首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, physical and analytical characterization, and crystal-state structural analysis by X-ray diffraction of three analogues of the Nα-acylated tripeptide amide tail of oxytocin, each containing a cyclic Cα, α- disubstituted glycine at position 2, have been performed. The peptides arc Boc-L-Pro-Ac3c-Gly-NH2, Z-L-Pro-Ac5c-Gly-NH2 and Z-L-Pro-Ac5c-Gly-NH2. While the former is folded in a type-II β-turn conformation at the -L-Pro-Ac3c- sequence, the two latter tripeptides form two consecutive (type-II, type-I′) β-turns. The Ac5c- and Ac6c-tripeptides are the first examples of such a highly folded structural combination in a position-2 analogue of the Nα-acylated -L-Pro-L-Leu-GIy-NH2 sequence.  相似文献   

2.
[5-β-Malamidic acid] oxytocin was synthesized to study the importance of the hydrogen bond between the C=O of Tyr2 and the peptide N-H of Asn5 for the stabilization of a biologically functional conformation of oxytocin. This analog lacks the peptide N-H at residue 5 required for the formation of a hydrogen bond with the C=O of Tyr2. [5-β-Malamidic acid] oxytocin exhibited 45.1 ± 2.5 U/mg and 65.6 ± 5.9 U/mg of uterotonic activity, in vitro, in the absence and in the presence, respectively, of Mg2+, 147 ± 14 U/mg of uterotonic activity in vivo, 203 ± 13 U/mg of milk-ejecting activity, 0.37 ± 0.03 U/mg of pressor activity and 0.32 ± 0.29 U/mg of antidiuretic activity. It is concluded that devoid of the hydrogen bond under question, an oxytocin-like peptide can still assume the conformation needed to interact with the oxytocin receptors.  相似文献   

3.
In an attempt to see whether the C=O and the NH2 of CONH2 of asparagine5 glycinamide9 are both essential for biological activity, [5-β-cyanoalanine] oxytocin and [9-α-aminoacetonitrile] oxytocin have been synthesized. Each of these analogs contains a nitrile group in place of the carboxamide group of Asn5 GlyNH92 respectively; the nitrile group can simulate the carbonyl portion of the carboxamide, but lacks the hydrogen-bond donating capacity of its NH2 portion. Substitution of a nitrile group produced opposite biological effects in the 5 and the 9 positions; the 5-substituted analog showed very low activities (less than 3% of those of oxytocin) while the 9-substituted analog showed extremely high activities (with an in vivo uterine activity of 906 U/mg almost twice that of oxytocin). The results clearly suggest that the mechanisms of interaction of the carboxamide groups with the receptor sites are different for residues 5 and 9.  相似文献   

4.
The crystal structure of Ac-Pro-ΔVal-NHCH3 was examined to determine the influence of the α,β-dehydrovaline residue on the nature of peptide conformation. The peptide crystallizes from methanol-diethyl ether solution at 4° in needle-shaped form in orthorhombic space group P212121 with a= 11.384(2) Å, b = 13.277(2) Å, c = 9.942(1) Å. V = 1502.7(4) Å3 Z = 4, Dm= 1.17 g cm?3 and Dc=1.18 g cm?3 The structure was solved by direct methods using SHELXS-86 and refined to an R value of 0.057 for 1922 observed reflections. The peptide is found to adopt a β-bend between the type I and the type III conformation with φ1=?68.3(4)°, ψ1=? 20.1(4)°, φ2=?73.5(4)°= and Ψ2=?14.1(4)°=. An intramolecular hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i+ 3)th residue stabilizes the β-bend. An additional intermolecular N.,.O hydrogen bond joins molecules into infinite chains. In the literature described crystal structures of peptides having a single α,β-dehydroamino acid residue in the (i+ 2) position and forming a β-bend reveal a type II conformation.  相似文献   

5.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

6.
The solid phase syntheses of [2-cycloleucine]oxytocin and [1-penicillamine, 2-cycloleucine]oxytocin are reported. [1-Penicillamine, 2-cycloleucine]oxytocin is an oxytocin antagonist exhibiting no in vitro oxytocic activity. In the in vitro oxytocic assay, [1-penicillamine, 2-cycloleucine]oxytocin has a pA2 value of 6.70 ± 0.08. [2-Cycloleucine]-oxytocin is a full oxytocin agonist exhibiting 4.9 ± 0.5 U/mg of oxytocic activity. Neither compound possesses any measurable agonist or antagonist activity in the rat pressor assay. Carbon-13 nuclear magnetic resonance chemical shift parameters and spin-lattice relaxation times (T1) of the antagonist, [1-penicillamine, 2-cycloleucine]oxytocin, indicate that the antagonist exhibits similar conformational and dynamic properties as other oxytocin inhibitors previously studied. The carbon-13 nuclear magnetic resonance shift parameters and spin-lattice relaxation times (T1) of the oxytocin agonist, [2-cycloleucine] oxytocin, indicate that the agonist exhibits similar conformational and dynamic properties as oxytocin. These results are discussed in terms of the different receptor requirements for agonist and antagonist activities. It appears that there are different structural and conformational requirements at the 2-position for oxytocic agonist and antagonist activities.  相似文献   

7.
The peptide N-Boc-l -Phe-dehydro-Abu-NH-CH3 was synthesized by the usual workup procedure. The crystals grown from methanol at 4°C belong to the space group P212121 with a= 7.589(2), b= 13.690(4), c= 21.897(6) Å, Z= 4 and dc= 1.149(5) g cm?3 for C19H29N3O5·CH3OH. The peptide crystals were highly sensitive to radiation. The final agreement factor R was 0.055 for 1109 observed reflections (I > 2σ) with data extending to a 2θ value of 103°. The methanol oxygen atom is split into two occupancies. Both sites are involved in identical hydrogen bonding. As a result of substitution of a dehydro-Abu residue at the (i+ 2) position the peptide adopts an ideal β-turn II′ conformation with torsion angles of corner residues as φ1=63(1)°, ψ1= - 127(1)°, φ2= -66(1)° and ψ2= - 10(1)°, and an intramolecular hydrogen bond N—H ? O of length 3.01(1) Å. This shows that the conformational constraints produced by dehydro-Abu are similar in nature to but different in magnitude than those produced by dehydro-Phe and dehydro-Leu. The methanol–peptide interactions show characteristic features of multiple hydrogen-bond formations involving polar sites of participating peptide and methanol molecules. The packing of the molecules in the unit cell is stabilized by interactions through methanol molecules with the help of several hydrogen bonds.  相似文献   

8.
Vitamin D3 and the synthetic vitamin D analogs, 1α‐hydroxyvitamin D3 [1α(OH)D3], 1α‐hydroxyvitamin D2 [1α(OH)D2] and 25‐hydroxyvitamin D3 [25(OH)D3] were appraised for their vitamin D receptor (VDR) associated‐potencies as cholesterol lowering agents in mice in vivo. These precursors are activated in vivo: 1α(OH)D3 and 1α(OH)D2 are transformed by liver CYP2R1 and CYP27A1 to active VDR ligands, 1α,25‐dihydroxyvitamin D3 [1,25(OH)2D3] and 1α,25‐dihydroxyvitamin D2 [1,25(OH)2D2], respectively. 1α(OH)D2 may also be activated by CYP24A1 to 1α,24‐dihydroxyvitamin D2 [1,24(OH)2D2], another active VDR ligand. 25(OH)D3, the metabolite formed via CYP2R1 and or CYP27A1 in liver from vitamin D3, is activated by CYP27B1 in the kidney to 1,25(OH)2D3. In C57BL/6 mice fed the high fat/high cholesterol Western diet for 3 weeks, vitamin D analogs were administered every other day intraperitoneally during the last week of the diet. The rank order for cholesterol lowering, achieved via mouse liver small heterodimer partner (Shp) inhibition and increased cholesterol 7α‐hydroxylase (Cyp7a1) expression, was: 1.75 nmol/kg 1α(OH)D3 > 1248 nmol/kg 25(OH)D3 (dose ratio of 0.0014) > > 1625 nmol/kg vitamin D3. Except for 1.21 nmol/kg 1α(OH)D2 that failed to lower liver and plasma cholesterol contents, a significant negative correlation was observed between the liver concentration of 1,25(OH)2D3 formed from the precursors and liver cholesterol levels. The composite results show that vitamin D analogs 1α(OH)D3 and 25(OH)D3 exhibit cholesterol lowering properties upon activation to 1,25(OH)2D3: 1α(OH)D3 is rapidly activated by liver enzymes and 25(OH)D3 is slowly activated by renal Cyp27b1 in mouse.  相似文献   

9.
The crystal and molecular structure of the fully protected dipeptide Boc-Val-(S)-α-MeSer-OMe has been determined by X-ray diffraction techniques. Crystals grown from ethyl acetate/n-pentane mixtures are tetragonal, space group 141, with cell parameters at 295 K of a= 15.307(2), c= 18.937(10)Å, V = 4437.1 Å3, M.W. = 332.40, Z = 8, Dm= 0.99 g/cm3 and Dx= 0.995 g/cm3. The structure was solved by application of direct methods and refined to an R value of 0.028 for 1773 reflections with I≥3σ(I) collected on a CAD-4 diffractometer. Both chiral centers have the (S) configuration. The dipeptide assumes in the solid state an S shape. The urethane moiety is in the cis conformation, while the amide bond is in the common trans conformation. The conformational angles φ1, ψ1 of the Val and φ2, and ψ2 of the (S)-αMeSer fall in the F region of the φ-ψ map. The isopropyl side chain of the Val residue has the (t, g?) conformation, while the Ser side chain has a g+ conformation. The hydrogen bond donor groups are all involved in intermolecular H-bond interactions. Along the quaternary axis the dipeptide molecules are linked to each other with the formation of infinite rows.  相似文献   

10.
The molecular and crystal structures of one derivative and three model peptides (to the pentapeptide level) of the chiral Cα,α-disubstituted glycine Cα-methyl, Cα-isopropylglycine [(αMe)Val] have been determined by X-ray diffraction. The derivative is mClAc-l -(α Me)Val-OH, and the peptides are Z-l -(αMe)Val-(l -Ala)2-OMe monohydrate, Z-Aib-L-(αMe)Val-(Aib)2-OtBu, and Ac-(Aib)2-l -(αMe)Val-(Aib)2OtBu acetonitrile solvate. The tripeptide adopts a type-I β-turn conformation stabilized by a 1 ← 4N-H . O=C intramolecular H-bond. The tetra- and pentapeptides are folded in regular right-handed 310-helices. All four L-(αMe)Val residues prefer φ, Ψ angles in the right-handed helical region of the conformational map. The results indicate that: (i) the (αMe)Val residue is a strong type-I/III β-turn and helix former, and (ii) the relationship between (αMe)Val chirality and helix screw sense is the same as that of Cα-monosubstituted protein amino-acids. The implications for the use of the (αMe)Val residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

11.
Synthesized β1- and β2-pentapeptide sequences corresponding to published adrenoceptor transmembrane activation site subtypes were investigated in vitro for selectivity in association for drug ligands of known selectivity. Both nuclear magnetic resonance spectroscopy and molecular mechanics demonstrated that structural differences among the corresponding pentapeptide activation-site sequences can explain agonist selectivity. Results suggest the agonists bind across the activation site loop on the second transmembrane α-helix by dipole/dipole interactions between a ligand and the peptide. Since electrostatic interactions within the membrane may determine the rate of intercellular ion flux, agonist association across the activation site sequence could thereby decrease electrostatic resistance to positive ion flux into the cell. Interactions between the peptides and the ligands may provide insight into the structures and mechanisms involved in association of ligands for the identical sequences on the β-adrenoreceptors.  相似文献   

12.
Abstract: : The Fourier transform infrared spectra of Ac-(E)-ΔAbu-NHMe were analyzed to determine the predominant solution conformation (s) of this (E)-α,β-dehydropeptide-related compound and the electron density perturbation in its amide groups. The measurements were performed in dichloromethane and acetonitrile in the region of mode vs (N–H), amide I, amide II and vs (Cα= Cβ). The equilibrium geometrical parameters, calculated by a method based on the density functional theory with the B3LYP functional and the 6–31G* basis set, were used to support spectroscopic interpretation and gain some deeper insight into the molecule. The experimental and theoretical data were compared with those of three previously described molecules: isomeric Ac-(Z)-ΔAbu-NHMe, Ac-ΔAla-NHMe, which is deprived of any β-substituent, and saturated species Ac-Abu-NHMe. The titled compound assumes two conformational states in equilibrium in the DCM solution. One conformer is extended almost fully and like Ac-ΔAla-NHMe is C5 hydrogen-bonded. The other adopts a warped C5 structure similar to that of Ac-(Z)-ΔAbu-NHMe. The C5 hydrogen bond, unlike the H-bond in Ac-ΔAla-NHMe, is disrupted by acetonitrile. The resonance within the N-terminal amide groups in either of the (E)-ΔAbu conformers is not as well developed as the resonance in Ac-Abu-NHMe. However, these N-terminal groups, compared with the other unsaturated compounds, constitute better resonance systems in each conformationally related couple: the C5 hydrogen-bonded Ac-(E)-ΔAbu-NHMe/Ac-ΔAla-NHMe and the warped C5 Ac-(E)-ΔAbu-NHMe/Ac-(Z)-ΔAbu-NHMe. The resonance within the C-terminal groups of the latter couple apparently is similar, but less developed than the resonance in Ac-Abu-NHMe. The electron distribution within the C-terminal group of the hydrogen-bonded C5 (E)-ΔAbu conformer apparently is determined mainly by the electron influx from the Cα= Cβ double bond.  相似文献   

13.
Studies about phosphorylation-dephosphorylation mechanisms require the development of probes capable of being used in in vitro and in vivo conditions. We show in this work that the chemically and enzymatically stable p(CH2PO3H2) Phe analog of (O)phosphotyrosine can be easily introduced in peptides by the solid-phase method. It has been incorporated in the 344-357 sequence of the β2 adrenergic receptor in place of the Tyr residue in position 350 and/or 354 in order to investigate the role of tyrosine phosphorylation in the receptor agonist-induced down-regulation. Since p(CH2PO3H2)Phe is an ionized hydrophilic residue, peptides containing this amino acid do not easily permeate the cellular membranes. Therefore the modified amino acid was introduced in the synthetic pathway in its N-Boc- p (CH2PO3Et2)Phe form, which could be partially or completely deprotected. Coupling steps, including that of the new amino acid, were performed with good yields (~60% total yield) and further deprotections provided both the p(CH2PO3H2)Phe and p(CH2PO3HEt)Phe containing peptides with yields of around 20% each. The structure of the peptides was assessed by NMR, mass spectroscopy and amino acid analysis and the new amino acid was characterized under its phenyl-thiocarbamyl form (PTC).  相似文献   

14.
The crystal structures of four peptides incorporating l-aminocycloheptane-l-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt β-turn conformations stabilized by an intramolecular 4 × 1 hydrogen bond, the former folding into a type-I/III β-turn and the latter into a type-II β-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3, suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the β-turn conformations in solution.  相似文献   

15.
Conformations of three series of model peptides: homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHCH3 (Xaa=Phe, Val, Leu. Abu. Ala) as ivell as α,β-dehydro Ac-Pro-ΔXaa-NHCHs [ΔXaa = (Z)-ΔPhe, ΔVal. (Z)-ΔLeu, (Z)-ΔAbu] were investigated by CD spectroscopy in 2 % dichloromethanecyclohexane, trifluoroethanol. water. and occasionally in other solvents. The spectra of homochiral peptides show a significant solvent dependence. Folded structures are present in 2% dichloromethane-cyclohexane and unordered ones occur in water. The folded conformers are of the inverse γ-turn type for all the peptides but Ac-Pro-L-Phe-NHCH3 for which the type-I β-turn is preferred. The changes in the spectra of the heterochiral peptides are limited. The compounds adopt the typc-II β–turn in 2% dichloromethanecyclohexane, represented by class B spectra, and retain this conformation in water as well as in fluorinated alcohols but not always to a full extent. The CD spectra of the unsaturated peptides in 2%, dichloromethanecyclohexane, although they cannot be assigned to any common spectral class, must be attributed to the βII-turn conformation as determined for these coinpounds by NMR and IR spectroscopy. The CD spectra of dehydropeptides exhibit a considerable solvent dependence and suggest unordered structures in water.  相似文献   

16.
Abstract: A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid‐phase synthetic techniques. Each nonapeptide was rich in α,α‐dialkylated amino acids [one 4‐aminopiperidine‐4‐carboxylic acid (Api) and six α‐aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9‐fluorenylmethyloxycarbonyl (Fmoc)‐Aib‐Aib‐OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 310‐helical, amphipathic design of these peptides was born out most prominently in the N‐terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations ≤100 μm ) and the acetylated peptides (concentrations ≤200 μm ) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages.  相似文献   

17.
As a part of the development of conformational guidelines for the design of metabolically altered peptidomimetics, we present conformational energy calculations on model dipeptide compounds with glycine (Gly), L-alanine (Ala), α-aminoisobutyric acid (Aib), L-tert-butylglycine (Tle), L-phenylglycine (Phg), (α,α)-diphenylglycine (Dφg), L-2-aminobutyric acid (Abu), 2-amino-2-ethylbutync acid (Deg), L-2-amino-2-vinylacetic acid (Ava) and (α,α)-divinylglycine (Dvg). The energy calculations have been made using molecular mechanics methods with a force field derived from MM2. The salient features are expressed in terms of conformational energy plots, drawn as a function of the backbone torsion angles φ(Ci-1′-Ni-Ciα-Ci′) and ψ(Ni- Ciα-Ni + 1). The low-energy structures of these compounds are qualitatively consistent with the X-ray crystal structure analyses of peptides and peptidomimetics. They are also in agreement with the results of the solution-phase studies carried out by NMR and IR techniques. The results obtained have important implications in the design of conformationally restricted peptidomimetics.  相似文献   

18.
Cerenkov luminescence imaging (CLI) is an emerging preclinical molecular imaging modality that tracks the radiation emitted in the visible spectrum by fast moving charged decay products of radionuclides. The aim of this study was in vitro and in vivo evaluation of the two radiotracers, 90Y‐DOTA‐PEG28‐A20FMDV2 (90Y‐1) and 90Y‐DOTA‐Ahx‐A20FMDV2 (90Y‐2) (>99% radiochemical purity, 3.7 GBq/µmol specific activity) for noninvasive assessment of tumors expressing the integrin αvβ6 and their future use in tumor targeted radiotherapy. Cell binding and internalization in αvβ6‐positive cells was 90Y‐1: 10.1 ± 0.8%, 50.3 ± 2.1%; 90Y‐2: 22.4 ± 1.7%, 44.7 ± 1.5% with <5% binding to αvβ6‐negative control cells. Biodistribution studies showed maximum αvβ6‐positive tumor uptake of the radiotracers at 1‐h post injection (p.i.) (90Y‐1: 0.64 ± 0.15% ID/g; 90Y‐2: 0.34 ± 0.11% ID/g) with high renal uptake (>25% ID/g at 24 h). Because of the lower tumor uptake and high radioactivity accumulation in kidneys (that could not be reduced by pre‐administration of either lysine or furosemide), the luminescence signal from the αvβ6‐positive tumor was not clearly detectable in CLI images. The studies suggest that CLI is useful for indicating major organ uptake for both radiotracers; however, it reaches its limitation when there is low signal‐to‐noise ratio.  相似文献   

19.
Abstract: Novel efficient and robust affinity chromatography material: There are several strategies known for the purification of integrins by affinity chromatography, but the disadvantages of common strategies like insufficient selectivity or compelling conditions for the elution still require alternatives. A new strategy, based on the immobilized C‐terminally modified peptide Ac‐Gly‐Ala‐c‐(CysSS‐Arg‐Arg‐Glu‐Thr‐Ala‐Trp‐Ala‐CysSS)‐Gly‐Ala‐O(CH2CH2O)2CH2CH2‐NH2 allows for the affinity purification of the integrin α5β1. While RGD peptides have been proven in the past to be inappropriate for selective purification of integrins by affinity chromatography, the new peptide can be efficiently used for selective enrichment of the integrin α5β1. It is a specific ligand of the target protein, but does not contain an RGD sequence. The application of well‐characterized affinity chromatography material with a site‐specifically immobilized peptide allows to obtain integrin α5β1 in a single chromatography step without contamination by other integrins. This process combines the advantages of a selective and monospecific protein‐ligand recognition with mild elution conditions and a low sensitivity of the immobilized ligand with respect to column regeneration.  相似文献   

20.
Analogues of [Orn6]-SP6–11 have been synthesized in which the Met11-NH2 residue is replaced by the α,γ-dimethyl, α,γ-dibenzyl and α,γ-di-tert-butyl esters of glutamic acid. These analogues were tested in three in vitro preparations representative of NK-1, NK-2 and NK-3 receptor types for agonist and antagonist activity. The dimethyl analogue is a selective full agonist in the NK-1 receptor type and a weak antagonist in the other two receptor types, while the dibenzyl and the di-tert-butyl analogues are potent antagonists in the NK-1 receptor type and weak antagonists in the other two receptor types. It is concluded that appropriate modification at the α-carboxamide and the side chain of the methionine residue of substance P may induce antagonism without using d -amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号