首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaphylatoxins     
Activation of the complement system plays a crucial role in the pathogenesis of infection and inflammation. Especially the complement activation products C3a and C5a, known as the anaphylatoxins, are potent proinflammatory mediators. In addition to their evident role in innate immunity, it is clear that the anaphylatoxins also play a role in regulation of adaptive immune responses. The anaphylatoxins play a role in a variety of infectious and inflammatory diseases like sepsis, ischemia-reperfusion injury, immune complex diseases, and hypersensitivity diseases like asthma. In this review we discuss the role of anaphylatoxins in infection and inflammation. Furthermore, we focus on bacterial complement evasion strategies that can provide tools for further research on pathogenesis of infectious diseases and a better understanding of the role of complement and anaphylatoxins in infection and inflammation.  相似文献   

2.
Hepatic ischemia-reperfusion injury (IRI) is a major factor influencing graft outcome in liver transplantation, but its mechanism is not well defined. Although complement, including the membrane attack complex (MAC), a terminal product of complement activation, is thought to be involved in the multiple reactions subsequent to the ischemia-reperfusion (IR) process, the role of MAC in the pathogenesis of hepatic IRI requires further investigation. We used a warm ischemia-reperfusion injury model in mice and a syngeneic orthotopic liver transplantation model in rats to define the role of complement, including MAC, in hepatic IR. CD59-deficient mice had more severe liver dysfunction, evidenced by increased aspartate aminotransferase levels and increased injury of liver parenchymal and nonparenchymal cells than did CD59-sufficient mice during warm hepatic IR. Furthermore, complement depletion in CD59-deficient mice by pretreatment with cobra venom factor (CVF) or the genetic introduction of C3 deficiency partially protected against development of the severe liver dysfunction that occurred in CD59-deficient mice. Severity of liver dysfunction correlated with MAC deposition, apoptotic cells, and increased inflammatory mediators such as tumor necrosis factor α. Moreover, depletion of complement with CVF in orthotopic liver transplantation recipient rats attenuated IRI of the donor livers. Taken together, these results highlight the protective role of CD59 and pathogenic role of complement, including MAC, in the pathogenesis of hepatic IRI.  相似文献   

3.
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory–Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.  相似文献   

4.
Recent evidence has demonstrated that the complement cascade is involved in a variety of physiologic and pathophysiologic processes in addition to its role as an immune effector. Research in a variety of organ systems has shown that complement proteins are direct participants in maintenance of cellular turnover, healing, proliferation and regeneration. As a physiologic housekeeper, complement proteins maintain tissue integrity in the absence of inflammation by disposing of cellular debris and waste, a process critical to the prevention of autoimmune disease. Developmentally, complement proteins influence pathways including hematopoietic stem cell engraftment, bone growth, and angiogenesis. They also provide a potent stimulus for cellular proliferation including regeneration of the limb and eye in animal models, and liver proliferation following injury. Here, we describe the complement cascade as a mediator of tissue growth and regeneration.  相似文献   

5.
Despite multiple reports on autoantibody-initiated complement activation in autoimmune hepatitis (AIH), how does the humoral immunity contribute to the pathogenesis of AIH remained unclear. In this report, by adoptively transferring a polyclonal rabbit anti-OVA antibody into Hep-OVA Tg mice in which OVA is selectively expressed on the surface of hepatocytes, we found that excessive complement activation initiated by the autoantibody overwhelmed the protection of intrinsic cell surface complement regulators, and induced hepatocytes injury both in vitro and in vivo. The anti-OVA antibody induced hepatic injury in Hep-OVA Tg but not WT C57BL/6 mice as assessed by serum ALT levels and liver histopathology. Immunohistochemical analyses showed that after the antibody administration, there was massive complement activation on anti-OVA IgG coated hepatocytes in Hep-OVA Tg mice, but not in WT mice. Consistent with these results, depleting complement by cobra venom factor (CVF) prior to antibody injections protected Hep-OVA Tg mice from anti-OVA IgG induced hepatic injury. In addition, treating Hep-OVA Tg mice with recombinant mouse decay accelerating factor, a native complement inhibitor, protected them from autoantibody induced hepatitis. These results suggest that complement could play a pivotal role in liver specific autoantibody mediated hepatocyte injury in AIH, and that complement inhibitors could be, in principle, developed as novel therapeutics against AIH.  相似文献   

6.
The role of complement in pregnancy and fetal loss   总被引:2,自引:0,他引:2  
In the United States, between 1 and 3% of women suffer recurrent miscarriages; 50-70% of all conceptions fail. Although in the majority of affected women the cause of recurrent miscarriages is unknown, an immune mechanism involving the inappropriate and subsequently injurious recognition of the conceptus by the mother's immune system has been proposed. Murine models have recently been developed that are relevant to this issue. We and others have identified a novel role for complement as an early effector in the pathway leading to pregnancy loss associated with placental inflammation. Indeed, it appears that inhibition of complement activation is an absolute requirement for normal pregnancy, and that in the antiphosphospholid syndrome overwhelming activation of complement triggered by antibodies (Ab) deposited in placenta leads to fetal injury. Identification of complement activation as a mediator of pregnancy loss and definition of the complement components necessary to trigger such injury is likely to lead to a better understanding of its pathogenesis and to new and improved treatments.  相似文献   

7.
Cell death and necrosis are important reactions of liver cells to injury that play a role in a wide variety of human liver diseases. A review is given of the important facets known about the biochemical basis of toxic liver cell death. Liver cells can withstand a great many specific biochemical and morphologic changes without loss of viability. Disturbances in RNA and protein synthesis, mitochondrial function, or release of lysosomal enzymes do not play a primary causative role in cell death. Many previous studies have tended to implicate the plasma membrane and its presumed role in maintaining the proper Ca2+ balance as the primary site of the development of irreversible hepatocyte damage. These studies have generally faced a major difficulty in determining if the observed changes are the cause or an effect of cell death. Galactosamine-induced liver cell injury seems to offer a potentially analyzable model for the experimental analysis of liver cell necrosis. Our studies on the role of plasma membrane injury and associated increases in total cellular calcium are reviewed, and a tentative working hypothesis for the pathogenesis of galactosamine-induced liver cell necrosis is presented.  相似文献   

8.
Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.  相似文献   

9.
Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.  相似文献   

10.
The complement system is an important part of the innate immune defence. It contributes not only to local inflammation, removal and killing of pathogens, but it also assists in shaping of the adaptive immune response. Besides a role in inflammation, complement is also involved in physiological processes such as waste disposal and developmental programmes. The complement system comprises several soluble and membrane‐bound proteins. The bulk of the soluble proteins is produced mainly by the liver. While several complement proteins are produced by a wide variety of cell types, other complement proteins are produced by only a few related cell types. As these data suggest that local production by specific cell types may have specific functions, more detailed studies have been employed recently analysing the local and even intracellular role of these complement proteins. Here we review the current knowledge about extrahepatic production and/or secretion of complement components. More specifically, we address what is known about complement synthesis by cells of the human immune system.  相似文献   

11.
In the United States, between 1 and 3% of women suffer recurrent miscarriages; 50-70% of all conceptions fail. [1,2] Although in the majority of affected women the cause of recurrent miscarriages is unknown, an immune mechanism involving the inappropriate and subsequently injurious recognition of the conceptus by the mother's immune system has been proposed. Murine models have recently been developed that are relevant to this issue. We and others have identified a novel role for complement as an early effector in the pathway leading to pregnancy loss associated with placental inflammation. Indeed, it appears that inhibition of complement activation is an absolute requirement for normal pregnancy, and that in the antiphosphospholid syndrome overwhelming activation of complement triggered by antibodies (Ab) deposited in placenta leads to fetal injury. Identification of complement activation as a mediator of pregnancy loss and definition of the complement components necessary to trigger such injury is likely to lead to a better understanding of its pathogenesis and to new and improved treatments.  相似文献   

12.
Activation of the complement system occurs in a variety of neuroinflammatory diseases and neurodegenerative processes of the CNS. Studies in the last decade have demonstrated that essentially all of the activation components and receptors of the complement system are produced by astrocytes, microglia, and neurons. There is also rapidly growing evidence to indicate an active role of the complement system in cerebral ischemic injury. In addition to direct cell damage, regional cerebral ischemia and reperfusion (I/R) induces an inflammatory response involving complement activation and generation of active fragments, such as C3a and C5a anaphylatoxins, C3b, C4b, and iC3b. The use of specific inhibitors to block complement activation or their mediators such as C5a, can reduce local tissue injury after I/R. Consistent with therapeutic approaches that have been successful in models of autoimmune disorders, many of the same complement inhibition strategies are proving effective in animal models of cerebral I/R injury. One new form of therapy, which is less specific in its targeting of complement than monodrug administration, is the use of immunoglobulins. Intravenous immunoglobulin (IVIG) has the potential to inhibit multiple components of inflammation, including complement fragments, pro-inflammatory cytokine production and leukocyte cell adhesion. Thus, IVIG may directly protect neurons, reduce activation of intrinsic inflammatory cells (microglia) and inhibit transendothelial infiltration of leukocytes into the brain parenchyma following an ischemic stroke. The striking neuroprotective actions of IVIG in animal models of ischemic stroke suggest a potential therapeutic potential that merits consideration for clinical trials in stroke patients.  相似文献   

13.
The complement system plays an important role in the antimicrobial defense of the organism. Its components recognize a large variety of pathogens and target them for destruction, either directly by formation of a membrane attack complex or indirectly by recruiting phagocytic cells. In addition, it has several functions in cell activation, clearance of immune complexes, control of inflammatory reactions, chemotaxis and autoimmunity For mediation of all these tasks of the complement system, complement receptor molecules on the cell surface play a key role. Current knowledge on structure, function, signal transduction and associated molecules is briefly summarized here. The role of complement receptors for human immunodeficiency virus (HIV)-associated pathogenesis is ambiguous and varies depending on cell type. On the one hand, complement receptors support the infected host to manage HIV infection and to defend itself, at least partially, against viral spreading throughout the organism. Such complement receptor-mediated supporting mechanisms are activation of immune cells and lysis of viral particles and infected host cells. On the other hand, HIV employs complement receptors to intrude more easily into various cell types, to become localized into lymph follicles and to activate viral replication in latently infected cells. This review summarizes the complex interaction of virus and complement receptors in HIV infection for different cell types.  相似文献   

14.
The complement system is thought to be a major physiological mediator of injury in a number of diseases including rheumatoid arthritis (RA). The membrane attack complex (MAC) of complement has been detected in RA tissue, suggesting that the MAC may be relevant to the pathogenesis of the disease. Deposition of sublytic concentrations of the MAC has been shown to promote the expression of proinflammatory mediators. In the present study, we utilized rabbits deficient in the complement protein C6 to elucidate the role of the MAC in mediating the pathogenesis of antigen-induced arthritis. Swelling, leukocyte accumulation, IL-8 expression, proteoglycan, and hydroxyproline content were assessed. Analysis of synovial tissue demonstrated a significant decrease in leukocyte influx and a parallel decrease in tissue associated IL-8 in joints of C6-deficient animals as compared to C6-sufficient animals. However, this did not correlate with the preservation of connective tissue. The results derived from this study provide evidence that the MAC has an important function in mediating leukocyte recruitment in antigen-induced arthritis but does not play a direct role in connective tissue breakdown.  相似文献   

15.
The importance of the complement system in renal ischemia-reperfusion injury and acute rejection is widely recognized, however its contribution to the pathogenesis of tissue damage in the donor remains underexposed. Brain-dead (BD) organ donors are still the primary source of organs for transplantation. Brain death is characterized by hemodynamic changes, hormonal dysregulation, and immunological activation. Recently, the complement system has been shown to be involved. In BD organ donors, complement is activated systemically and locally and is an important mediator of inflammation and graft injury. Furthermore, complement activation can be used as a clinical marker for the prediction of graft function after transplantation. Experimental models of BD have shown that inhibition of the complement cascade is a successful method to reduce inflammation and injury of donor grafts, thereby improving graft function and survival after transplantation. Consequently, complement-targeted therapeutics in BD organ donors form a new opportunity to improve organ quality for transplantation. Future studies should further elucidate the mechanism responsible for complement activation in BD organ donors.  相似文献   

16.
The complement system in the peripheral nerve: friend or foe?   总被引:1,自引:0,他引:1  
The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this delicate balance is disrupted, the C system may cause injury and contribute to the pathogenesis of various diseases, including neuropathies. Here we review evidence indicating that C factors and regulators are locally synthesized in the peripheral nerve and we discuss the evidence supporting the protective or detrimental role of C activation in health, injury and disease of the peripheral nerve.  相似文献   

17.
Serum complement cascade, a part of innate immunity required for host protection against invading pathogens, is also a mediator of various forms of disease and injury. It is activated by classical, lectin, and alternative pathways that lead to activation of C3 component by C3 convertases, release of C3b opsonin, C5 conversion and eventually membrane attack complex formation. The tightly regulated activation process yields also C3a and C5a anaphylatoxins, which target a broad spectrum of immune and non-immune cells. The review discusses the involvement of the complement cascade in kidney disease pathogenesis and injury. The role of the complement pathways in autoantibody-mediated forms of glomerulonephritis (lupus nephritis, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic autoantibody-induced or membranoproliferative glomerulonephritis, membranous nephropathy), C3 glomerulopathy, atypical forms of hemolytic uremic syndrome, ischemic-reperfusion injury of transplanted kidney, and antibody-mediated renal allograft rejection are discussed. The disturbances in complement activation and regulation with underlying genetics are presented and related to observed pathology. Also promising strategies targeting the complement system in complement-related disorders are mentioned.  相似文献   

18.
We examined the role of the complement system in the pathogenesis of dermatomyositis. Using an antibody against the neoantigens of the terminal C5b-9 membrane attack complex, we performed immunocytochemical studies that localized this complex to the intramuscular microvasculature (arterioles and capillaries) of muscle biopsy specimens from 10 of 12 patients (83 percent) with childhood dermatomyositis and 5 of 19 patients (26 percent) with adult dermatomyositis. Fifty-two control specimens, including 14 from patients with polymyositis and 12 from patients with denervation atrophy (a condition known to be associated with necrotic capillaries), showed no deposition of membrane attack complex in the microvasculature. These findings indicate that the complement system is deposited, bound, and activated to completion within the intramuscular microvasculature of patients with dermatomyositis. In addition to providing further evidence for the presence of vasculopathy in dermatomyositis, these findings suggest a primary role for complement in mediating vessel injury in the disease, particularly in its childhood form.  相似文献   

19.
The alternative pathway of complement is receiving increasing attention as a therapeutic target because of recent findings in several animal models that support its essential role in tissue injury and disease pathogenesis. Although the contribution of alternative pathway activation to serum complement activation in vitro is relatively modest, its role in generating activated pro-inflammatory fragments at extra-vascular sites is substantial. Several potential mechanisms might underlie this exaggerated effect, including local synthesis of alternative pathway components, disease-induced alterations of regulatory proteins, and influx of inflammatory cells that contain alternative pathway components into sites of injury. This review examines several animal models in which the alternative pathway is centrally involved in disease pathogenesis and which suggest a potential role for alternative pathway inhibitors as therapies for human disease. It is also expected that several clinically relevant studies will be presented at the XXth International Complement Workshop that will identify additional areas of interest with regard to this pathway.  相似文献   

20.
目的:探讨补体系统活化在大鼠实验性肝坏死中的作用。方法:应用D-氨基半乳糖/内毒素(Ga1N/LPS)诱导大鼠肝坏死,用血清50%补体溶解法作为评价血清经典途径补体溶血活性而检测血清CH50、光镜下观察肝组织形态学改变和免疫组化法检测肝组织内补体C3沉积。结果:各组大鼠在用药后随着时间延长血清CH50呈不同程度下降,与对照组比较,单用Ga1N后第4小时血清CH50显著下降(71.43%,P〈0、05),2、6、8、10、12和14小时血清CH50降低更显著(P〈0.01),最低为30、5%;单用LPS后2小时的血清CH50下降至正常水平的69.31%(P〈0.01);用药后4~6小时,血清CH50有回升趋势,但仍低于正常水平,差异显著(P〈0.05);Ga1N/LPS组血清CH50的变化与Ga1N组相似,用药后2~14小时血清CH50下降均非常显著(P〈0.01);应用Ga1N/LPS后2~4小时的血清CH50与LPS组比较差异不显著(P〉0.05),但在用药后6~14小时血清的CH50在两组间差异非常显著(P〈0.01)。联合注射Ga1N/LPS后可见肝组织呈亚大块坏死,并观察到C3沉积于Kupffer细胞、肝细胞膜及坏死区;单用Ga1N组可见肝组织损伤轻微,并观察到有单核细胞浸润、肝细胞气球样变及灶性坏死,但未见C3在肝内沉积;单用LPS组的肝组织形态学改变与Ga1N组类似,C3沉积在内皮细胞和Kupffer细胞。结论:血清补体活化和肝内局部补体活化在Ga1N/LPS大鼠急性肝坏死中起重要作用。外源性LPS可引起大鼠血清补体系统经典途径的活化,但其所致的肝损伤可能与肝组织中补体C3的局部沉积有关。Ga1N所致肝损伤可能与血清补体活化无明显关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号