首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The polypentapeptide, H(L˙Val1-L˙Pro2-D·Ala3-L˙Val4-Gly5)n Val-OMe which is the D·Ala3 analog of the elastomeric polypentapeptide (PPP) of elastin, (L˙Val1-L˙Pro2-Gly3-L˙Val4-Gly5)n, has been synthesized. Its conformation is compared to that of the PPP and found to be similar with a somewhat stabilized β-turn. The D·Ala3 analog coacervates to form a more cohesive viscoelastic material and the coacervate when cross-linked by γ-irradiation exhibits an approximate doubling of the Young's modulus of elasticity. These results are discussed in connection with other related analogs of the polypentapeptide of elastin, which are non-elastomeric, and found to be consistent with a proposed conformationally based librational entropy mechanism of elasticity.  相似文献   

2.
The conformational analysis and electrostatic properties of the monomeric sequence V-G-G-V-G of the glycine-rich regions of elastin is presented with the aim of explaining NMR and CD experimental results. On the basis of the molecular model NH3?-V-G-G-V-G-COO?, Gaussian 92 quantum-molecular computations were performed by using principally an ab initio method at the 3-21G level and AM1. The occurrence of local secondary structures and of βI, βII, βII′ and VIa turns is discussed. Our results clearly demonstrate that the transconformations βI → half turn (which was invoked to explain experimental results) and βI→βII′ are theoretically allowed. © Munksgaard 1996.  相似文献   

3.
Peptides representing single repeat units of the carboxy-terminal domain (CTD) of RNA polymerase II (Tyr-Ser-Pro-Thr-Ser-Pro-Ser-Tyr-NH2, 1) contain overlapping Ser-Pro-Xaa-Xaa β-turn forming sites which permit their overall structure to closely resemble members of the quinoxaline class of antitumor DNA bisintercalators. We have modified this native sequence at the i+2 positions of each β-turn unit by substituting Gly or D-Ala in an attempt to preorganize this structure in aqueous solution. CD and NMR spectroscopic investigations confirmed the presence of type II β-turns within each of the substituted peptides in contrast to the native sequence which contains a relatively low population of turn structure. In addition, an examination of singly substituted peptides suggests that an increase in the population of β-turn structure within the amino-terminal Ser-Pro-Xaa-Xaa site also increased the formation of β-turn structure in the carboxy-terminal (unmodified) Ser-Pro-Xaa-Xaa site; in comparison, substitution in the carboxy-terminal site did not influence structure in the remaining portion of the peptide. Overall, these results suggest that the structures formed could provide unique. preorganized linkers for the construction of novel DNA-interactive bisintercalators. © Munksgaard 1996.  相似文献   

4.
We have recently described the preparation of Fpr (C60-based fulleroproline). In this paper the synthesis and a conformational characterization of heterochiral di-and tripeptides containing this new α-amino acid are reported. A folded structure, induced by the-l -Fpr-d -Ala-sequence in chloroform solution and detected by Fourier transform infrared absorption and H nuclear magnetic resonance, has been compared with the known propensity of the cognate-l -Pro-d -Ala-sequence to adopt a βII-turn conformation, which has also been confirmed in this work. The βII-turn structure is retained in the crystal state by the Pro-peptides, as shown by the X-ray diffraction structures of Ibu-l -Pro-d -Ala-NHtBu and Z-l -Pro-d -Ala-l -Ala-OtBu. © Munksgaard 1997.  相似文献   

5.
Abstract: The structural features related to the biologic activities of a potent, response-selective decapeptide agonist of human C5a, YSFKPMPLaR (C5a65–74, Y65, F67, P69, P71, d -Ala73), were identified by NMR analysis in H2O, DMSO and TFE. This investigation showed that the KPM residues in H2O and the SFKPM residues in DMSO exhibited an extended backbone conformation, whereas a twisted conformation was found in this region in TFE. In H2O, the C-terminal region (PLaR) adopted a distorted type II β-turn or a type II/V β-turn. In the type II/V β-turn, Leu72 exhibited a conformation typical of a type II β-turn, whereas d -Ala73 exhibited a conformation characteristic of a type V β-turn. Furthermore, a γ-turn involving residues LaR overlapped with the type II/V β-turn. In DMSO, the C-terminal region had the analogous turn-like motif (type II/V β-turn overlapping with γ-turn) found in H2O. In TFE, no β-turn motifs were formed by the PLaR residues. These turn-like motifs in the C-terminal region of the peptide in both H2O and DMSO were in agreement with the biologically important conformations predicted earlier by a structure–function analysis of a related panel of decapeptide analogs. The motifs determined by the NMR analysis of YSFKPMPLaR in H2O and DMSO may represent structural elements important for C5a agonist activity and thus can be used to design the next generation of C5a agonist, partial agonist and antagonist analogs.  相似文献   

6.
Conformational energy computations on Ac-l -(αMe)Val-NHMe indicate that turns and right-handed helical structures are particularly stable conformations for this chiral Cα-methyl, Cα-alkylglycyl residue. We have synthesized and characterized a variety of l -(αMe)Val derivatives and peptides (to the pentamer level). The results of the solution conformational analysis, performed using infrared absorption, 1H nuclear magnetic resonance, and circular dichroism, are in general agreement with those obtained from the theoretical investigation, in the sense that the l -(αMe)Val residue turns out to be a strong β-turn and right-handed helix former. A comparison is also made with the conclusions extracted from published work on peptides rich in other Cα-methyl, Cα-alkylglycyl residues.  相似文献   

7.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

8.
Abstract: A spontaneously folding β‐hairpin peptide (Lys‐Lys‐Tyr‐Thr‐Val‐Ser‐Ile‐Asn‐Gly‐Lys‐Lys‐Ile‐Thr‐Val‐Ser‐Ile) and related cyclic (cyclo‐Gly‐Lys‐Tyr‐Ile‐Asn‐Gly‐Lys‐Ile‐Ile‐Asn) and linear (Ser‐Ile‐Asn‐Gly‐Lys) controls were studied to determine the effects of various factors on secondary structure. Secondary structure was evaluated using circular dichroism (CD) and 1D and 2D 1H nuclear magnetic resonance (NMR). The effects of chemical modifications in the peptide and various solution conditions were investigated to determine their impact on peptide structure. The β‐hairpin peptide displayed a CD minimum at 216 nm and a TOCSY i + 1 ? i + 2 and i + 2 ?i + 3 interaction, confirming the expected structure. Using NMR α‐proton (H) chemical shifts, the extents of folding of the β‐hairpin and linear control were estimated to be 51 and 25% of the cyclic control (pH 4, 37 °C), which was taken to be maximally folded. Substitution of iso‐aspartic acid for Asn reduced the secondary structure dramatically; substitution of aspartic acid for Asn also disrupted the structure. This result suggests that deamidation in unconstrained β‐turns may have adverse effects on secondary structure. N‐terminal acetylation and extreme pH conditions also reduced structure, while the addition of methanol increased structure.  相似文献   

9.
The circular dichroism spectra of four β-turn model peptides, Z-Aib-Pro-Aib-Pro-OMe (1), Piv-Pro-Aib-NHMe (2), Piv-Pro-D-Ala-NHMe (3) and Piv-Pro-Val-NHMe (4) have been examined under a wide range of solvent conditions, using methanol, hexafluoroisopropanol and cyclohexane. Type I and Type II β-turns have been observed for peptides 1 and 2 respectively, in the solid state, while the Pro-D-Ala sequence adopts a Type II β-turn in a related peptide crystal structure. A class C spectrum is observed for 1 in various solvents, suggesting a variant of a Type I (III) structure. The Type II β-turn is characterized by a CD spectrum having two positive CD bands at ? 230 nm and ? 202 nm, a feature observed in Piv-Pro-D-Ala-NHMe in cyclohexane and methanol and for Piv-Pro-Aib-NHMe in methanol. Peptide 2 exhibits solvent dependent CD spectra, which may be rationalized by considering Type II, III and V reverse turn structures. Piv-Pro-Val-NHMe adopts non-β-turn structures in polar solvents, but exhibits a class B spectrum in cyclohexane suggesting a population of Type I β-turns.  相似文献   

10.
Binie V. Lipps 《Toxicon》2000,38(12):121
The venom of Australian taipan snake (Oxyuranus s. scutellatus) is extremely potent due to the presence of taipoxin. The intact complex molecule of taipoxin having molecular weight 45.6 kDa is composed of α, β and γ subunits. This report describes the high pressure liquid chromatography (HPLC) separation of α, β (β-1 and β-2) and γ subunits from taipan crude venom. The fractions containing the taipoxin subunits were further purified to obtain homogeneous proteins. The toxicity in mice showed the α subunit as most toxic, the γ subunit as moderately toxic and the β-1 and β-2 subunits were nontoxic. The proteins β-1 and β-2 were found to be mitogenic having neurotrophic activity on PC12 cells in culture similar to nerve growth factor. Immunologically, α, β-1, β-2 and γ subunits were found to be different, showing cross reactivity, and β-1 and β-2 were found to be identical for biological properties and molecular weight. Further characterization of unexpected mitogenic activity of β subunits is underway.  相似文献   

11.
Circular dichroic spectra have been obtained in aqueous solution and in trifluoroethanol for several synthetic (non-glycosylated) human choriogonadotropin carboxyl terminal peptides of the β-subunit ranging in size from 10 residues to 40 residues. There was no evidence for formation of α-helicity or β-structure, but the spectra in 90% (v/v) trifluoroethanol were consistent with the occurrence of β-turns. The Chou-Fasman predictive rules also suggest a high probability of β-turns in these peptides which could result in the occurrence of repeating kinks. Disulfide-linked dimers were also investigated by circular dichroism, and there was evidence of stabilization of particular skewness of the disulfide dihedral angle depending upon the location of the disulfide bond. The single phenylalanyl residue at position 115 in the β-subunit also contributed to the circular dichroic spectra above 250 nm. Antibodies raised to a peptide consisting of residues 111–145 have been shown to contain two immunological determinants, but the sum of antibodies raised to separate determinant sequences do not equal those raised to the full length peptide. These data could reflect the existence of a conformation-related determinant on the 111–145 peptide or stearic hindrance of immunoglobulin binding of two antibodies to the same peptide.  相似文献   

12.
1H spectra at 270MHz of the βh-endorphin glycyl residues in aqueous solution are reported. The chemical shifts, coupling constants and temperature coefficients are compared with those of the glycyl residues in Met-enkephalin and in a random coil model peptide. The local conformation of Tyr-Gly-Gly-Phe-segment observed in Met-enkephalin is maintained in βh-endorphin.  相似文献   

13.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (Δz-Phe) at position 2 or 3, Boc-Leu-Ala-Δz-Phe-Leu-OMe (1) and Boc-Leu-Δz-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (CαjH ? Ni+1H and NiH ? Ni+1H) between backbone protons. The simultaneous observation of “mutually exclusive” n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-Δz-Phe- Type II β-turn structure and a second species with Δz-Phe adopting a partially extended conformation with Ψ values of ± 100° to ± 150°. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive β-turn structure for the -Leu-Δz-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

14.
The benzylic methylene protons in a large number of benzyloxycarbonyl α-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 → 1 hydrogen bonded β-turn is not possible, the benzylic -CH2- protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro β-turn is retained in large peptide fragments of alamethicin.  相似文献   

15.
The crystal structure and solution conformation of Ac-Pro-ΔAla-NHCH3 and the solution conformation of Ac-Pro-(E)-ΔAbu-NHCH3 were investigated by X-ray diffraction method and NMR, FTIR and CD spectroscopies. Ac-Pro-ΔAla-NHCH, adopts an extended-coil conformation in the crystalline state, with all-trans peptide bonds and the ΔAla residue being in a C5 form, φ1=– 71.4(4), ψ1=– 16.8(4), φ2=– 178.4(3) and ψ2= 172.4(3)°. In inert solvents the peptide also assumes the C5 conformation, but a γ-turn on the Pro residue cannot be ruled out. In these solvents Ac-Pro-(E)- ΔAbu-NHCH3 accommodates a βII-turn, but a minor conformer with a nearly planar disposition of the CO—NH and C=C bonds (φ2~0°) is also present. Previous spectroscopic studies of the (Z)-substituted dehydropeptides Ac-Pro-(Z)- ΔAbu-NHCH, and Ac-Pro-ΔVal-NHCH3 reveal that both peptides prefer a βII-turn in solution. Comparison of conformations in the family of four Ac-Pro-ΔXaa-NHCH3 peptides let us formulate the following order of their tendency to adopt a β-turn in solution: (Z)- ΔAbu > (E)- δAbu > ΔVal; ΔAla does not. None of the folded structures formed by the four compounds is stable in strongly solvating media. © Munksgaard 1996.  相似文献   

16.
Abstract: The 10th and 11th residues of parathyroid hormone PTH(1–12) analogues were substituted to study the structure and function of PTH analogues. The substitution of Ala10 of [Ala3,10,12(Leu7/Phe7)Arg11]rPTH(1–12)NH2 with Glu10 and/or the Arg11 with Ile11 markedly decreased cAMP generating activity. Data from circular dichroism (CD) and the nuclear magnetic resonance (NMR) structural analysis of [Ala3,10,12(Leu7/Phe7)Arg11]rPTH(1–12)NH2 revealed tight α‐helical structures, while the Glu10 and/or Ile11 substituted analogues showed unstable α‐helical structures. We conclude that 10th and 11th residues are important for stabilizing its helical conformation and that destabilization of the α‐helical structure, induced by substituting the above residues, remarkably affect its biological potency.  相似文献   

17.
Stereochemical constraints have been introduced into the enkephalin backbone by substituting α-aminoisobutyryl (Aib) residues at positions 2 and 3, instead of Gly. 1H n.m.r. studies of Tyr-Aib-Gly-Phe-Met-NH2, Tyr-Aib-Aib-Phe-Met-NH2 and Tyr-Gly-Aib-Phe-Met-NH2 demonstrate the occurrence of folded, intramolecularly hydrogen bonded structures in organic solvents. Similar conformations are also favoured in the corresponding t-butyloxycarbonyl protected tetrapeptides, which lack the Tyr residue. A β-turn centred at positions 2 and 3 is proposed for the Aib2-Gly3analog. In the Gly2-Aib3analog, the β-turn has Aib3-Phe4as the corner residues. The Aib2-Aib3analog adopts a consecutive β-turn or 310 helical conformation. High in vivo biological activity is observed for the Aib2and Aib2-Aib3analogs, while the Aib3peptide is significantly less active.  相似文献   

18.
Lipolysis in isolated rabbit fat cells induced by β-melanotropin, α-melanotropin and corticotropin was inhibited by both corticotropin inhibiting peptide and [Gly10]-β-melanotropin. Corticotropin inhibiting peptide was a more potent antagonist than [Gly10]-β-melanotropin.  相似文献   

19.
20.
Abstract: The N‐terminal 1–34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses in bone characteristic of the native intact PTH. Recent studies have demonstrated that N‐terminal fragments presenting the principal activating domain such as PTH(1–11) and PTH(1–14) with helicity‐enhancing substitutions yield potent analogues with PTH(1–34)‐like activity. To further investigate the role of α‐helicity on biological potency, we designed and synthesized by solid‐phase methodology the following hPTH(1–11) analogues substituted at positions 1 and/or 3 by the sterically hindered and helix‐promoting Cα‐tetrasubstituted α‐amino acids α‐amino isobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid (Ac5c) and 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c): Ac5c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( I ); Aib‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( II ); Ac6c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( III ); Aib‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IV ); Aib‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( V ); S‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VI ), S‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VII ); Ac5c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VIII ); Ac6c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IX ); Ac5c‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( X ); Ac6c‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( XI ). All analogues were biologically evaluated and conformationally characterized in 2,2,2‐trifluoroethanol (TFE) solution by circular dichroism (CD). Analogues I – V , which cover the full range of biological activity observed in the present study, were further conformationally characterized in detail by nuclear magnetic resonance (NMR) and computer simulations studies. The results of ligand‐stimulated cAMP accumulation experiments indicated that analogues I and II are active, analogues III , VI and VII are very weakly active and analogues IV , V , VIII–XI are inactive. The most potent analogue, I exhibits biological activity 3500‐fold higher than that of the native PTH(1–11) and only 15‐fold weaker than that of the native sequence hPTH(1–34). Remarkably, the two most potent analogues, I and II , and the very weakly active analogues, VI and VII , exhibit similar helix contents. These results indicate that the presence of a stable N‐terminal helical sequence is an important but not sufficient condition for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号