首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC), professional antigen-presenting cells of the immune system, exert important functions both in induction of T cell immunity, as well as tolerance. It is well established that the main function of immature DC (iDC) in their in vivo steady-state condition is to maintain peripheral tolerance to self-antigens and that these iDC mature upon encounter of so-called danger signals and subsequently promote T cell immunity. Previously, it was believed that T cell unresponsiveness induced after stimulation with iDC is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. Moreover, several reports indicate that traditional DC maturation can no longer be used to distinguish tolerogenic and immunogenic properties of DC. This review will focus on the complementary role of dendritic cells in inducing both tolerance and immunity, and we will discuss the clinical implications for dendritic cell-based therapies.  相似文献   

2.
3.
近年来研究发现调节性树突状细胞(Dendritic cells,DC)能够下调免疫应答和介导外周免疫耐受,调节性DC诱导的免疫耐受与其未成熟或半成熟状态密切相关。大量研究表明调节性DC和调节性T细胞(Regulatory T cells,Treg)之间存在着复杂的双向调控:调节性DC可扩增和诱导产生Treg,还可影响Treg向局部组织和外周淋巴器官归巢;Treg则妨碍DC与非调节性T细胞的结合并抑制DC的活化、成熟和刺激T细胞增殖的能力。总之,调节性DC与Treg相互协同以精细调控机体的免疫应答。  相似文献   

4.
The propagation and regulation of an immune response is driven by a network of effector and regulatory T (Treg) cells. The interplay of effector T and Treg cells determines the direction of the immune response towards inflammation or its resolution in an autoimmune disease setting. In autoimmune diseases, this interplay shifts the balance in favor of the development of autoreactive effector T cells, resulting in inflammatory pathology. The objective of an effective therapeutic approach for autoimmune disease is to restore this balance. In this review, we describe the characteristics and development of pathogenic T helper 1 (Th1) and Th17 cells and the beneficial Treg cells in autoimmune diseases and the crucial roles of the cytokine milieu in influencing the balance of these T-cell subsets. Given the importance of cytokines, we discuss current immunotherapeutic strategies using cytokine or cytokine receptor antibodies for the treatment of autoimmune diseases.  相似文献   

5.
The role of T regulatory cells in asthma   总被引:7,自引:0,他引:7  
As a chronic inflammatory disease, much of the research related to asthma has been focused on proinflammatory mechanisms. Recently, advances have been made in defining mechanisms that control inflammation and induce immune tolerance to specific antigens. Subsets of CD4(+) cells known as T regulatory cells play an important role in directing these processes, and recent experiments have begun to define crucial molecular and signaling pathways. There is a growing body of evidence describing the function of T regulatory cells in the development, disease activity, and treatment responses related to asthma and other atopic diseases. Collectively, this new information suggests that a greater understanding of these pathways might lead to new therapeutic targets for asthma and other diseases of chronic airway inflammation.  相似文献   

6.
Role of regulatory dendritic cells in allergy and asthma   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Dendritic cells are the most efficient inducers of all immune responses, and are capable of inducing either productive immunity or maintaining the state of tolerance to self-antigens and allergens. The present review summarizes the emerging literature on dendritic cells, with the emphasis on regulatory function of dendritic cells in allergy and asthma. In particular we summarize recent data regarding the relationship between dendritic cell subsets and Th1, Th2 and regulatory T (TReg) cells. RECENT FINDINGS: The diverse functions of dendritic cells have been attributed to distinct lineages of dendritic cells, which arise from common immature precursor cells that differentiate in response to specific maturation-inducing or local microenvironment conditions. These subsets induce different lineages of T cells such as Th1, Th2 and TReg cells, including Th1Reg and Th2Reg cells, which regulate allergic diseases and asthma. SUMMARY: Subsets of dendritic cells regulate the induction of a variety of T-cell subtypes, which suppress the development of allergy and asthma, thus providing antiinflammatory responses and protective immunity.  相似文献   

7.
Leptin is an adipose‐secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1‐cell polarization and inhibit Th2‐cell responses. Additionally, leptin induces Th17‐cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg‐cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL‐12, TNF‐α, and IL‐6, (iii) increased DC production of TGF‐β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T‐cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin‐free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.  相似文献   

8.
Asthma is a chronic disease of the airways, most commonly driven by immuno-inflammatory responses to ubiquitous airborne antigens. Epidemiological studies have shown that disease is initiated early in life when the immune and respiratory systems are functionally immature and less able to maintain homeostasis in the face of continuous antigen challenge. Here, we examine the cellular and molecular mechanisms that underlie initial aeroallergen sensitization and the ensuing regulation of secondary responses to inhaled allergens in the airway mucosa. In particular, we focus on how T-regulatory (Treg) cells influence early asthma initiation and the potential of Treg cells as therapeutic targets for drug development in asthma.  相似文献   

9.
调节性T细胞在支气管哮喘中的重要作用   总被引:2,自引:0,他引:2  
本文论述了调市性T细胞的概念及几种主要的调节性T细胞:Th1、Th2、Th3细胞、TR细胞、CD4^ CD25^ 细胞、NKT细胞的主要特点和研究现状。并论述了这儿种调节性T细胞在支气管哮喘中的重要作用。提出Th1细胞更趋向于一种炎症细胞而非抗炎细胞,而其他各种调节性T细胞可能提供免疫保护及抗炎作用起到抑制哮喘发展的作用,通过控制调节性T细胞的治疗可能成为哮喘治疗的有效手段。  相似文献   

10.
T helper type 2 (Th2) and regulatory T cells (T(reg) ) have been postulated to have critical roles in the pathogenesis of allergic asthma. Cytotoxic T lymphocyte antigen 4 immunoglobulin (CTLA4Ig) gene-modified dendritic cells (DC-CTLA4Ig) have the potential to reduce Th2 cells and induce T(reg) cells. In the present study, we evaluated the therapeutic effects and potential mechanisms of the adoptive transfer of DC-CTLA4Ig into mice in an experimental model of asthma. BALB/c mice were sensitized with ovalbumin (OVA) and challenged with aerosolized OVA for 7 days. Just prior to the first challenge, DC-CTLA4Ig, DCs or DCs infected with DC-green fluorescent protein (GFP) were injected intravenously into mice. The administration of DC-CTLA4Ig reduced airway hyperresponsiveness, relieved asthmatic airway inflammation and decreased the numbers of esosinophils in the BALF in OVA-sensitized/challenged mice. In addition, DC-CTLA4Ig altered the balance of Th1/Th2 cytokine production in the lungs with increased interferon (IFN)-γ levels and decreased interleukin (IL)-4 levels, decreased the percentage of Th2 and increased both the percentage of Th1 and T(reg) cells in the lungs of OVA-sensitized/challenged mice. This research demonstrates that DC-CTL4Ig reduces airway hyperresponsiveness effectively and prevents airway inflammation in OVA-sensitized/challenged mice, which is due most probably to attenuated secretion of Th2 cytokines and increased secretion of Th1 cytokines in the local airway, and the correction of the pulmonary imbalance between Th1/Th2 cells and Th2/T(reg) cells.  相似文献   

11.
CD4+CD25+ regulatory T cells (Tregs) are critical for peripheral tolerance and prevention of autoimmunity. In vitro coculture studies have revealed that increased costimulation breaks Treg-mediated suppression in response to anti-CD3 or antigen. However, it was unclear whether loss of suppression arose from inactivation of Tregs or whether increased stimulation caused Th cells to escape suppression. We have investigated conditions that allow or override Treg-mediated suppression using DO11.10 TCR-transgenic T cells and chicken ovalbumin peptide 323-339-pulsed antigen-presenting cells. Treg suppression of Th proliferation is broken with potent stimulation, using activated spleen cells and high antigen dose, but is intact at low antigen dose. Costimulation with CD80 and CD86 expressed on activated dendritic cells was essential for Th cell escape from suppression at a high antigen dose. Potently stimulated Tregs were functional since they reduced levels of IL-2, IFN-gamma, IL-4 and Th CD25 expression in cocultures. Furthermore, Tregs responding to high antigen dose and activated splenocytes retained the ability to suppress proliferation, but only of Th cells responding to a sub-optimal dose of independent antigen. Together, our results demonstrate that under conditions of strong antigen-specific stimulation, Tregs remain functional, but Th cells escape Treg-mediated suppression.  相似文献   

12.
IL-33 is becoming a central molecule in allergic asthma that addresses various cascades of innate and adaptive immune responses that lead to inflammation in the lung. Its effects are exerted via its heterodimeric receptor that consists of ST2 and the ubiquitously expressed IL-1 receptor accessory protein (ILRAcP). IL-33 integrates both innate and adaptive immunity in a unique fashion via basophils, mast cells, eosinophils, innate lymphoid cells, NK and NKT cells, nuocytes, Th2 lymphocytes and a CD34(pos) precursor cell population. These actions of IL-33 seem to be particularly strong and dominant in models with mucosal inflammation. A study in this issue of the European Journal of Immunology demonstrates that IL-33 acts, in an ST2-dependent manner, as a maturation factor for BM-derived DCs via up-regulation of CD80, CD40 and OX40L. This process is accompanied by the release of pro-inflammatory cytokines, such as IL-6, IL-1β, TNF-α and TARC/CCL17. IL-33-pre-treated DCs were significantly more potent for the generation of allergen-specific Th2-type cells with IL-5 and IL-13 production. Intratracheal administration of OVA-pulsed DCs with IL-33 significantly enhances eosinophil numbers and mucous secretion. In conclusion, IL-33 affects both the development of allergic sensitization and the development of lung inflammation in allergic asthma.  相似文献   

13.
About 10% of people infected with Mycobacterium tuberculosis develop active tuberculosis (TB), and Th1 effector cells and Th1 cytokines play key roles in controlling M. tuberculosis infection. Here, we hypothesise that this susceptibility to M. tuberculosis infection is linked to increased T regulatory (Treg) cells and Th2 cytokines in TB patients. To test this, we recruited 101 participants (71 TB patients, 12 non-TB pulmonary diseases and 18 healthy subjects) and investigated Treg cells and Th1/Th2 cytokines in peripheral blood. CD4+CD25+ T cells and CD4+CD25+FoxP3+ T cells significantly increased and IL-5 dramatically decreased in TB patients relative to healthy subjects. CD8+CD28 T cells, IFN-γ, TNF-α, IL-10 and IL-4 significantly increased in patients with culture and sputum smear-positive pulmonary TB (PTB(+)) compared with healthy subjects. CD4+CD25+FoxP3+ and CD8+CD28 T cells significantly decreased in PTB(+) after one month of chemotherapy. CD4+, CD4+CD25+ and CD8+CD28+ T cells significantly increased in extra-pulmonary TB patients after one month of chemotherapy. These findings suggest that M. tuberculosis infection induces circulating CD4+CD25+FoxP3+ and CD8+CD28 T cell expansion, which may be related to the progression of M. tuberculosis infection, and that the balance between effector immune responses and suppression immune responses is essential to control M. tuberculosis infection.  相似文献   

14.
Cytokines are the main agents known to regulate Th1 / Th2 commitment, where they may operate through paracrine activity within clusters of T cells gathered around dendritic cells (DC). An in vitro system is used here to test this possibility, using clusters around DC composed of naive TCR-transgenic ovalbumin peptide 323 - 339-specific CD4(+) T cells as targets plus TCR-transgenic pigeon cytochrome C peptide 88 - 104-specific CD4(+) polarized Th1 or Th2 cells as inducers. The polarized inducer cells exerted their maximum effect when the two T cell populations were activated within the same cluster, implemented by allowing a single DC to present both their epitopes. This finding thus supports the paracrine hypothesis. The system was then employed to explore the role of individual cytokines by means of inhibition by monoclonal antibodies. Development of Th2 commitment proved strictly dependent on the IL-4 produced by the Th2 inducers. For Th1 commitment, IFN-gamma and IL-12 were both needed, but with IFN-gamma required only during the initial period of culture. The rapid timing observed under these conditions places constraints on the molecular basis of commitment, and appears accurately to reflect the physiological response in vivo.  相似文献   

15.
Dendritic cells (DCs) are important for several aspects of the development and function of CD4(+) CD25(+) regulatory T cells (Tregs), which are critical for maintaining peripheral tolerance and preventing autoimmunity. In cultures from human thymus, dendritic cells (DCs) conditioned with thymic stromal lymphopoietin (TSLP) mediate the production of Tregs from CD4(+) CD25(-) thymocytes. In cultures from mouse lymphoid organs, CD86-rich DCs induce the proliferation and improved suppressive function of antigen-specific Tregs. DC-expanded, antigen-specific Tregs show greatly enhanced efficacy relative to polyclonal populations in blocking experimental autoimmunity. In several animal models including NOD diabetes, Tregs directed to one autoantigen are able to block autoimmunity induced by multiple antigens from the target organ. Distinct states of DC differentiation or maturation are likely to be important for the emerging roles of DCs in the biology of Tregs, particularly the control of autoimmunity in an antigen-dependent manner.  相似文献   

16.
Immunosuppressive and anti-inflammatory agents are able to generate tolerogenic DCs, leading, in some cases, to induction or enhancement of regulatory T cells with suppressive activity. This novel mechanism of action, shared by several immunosuppressive and anti-inflammatory agents, is becoming firmly established and contributes to explain their functional properties. The possibility to manipulate DCs in vivo using more or less conventional low molecular weight drugs, enabling them to exert tolerogenic activities, could be exploited to better control a variety of chronic inflammatory conditions, from autoimmune diseases to allograft rejection.  相似文献   

17.
Role of regulatory T cells in allergy and asthma   总被引:12,自引:0,他引:12  
Th2 cells play a critical role in the pathogenesis of allergy and asthma. However, the immunological mechanisms that downmodulate and protect against the development of these disorders are poorly understood. A spectrum of CD4(+) T cells, including Th3 cells, T(R) cells, CD4(+)CD25(+) cells and NKT cells play a critical role in regulating these diseases. A better understanding of the role of regulatory cells in allergic diseases may lead to the identification of novel therapeutic targets.  相似文献   

18.
目的:探讨细胞因子、Th1/Th2细胞及调节性T细胞(Treg)、转录因子Foxp3在佐剂性关节炎(AA)大鼠肺功能损害中的作用机制。方法:将24只Wistar大鼠随机分为正常对照(NC)组和模型(Model)组,每组12只,向Model组大鼠右后足跖皮内注射弗氏完全佐剂0.1mL致炎,复制成AA模型。致炎48d后,观察两组大鼠足跖肿胀度(E)及关节炎指数(AI),HE染色观察肺组织病理学改变,计算两组大鼠肺系数(LI)、肺泡炎积分,免疫组化染色法检测Foxp3、TGF-β1蛋白表达情况。通过小动物肺功能仪检测肺功能,ELISA法测定细胞因子的变化,流式细胞术(FCM)测定Treg的表达。结果:与NC组相比,Model组大鼠E、AI、LI、1s内平均呼气流量(FEV1/FVC%)、肺泡炎积分、血清TNF-α、Th1/Th2、肺组织TGF-β1、CD4+ CD25- T细胞的表达水平明显升高,且两者差异有统计学意义(P<0.05或P<0.01);用力肺活量(FVC)、25%肺活量的最大呼气流量(FEF25)、50%肺活量的最大呼气流量(FEF50)、75%肺活量的最大呼气流量(FEF75)、最大呼气中期流量(MMF)、用力最大呼气流量(PEF)、肺动态顺应性(Cldyn)、血清IL-10、CD4+ Treg、CD4+ CD25- Treg、肺组织Foxp3蛋白表达水平显著降低(P<0.01)。Spearman相关分析结果显示,AA大鼠肺功能参数分别与E、AI、TNF-α、IL-10、Th1/Th2及CD4+ Treg、CD4+CD25+Treg、CD4+ CD25- T细胞、Foxp3、TGF-β1表达呈相关性,且相关有统计学意义(P<0.05或P<0.01)。结论:大鼠在致炎后对抗原刺激呈高敏反应状态,Th1/Th2状态失衡、CD4+ CD25- T细胞转化成CD4+ CD25+ Treg受阻,免疫调节功能紊乱,释放大量细胞因子和炎症介质,导致局部关节的病变和肺组织损害,从而发生AA肺功能降低。  相似文献   

19.
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses. Regulatory T (Treg) cells possess an immunosuppressive ability to inhibit effector T-cell responses, and Notch ligand Jagged1 (Jag1) is implicated in Treg cell differentiation. In this study, we evaluated whether bone marrow-derived DCs genetically engineered to express Jag1 (Jag1-DCs) would affect the maturation and function of DCs in vitro and further investigated the immunoregulatory ability of Jag1-DCs to manipulate T helper type 2 (Th2) -mediated allergic asthma in mice. We produced Jag1-DCs by adenoviral transduction. Overexpression of Jag1 by ovalbumin (OVA) -stimulated Jag1-DCs exhibited increased expression of programmed cell death ligand 1 (PD-L1) and OX40L molecules. Subsequently, co-culture of these OVA-pulsed Jag1-DCs with allogeneic or syngeneic CD4+ T cells promoted the generation of Foxp3+ Treg cells, and blocking PD-L1 using specific antibodies partially reduced Treg cell expansion. Furthermore, adoptive transfer of OVA-pulsed Jag1-DCs to mice with OVA-induced asthma reduced allergen-specific immunoglobulin E production, airway hyperresponsiveness, airway inflammation, and secretion of Th2-type cytokines (interleukin-4, interleukin-5, and interleukin-13). Notably, an increased number of Foxp3+ Treg cells associated with enhanced levels of transforming growth factor-β production was observed in Jag1-DC-treated mice. These data indicate that transgenic expression of Jag1 by DCs promotes induction of Foxp3+ Treg cells, which ameliorated Th2-mediated allergic asthma in mice. Our study supports an attractive strategy to artificially generate immunoregulatory DCs and provides a novel approach for manipulating Th2 cell-driven deleterious immune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号