled receptor complexes sedimenting at 4.2S, whereas receptors complexed with either of the antiestrogens trans-[3H]-hydroxytamoxifen or [3H]alpha-[4-pyrrolidinoethoxy]phenyl-4-hydroxy-alpha'-nitrosti lbene sediment at 5.5S. In all 3 cell types, the nuclear receptor forms react with an estrogen receptor monoclonal antibody, D547Sp gamma, to form complexes which sediment at 8.5S. The nuclear estrogen receptors from the parental MCF-7 and the two variant cells, when covalently labeled with [3H]-tamoxifen aziridine in intact cells and then salt extracted have identical molecular weights of approximately 62,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The covalently labeled nuclear and cytosol receptors in these 3 cell lines also show identical migration in 8 M urea polyacrylamide isoelectric focusing gels consistent with a predominant receptor species of isoelectric point approximately 5.7.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号