首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunohistochemistry for calbindin-D28k (CB) revealed that the spinal cord of Xenopus laevis possess a large number of CB-containing neurons widely distributed in both the dorsal and ventral horns, including areas which possess long ascending projections to supraspinal structures. In addition, the presence of CB-immunoreactive axons in the spinal funiculi suggested that descending projections containing this calcium binding protein may originate in different brainstem nuclei. Apart from mapping CB-containing elements in the spinal cord, a double labeling approach was used that combined the retrograde transport of dextran amines with CB immunohistochemistry. Thus, dextran amine injections into the lateral reticular region of the rhombencephalon, the parabrachial region, the mesencephalon and the dorsal thalamus revealed many retrogradely labeled cells in the spinal cord, a few number of which were double labeled for CB and found in the superficial dorsal horn and in the ventral medial region of the ventral horn. Their axons passed mainly via the lateral funiculus. Tracer application into the cervical spinal cord, combined with CB immunohistochemistry, resulted in retrogradely labeled cells throughout the brain, five groups of which showed CB immunoreactivity: (1) the mesencephalic trigeminal nucleus, (2) the laterodorsal tegmental nucleus, (3) the raphe nucleus, (4) the middle reticular nucleus and (5) the inferior reticular nucleus. The presence of CB in spinal pathways suggests that CB may play a role in controlling spinal cells, mainly subserving visceroceptive and nociceptive information to supraspinal levels, and might also modulate reticulospinal pathways.  相似文献   

2.
This study used the retrograde transport of a protein-gold complex to examine the distribution of spinal cord and trigeminal nucleus caudalis neurons that project to the nucleus of the solitary tract (NST) in the rat. In the spinal grey matter, retrogradely labeled cells were common in the marginal zone (lamina I), in the lateral spinal nucleus of the dorsolateral funiculus, in the reticular part of the neck of the dorsal horn (lamina V), around the central canal (lamina X), and in the region of the thoracic and sacral autonomic cell columns. The pattern of labeling closely resembled that seen for the cells at the origin of the spinomesencephalic tract and shared some features with that of the spinoreticular and spinothalamic tracts. Labeled cells in lamina IV of the dorsal horn were only observed when injections spread dorsally, into the dorsal column nuclei, and are thus not considered to be at the origin of the spinosolitary tract. They are probably neurons of the postsynaptic fibers of the dorsal column. Retrogradely labeled cells were also numerous in the superficial laminae of the trigeminal nucleus caudalis, through its rostrocaudal extent. The pattern of marginal cell labeling appeared to be continuous with that of labeled neurons in the paratrigeminal nucleus, located in the descending tract of trigeminal nerve. Since the NST is an important relay for visceral afferents from both the glossopharyngeal and vagus nerves, we suggest that the spinal and trigeminal neurons that project to the NST may be part of a larger system that integrates somatic and visceral afferent inputs from wide areas of the body. The projections may underlie somatovisceral and/or viscerovisceral reflexes, perhaps with a significant afferent nociceptive component.  相似文献   

3.
An anatomical technique based on the retrograde transport of horseradish peroxidase (HRP) was used to investigate the projections of spinal cord neurons to the lateral reticular nucleus (LRN). Labeled cells were found at all spinal levels and in particular large numbers in cervical and lumbar segments. Various spinal areas gave rise to cells of origin of this tract, which appears to be more prominent than any other tract previously studied with a similar approach. Labeling common to all spinal segments was observed in (1) ventromedial parts of both intermediate zone and ventral horn (laminae VII, VIII and X), mainly contralaterally; (2) the reticular extension of the neck of the dorsal horn, partly bilateral; and (3) superficial layers of the dorsal horn and nucleus of the dorsolateral funiculus (NDLF), mainly contralateral and projecting essentially to the lateral zone of the LRN. Additional labeling was observed at cervical and lumbar levels, each with specific qualities: (1) the cervical enlargement, which displayed labeling in the central part of the ipsilateral intermediate zone (lamina VII); (2) the rostral lumbar levels, which had projections from the contralateral median portion of the neck of the dorsal horn. These latter projections appear to be specific to pathways reaching the lateral reticular nucleus and the inferior olive. Control injections in neighboring structures demonstrated the similarity between the afferents to the lateral reticular nucleus and the inferior olive. Control injections in neighboring structures demonstrated the similarity between the afferents to the lateral reticular nucleus and the inferior olive (except lamina I and NDLF projections) and the differences between these afferents and those projecting to the dorsal reticular formation, i.e., the nucleus reticularis ventralis.  相似文献   

4.
Descending projections were studied in autoradiographically prepared material after injections of tritiated leucine in the pontine tegmentum of rats. Injections involving the medial pontine reticular formation resulted not only in labeling commissural fibers, the medial reticulospinal tract, and the dorsal cap of the inferior olive, but also, in two cases, in labeling a cerebellar projection that originated from a region near the midline and clearly dorsal to the nucleus reticularis tegmenti pontis. The labeled fibers passed ventral in the midline to the pontine gray, then laterally through the gray and into the middle cerebellar peduncle to terminate as mossy fibers primarily in the flocculus, lobulus simplex, and Crus I of the ansiform lobule. Injections involving the mesencephalic nucleus of the trigeminal nerve (Vmes), resulted in labeling of Probst's tract, which descends in the dorsolateral reticular formation. Probst's tract gave off extensive terminal branches to the lateral medullary reticular formation and weaker projections to restricted portions of the descending trigeminal nucleus, the solitary nucleus, and the hypoglossal nucleus. In one case, fibers could be traced into the dorsal horn of the upper cervical cord.  相似文献   

5.
Complete cerebellectomy is associated with almost total cell loss in the reticulotegmental, lateral reticular and pontine nuclei and in the principal and accessory olivary nuclei but not in the perihypoglossal and reticular paramedian nuclei in the monkey. The latter structure which is a prominent structure in the cat is underdeveloped or absent in this species. It also results in important retrograde degenerating changes of the neurons of the lateral cuneate nucleus, the dorsal nucleus of Clarke and the border cells of Cooper and Sherrington as disclosed in 1 monkey with a short-term cerebellectomy. A few neurons of the principal cuneate nucleus also undergo retrograde degeneration in the immediate postoperative period. The present findings suggest that the caudal part of the medial accessory olive and its “dorsal cap” are anatomically related to the contralateral nodulus and flocculus, respectively, whereas the rostral part of the medial accessory olive is more directly related to the neovermis. The dorsal accessory olive appears to be related to the contralateral cerebellar nuclei and more specifically, the fastigial nucleus. These results also favour the existence of cerebellopetal fibers from the principal cuneate nucleus and of a few non-cerebellopetal fibers from the lateral cuneate nucleus. The present findings support the suggestion of Cooper and Sherrington pointing to the existence of spinocerebellar fibers originating in the border cells of the ventral horn at the level of the low thoracic and lumbar segments of the cord. However the possibility that such “spinocerebellar” fibers may distribute collateral endings to the dorsolateral area of the medulla or even terminate in this area cannot be entirely ruled out on the basis of the present material. A similar feature possibly explains the fact that most (if not all) cells of the dorsal nucleus of Clarke resist the interruption of their axons at cerebellar level as suggested by the findings in monkeys with long standing lesions.  相似文献   

6.
The afferent projections from the brainstem to the mediodorsal thalamic nucleus (MD) were studied in the cat, by means of retrograde transport of horseradish peroxidase. A topographical arrangement of these projections is described. The medial part of MD is the area of the nucleus which receives fewer afferents from the brainstem. After injections in this part, labeled neurons were observed mainly in the interpeduncular nucleus, the ventral tegmental area and the substantia nigra. After injections of HRP in the intermediate part of the MD, labeled cells were seen mainly in the interpeduncular nucleus, substantia nigra, dorsal and centralis superior raphe nuclei, dorsal tegmental nucleus, and coeruleus complex. Less conspicuous was the number of labeled cells in the central gray and the dorsolateral portion of the tegmentum of the mesencephalon and pons. After injections in the lateral part of MD, labeled neurons were observed mainly in the deep layers of the superior colliculus, central gray, the oral paramedian pontine reticular tegmentum, and the interpeduncular nucleus. Labeled cells were also observed in the substantia nigra, locus coeruleus, dorsal tegmental nucleus, cuneiform area, and the mesencephalic reticular formation. These findings show the MD as a thalamic link of three different groups of brainstem structures projecting to different cortical areas with different functional significance.  相似文献   

7.
The projection pattern of the ventral thalamic reticular nucleus onto the dorsal thalamus was studied in the lizard Gallotia gallotiusing in vitro horseradish peroxidase and fluorescent carbocyanine labelling techniques. Localized label deposits at three dorsoventrally spaced sites in the dorsal thalamus elicited retrograde transport into separate, though partly overlapping, medial, dorsolateral and ventrolateral sectors within an extended cytoarchitectonic complex which may be globally identifiable as the reticular nucleus. Neurons found in the dorsolateral and ventrolateral sectors mainly corresponded to the cell group named nucleus ventromedialis (or nucleus of the dorsal supraoptic decussation) in the literature, whereas neurons labelled in the medial sector corresponded to the so-called dorsal hypothalamic nucleus. Sparser cells appear labelled in the superficially placed nucleus suprapeduncularis. Thalamotelencephalic fibers arising from the injected dorsal thalamic nuclei also project on the corresponding retrogradely labeled sectors within the reticular nucleus. These findings reveal a rough topographic organization in the connections of the extended reticular nucleus complex with the whole dorsal thalamus. This supports the hypothesis of hodological homology between this ventral thalamic formation in Gallotiaand the mammalian thalamic reticular nucleus. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The projection of muscle afferent fibres to the medulla oblongata and upper spinal cord was studied in the cat by using transganglionic transport of wheat germ agglutinin-horseradish peroxidase conjugate. The results demonstrate a precise, musculotopic termination pattern in the external cuneate nucleus; thus, fibres from the intrinsic muscles of the paw terminate medially; those from forearm, arm, and shoulder muscles terminate progressively more laterally; and those from neck and thoracic muscles terminate in the ventrolateral and dorsolateral parts, respectively. Muscle afferent fibres to the main cuneate nucleus terminate in the ventral "reticular" region of the nucleus, with a sparse projection also to the ventral part of the rostral and caudal regions, including the base of the dorsal horn. Fibres from the neck muscles terminate slightly more laterally in the ventral region than do those from the limb muscles, but otherwise, and thus contrary to the case in the external cuneate nucleus, no topographic organization was detected. In the spinal cord, projection was found to laminae I and V, and from the musculature of the back of the neck to the central cervical nucleus.  相似文献   

9.
10.
The cells of origin of spinal neurons projecting to the thalamus, the midbrain, the reticular formation, and the cerebellum in the pigeon were studied with the method of retrograde transport of horseradish peroxidase (HRP). Only few spinal cells project up to the thalamus and to the tectum and their location is at the base of the dorsal horn (lamina V) and in the intermediate or ventral spinal grey matter (most contralateral). However, many cells in the dorsal column nuclei (including external cuneate nucleus) project up to these brain areas. Many spinal neurons project to the caudal brainstem and reticular formation. With medioventral injections of HRP labeled cells were found in lateral lamina I (bilateral) and laminae V-VIII (most contralateral) with a concentration in lateral lamina V/VI and lamina VIII. With dorsolateral brainstem injections there was a predominance of lamina I neurons, located bilaterally at the dorsolateral corner of the dorsal horn near Lissauer's tract. These results show that spinal cells, which in mammalian species project up to the thalamus, predominantly end in the caudal brainstem. Injections into the cerebellum disclosed that not only cells of Clarke's column but also sofar not known "spinal border cells", located dorsal to and in part intermingled with the motoneurons, are cells of origin of spinocerebellar tracts and that both groups of cells occur at the cervical and at the lumbar enlargement.  相似文献   

11.
The distribution of the cells of origin of the primate spinoreticular tract was determined following injections of horseradish peroxidase (HRP) into the pontomedullary reticular formation in Macaca fascicularis. Five animals received large bilateral injections which included the raphe nuclei and seven monkeys received smaller, unilateral injections. Sections sampled were from upper cervical levels, the cervical enlargement, upper and lower thoracic levels, and lumbosacral levels. The laminar distribution of spinoreticular cells in all spinal cord levels was comparable. More than half of the labeled cells were located ventromedially, in laminae VII and VIII. HRP-labeled cells were also found in the dorsal horn, primarily in the lateral reticulated part of lamina V. Some cells were also found in laminae I and X. Spinoreticular cells in the lumbosacral spinal cord mainly projected to the contralateral brainstem. In the cervical enlargement, however, a bilateral distribution of cells was observed following unilateral injections of HRP. Most spinoreticular cells were multipolar neurons with extensive dendritic ramifications. The distribution of spinoreticular cells is similar to the distribution of spinal cord neurons that project to the medial thalamus, but different from that of spinal neurons projecting to the ventrobasal complex. The anatomical organization of the spinoreticular tract is consistent with a role for this pathway in nociception.  相似文献   

12.
We have investigated the organizational and morphological features of motoneurons from cat sacrocaudal spinal cord, the portion of the neuraxis that innervates the tail. This information is pertinent for development of a new model of spinal cord injury. An understanding of sacrocaudal circuitry is essential for physiological and behavioral assessment of the effects of sacrocaudal lesions. Observations from Nissl-stained sections corroborated Rexed's cytoarchitectural scheme. Putative motoneurons were located within two regions of the ventral horn: the ventromedial nucleus (lamina IX) and the nucleus commissuralis. To map motoneuron pools, cholera toxin-horseradish peroxidase conjugate was injected into each dorsal tail muscle. The dorsomedial muscle was innervated by ipsilateral nucleus commissuralis motoneurons. The dorsolateral and intertransversarius muscles were innervated by ipsilateral lamina IX and nucleus commissuralis motoneurons. Cell bodies of retrogradely labeled sacrocaudal motoneurons ranged from 22 to 82 microns in diameter; the unimodal distributions peaked between 45 and 50 microns. Dendritic trees of motoneurons, revealed by retrograde labeling or by intracellular injection with horseradish peroxidase, were extensive. Five to eight primary dendrites originated from the cell body. Dendritic branches extended throughout the ipsilateral ventral gray matter, with processes spreading into the surrounding white matter and the base of the dorsal horn. Dendrites from motoneurons with their soma in the lateral portion of lamina IX formed a longitudinal plexus at the gray/white border. Medial dendrites from motoneurons in the nucleus commissuralis formed bundles in the ventral gray commissure and spread throughout the contralateral ventral horn. It is speculated that contralateral dendrites subserve synchronized co-contraction of medial muscles from both sides of the tail.  相似文献   

13.
The differential projections of the three main cellular strata of the superior colliculus have been examined in the cat by the autoradiographic method. The stratum griseum superficiale projects caudally to the parabigeminal nucleus and rostrally to several known visual centers: the nucleus of the optic tract and the olivary pretectal nucleus in the pretectum; the deepest C laminae of the dorsal lateral geniculate nucleus; the large-celled part of the ventral lateral geniculate nucleus; the posteromedial, large-celled part of the lateral posterior nucleus of the thalamus. Several of these projections are topographically organized. The stratum griseum profundum gives rise to most of the descending projections of the superior colliculus. Ipsilateral projections pass to both the dorsolateral and lateral divisions of the pontine nuclei, the cuneiform nucleus, and the raphe nuclei, and to extensive parts of the brainstem reticular formation: the tegmental reticular nucleus, and the paralemniscal, lateral, magnocellular, and gigantocellular tegmental fields. Contralateral projections descending in the predorsal bundle pass to the medial parts of the tegmental reticular nucleus and of some of the tegmental fields, the dorsal part of the medial accessory nucleus of the inferior olivary complex, and to the ventral horn of the cervical spinal cord. Ascending projections of the stratum griseum profundum terminate in several nuclei of the pretectum, the magnocellular nucleus of the medial geniculate complex and several intralaminar nuclei of the thalamus, and in the fields of Forel and zona incerta in the subthalamus. The strata grisea profundum and intermediale each have projections to homotopic areas of the contralateral superior colliculus, to the pretectum, and to the central lateral and suprageniculate nuclei of the thalamus. However, the stratum griseum intermediale has few or no descending projections.  相似文献   

14.
The distribution and organization of descending spinal projections from the dorsal part of the caudal medulla were studied in the rat following injections of Phaseolus vulgaris leucoagglutinin into small areas of the subnucleus reticularis dorsalis (SRD) and the adjacent cuneate nucleus (Cu). The caudal aspect of the Cu projected only to the dorsal horn of the ipsilateral cervical cord via the dorsal funiculus. These projections were mainly to laminae I, IV, and V. More ventrally located reticular structures projected to the full length of the cord. Fibers originating from the SRD travelled through the ipsilateral dorsolateral funiculus and terminated within the deep dorsal horn and upper layers of the ventral horn, mainly in laminae V–VII. Fibers originating from subnucleus reticularis ventralis (SRV) travelled ipsilaterally through the lateral and ventrolateral funiculi and bilaterally through the ventromedial funiculus. These fibers terminated within the ventral horn. The density of labeling within the gray matter varied at different levels of the cord was as follows: cervical > sacral > thoracic > lumbar. The reciprocal connections between the caudal medulla and the spinal cord suggest that the former is an important link in feedback loops that regulate spinal outflow. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The distribution of spinocerebellar tract (SCT) neurons has been studied in the entire length of the spinal cord of the cat following injections of horseradish peroxidase into the cerebellum, and whether or not the axons of the labeled neurons crossed within the spinal cord was determined in cases with injections preceded by hemisections at the cervical levels. The SCTs were classified into the following corssed and uncrossed tracts according to the cell origin and the fiber course; The crossed SCTs originate from (1) the central cervical nucleus (the CCN-SCT), (2) lamina VIII neurons of the cervical to the lumbar cord (the lamina VIII-SCT), (3) spinal border cells (the border cell-SCT), (4) neurons in the medial lamina VII of the lumbar to the caudal spinal segments (the medial lamina VII-SCT), (5) ventral horn neurons (laminae VII and VIII) of the sacral and caudal segments (the ventral horn-SCT) and (6) dorsal horn neurons (lamina V) of the sacral and the caudal segments (the dorsal horn-SCT). The uncorssed tracts originate from (1) neurons of the medial lamina VI of C2 to T1 (the medial lamina VI-SCT of the cervical cord), (2) neurons in the central part of lamina VII of C6 to T1 (the central lamina VII-SCT of the cervical enlargement), (3) lamina V neurons of the lower cervical to the lumbar cord (the lamina V-SCT), (4) Clarke's column (the Clarke's column-SCT) and (5) neurons in the medial lamina VI of L5 and L6 (the medial lamina VI-SCT of the lumbar cord). The present study suggests that the spinocerebellar system originates from more diverse laminae than has previously been known, and further refined studies on the topographic projections of each tract will yield more important and valuable information in this field.  相似文献   

16.
Following injections of horseradish peroxidase into the cerebellum, the distribution of labeled neurons was studied in the whole length of the spinal cord of the rat. To find the ascending side of the axons, injections were made following hemisections at C1 or between C1 and C2. Labeled spinocerebellar tract neurons were classified into two groups according to the axonal course in the spinal cord; one is composed of neurons with uncrossed ascending axons and the other, neurons with crossed ascending axons. Neurons of origin of the uncrossed tracts were located in the medial part of lamina VI of C2 to C8, the central part of lamina VII of C4 to C8, lamina V of C7 to L3 and Clarke's column. Neurons of origin of the crossed tracts were found in the central cervical nucleus of C1 to C3, the intermediate zone and the ventral horn of the lower thoracic and the lumbar segments (T11 to L3), and in the dorsal horn, the medial part of lamina VII and the ventrolateral part of the ventral horn of the sacral and caudal spinal cord. In comparison with our previous results in the cat, it was suggested that the spinocerebellar system in the rat is organized in the same fashion as in the cat, in terms of the location and the intraspinal axonal course of the cells of origin.  相似文献   

17.
Small amounts of 3H-leucine were injected into discrete regions in the rostral medulla of the cat. Descending projections from these sites were studied with autoradiographic methods. On the basis of differential projections to the medulla and spinal cord, three distinct regions were delineated. Nucleus reticularis gigantocellularis (Rgc), located dorsally in the medullary reticular formation, projects primarily to “motor” related sites, including cranial motor nuclei VI, VII, XII, nucleus intercalatus, and a part of the ipsilateral medial accessory olive. The projection to the spinal cord is primarily via the ipsilateral ventrolateral and contralateral ventral funiculi. The Rgc terminal field is in lamina VII and VIII ipsilateral and lamina VIII contralateral to the injection site. In contrast, nucleus raphe magnus, (NRM) located ventrally, in the midline of the rostral medulla projects primarily to structures with known nociceptive and/or visceral afferent input. These sites include the solitary nucleus, the dorsal motor nucleus (X) and the marginal and gelatinous layers of the spinal trigeminal nucleus caudalis. The projection to the spinal cord is bilateral, via the dorsolateral funiculus. Terminal fields are found in the marginal zone and the substantia gelatinosa of the dorsal horn, and more deeply in lamina V, medial VI and VII. Nucleus reticularis magnocellularis (Rmc), located lateral to NRM and ventral to Rgc, has an overlapping projection with NRM, but the projection is ipsilateral. This difference between Rmc and Rgc is correlated with cytoarchitectural features of the two regions. The possibility that the raphe-spinal pathway in the DLF mediates opiate and brain stimulation-produced analgesia is discussed.  相似文献   

18.
The retrograde transport of fluorescent markers has been combined with the glyoxylic acid and Falck-Hillarp techniques to identify the origin of monoamine axons within the spinal cord of the North American opossum. Catecholamine axons arise from neurons located within the ventrolateral medulla, dorsal to the superior olivary complex, within the dorsolateral and rostrolateral pons and within the periventricular nuclei of the hypothalamus. Such neurons are most numerous within the dorsolateral pons where they are found dorsal and lateral to the motor trigeminal nucleus, within the nucleus locus coeruleus pars alpha and adjacent reticular formation as well as within the ventral part of the nucleus locus coeruleus. Neurons containing the fluorescent marker and catecholamines were interspersed with others containing only the injected marker with the possible exception of the nucleus locus coeruleus. Spinal axons of the indoleamine type arise from neurons within the nuclei pallidus, obscurus and magnus raphe, the nucleus reticularis gigantocellularis, the nucleus reticularis gigantocellularis pars ventralis, the nucleus reticularis pontis pars ventralis and the nucleus dorsalis raphe. The latter nucleus only innervates rostral cervical levels. Most of the above areas also contain many non-indoleamine neurons which were labelled by the injected marker. This was particularly true of the nucleus magnus raphe and the adjacent nucleus reticularis points pars ventralis after injections of fluorescent markers into the superficial dorsal horn.  相似文献   

19.
The rostral pons of the cat and rhesus monkey were examined for the presence of labeled cells following injections of horseradish peroxidase (HRP) into the lumbar spinal cord. Labeled cells were found in the ipsilateral dorsolateral pontine tegmentum and in the contralateral ventrolateral pontine reticular formation. In both the cat and monkey, labeled cells were located in the nucleus locus coeruleus, nucleus subcoeruleus, in or near the Kölliker-Fuse nucleus, and in the ventral part of the lateral parabrachial nucleus. There is a striking similarity between the distribution of HRP-labeled cells in the dorsolateral pontine tegmentum of the cat and monkey and that of catecholamine-containing cells observed in this area in previous studies.  相似文献   

20.
There is considerable evidence that the dorsolateral funiculus (DLF) of the spinal cord contains descending pathways critical for both opiate and brainstem stimulation-produced analgesia. To obtain a comprehensive map of brainstem neurons projecting to the spinal cord via the DLF, large injections of horseradish peroxidase (HRP) were made into the lumbosacral spinal cord of cat and rat. These injections were made caudal to midthoracic lesions which spared only a single DLF or ventral quadrant (VQ); thus only those neurons whose axons descended in the spared funiculus would be labelled. Cells with descending axons in the VQ were concentrated in the medullary nucleus raphe pallidus and obscurus, nucleus retroambiguus and in various subregions of the reticular formation including the nucleus reticularis ventralis, gigantocellularis, magnocellularis, pontis caudalis and pontis oralis. Significant numbers of neurons were also found in medial and lateral vestibular nuclei and in several presumed catecholamine-containing neurons of the dorsolateral pons. In the rat, but not in the cat, considerable numbers of cells are present in the mesencephalic reticular formation just lateral to the periaqueductal gray. In both species, some cells were found in the paraventricular nucleus of the hypothalamus. Brainstem cells projecting in the DLF were concentrated in the nucleus raphe magnus and in the adjacent nucleus reticularis magnocellularis, ipsilateral to the spared funiculus. Significant numbers of cells were found in the dorsolateral pons, differing somewhat in their distribution from those projecting in the VQ. DLF-projecting cells were also present in the ipsilateral Edinger-Westphal nucleus and periaqueductal grey contralateral red nucleus of the midbrain and in the ipsilateral hypothalamus. Smaller projections from other sites are described. These results are discussed in terms of the differential contribution of several brainstem neuronal groups, including the serotonergic nucleus, raphe magnus, the ventromedial reticular formation of the medulla, and various catecholamine-containing neurons of the dorsolateral pontine tegmentum to the analgesia produced by opiates and electrical brain stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号