首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mainstream cigarette smoke increases the permeability of human airways; however, the mechanism for this increased permeability is poorly defined. Tight junctions between adjacent epithelial cells constitute the physiological barrier to fluid and macromolecules in epithelium. These structures are highly regulated by phosphorylation and their association with the cytoskeleton. The goal of these studies was to identify the signal transduction pathways that regulate smoke-induced permeability. Using a physiologically relevant air-liquid interface exposure system, electrically tight monolayers of the human bronchial epithelial cell-line Calu-3 were exposed to fresh, whole mainstream cigarette smoke. This exposure results in a regulated, dose-dependent loss of epithelial barrier function in the lung epithelial monolayers. With cigarette smoke exposure, transepithelial electrical resistance (TER) is decreased and albumin flux is increased, indicating a loss in barrier function to ions and macromolecules, respectively; however, both largely recover in 30 min. Smoke-induced losses of macromolecular barrier function are the result of multicellular junctional reorganization, resulting in increased leak volume rather than leak frequency. Inhibiting Rho kinase (ROCK) significantly reduces the smoke-induced permeability to both ions and macromolecules, while inhibiting protein tyrosine kinases (PTK) only reduces smoke-induced macromolecular permeability. Interestingly, inhibiting myosin light chain kinase (MLCK) exacerbates smoke-induced permeability, indicating that MLCK and ROCK have opposing regulatory roles. Our results demonstrate that the smoke-induced loss of epithelial barrier function in human bronchial epithelium is a regulated process rather than a cytotoxic response. Additionally, our results indicate that activation of PTK and ROCK and inactivation of MLCK contribute to the increased airway permeability caused by mainstream cigarette smoke.  相似文献   

2.
Mainstream cigarette smoke increases the permeability of human airways; however, the mechanism for this increased permeability is poorly defined. Tight junctions between adjacent epithelial cells constitute the physiological barrier to fluid and macromolecules in epithelium. These structures are highly regulated by phosphorylation and their association with the cytoskeleton. The goal of these studies was to identify the signal transduction pathways that regulate smoke-induced permeability. Using a physiologically relevant air–liquid interface exposure system, electrically tight monolayers of the human bronchial epithelial cell-line Calu-3 were exposed to fresh, whole mainstream cigarette smoke. This exposure results in a regulated, dose-dependent loss of epithelial barrier function in the lung epithelial monolayers. With cigarette smoke exposure, transepithelial electrical resistance (TER) is decreased and albumin flux is increased, indicating a loss in barrier function to ions and macromolecules, respectively; however, both largely recover in 30 min. Smoke-induced losses of macromolecular barrier function are the result of multicellular junctional reorganization, resulting in increased leak volume rather than leak frequency. Inhibiting Rho kinase (ROCK) significantly reduces the smoke-induced permeability to both ions and macromolecules, while inhibiting protein tyrosine kinases (PTK) only reduces smoke-induced macromolecular permeability. Interestingly, inhibiting myosin light chain kinase (MLCK) exacerbates smoke-induced permeability, indicating that MLCK and ROCK have opposing regulatory roles. Our results demonstrate that the smoke-induced loss of epithelial barrier function in human bronchial epithelium is a regulated process rather than a cytotoxic response. Additionally, our results indicate that activation of PTK and ROCK and inactivation of MLCK contribute to the increased airway permeability caused by mainstream cigarette smoke.  相似文献   

3.
The effect of cigarette smoke on vascular permeability in the rat nasal mucosa was studied using the Evans blue extravasation method. Exposure to smoke from cigarettes induced a significant extravasation of Evans blue in the nasal mucosa of normal rats, suggesting an increased vascular permeability to plasma proteins. The oedema response was correlated to tar, nicotine and vapour phase components in the smoke. The smoke-induced permeability effect was abolished in rats pretreated neonatally with capsaicin. Also, systemic or local pretreatment with [D-Arg, D-Pro, D-Trp, Leu]Substance P, a substance P antagonist, inhibited the permeability response to cigarette smoke. Insertion of a glass-fibre filter, which removes the particulate phase of the smoke (including nicotine), did not significantly reduce the permeability response. The present findings suggest that the smoke-induced oedema in the rat nasal mucosa is not caused by nicotine but by vapour-phase irritants, which activate capsaicin-sensitive C-fibre afferents. These neurons then release agents such as substance P or a related tachykinin which increase permeability to plasma proteins.  相似文献   

4.
We have previously shown that the anti-cancer agent 2-methoxyestradiol (2ME) induces hyperpermeability across endothelial monolayers. Here, we show that both microtubule disruptor, 2ME, and microtubule stabilizer, paclitaxel (taxol), increase vascular lung permeability in vitro and in vivo. Simultaneous application of 2ME and taxol alleviates 2ME-induced endothelial barrier dysfunction, which is evident by the decreased Evans Blue Dye accumulation in lung tissue and increased transendothelial resistance across monolayers. 2ME significantly increases the level of p38 and MLC phosphorylation in both endothelial monolayers and murine lungs; this increase is suppressed in the presence of taxol. Taxol treatment leads to an immediate and sustained increase in tubulin acetylation in human pulmonary artery endothelial cells (HPAEC). Surprisingly, 2ME treatment also increases tubulin acetylation; however, the onset of this process is delayed and coincides with the stage of a partial barrier restoration in HPAEC monolayer. Inhibition of histone deacetylase 6 (HDAC6) with tubacin increases tubulin acetylation level, suppresses 2ME-induced HSP27 and MLC phosphorylation, and decreases 2ME-induced barrier dysfunction, suggesting barrier-protective and/or barrier-restorative role for tubulin acetylation in vascular endothelium.  相似文献   

5.
Protein kinase signaling in the modulation of microvascular permeability   总被引:11,自引:0,他引:11  
Yuan SY 《Vascular pharmacology》2002,39(4-5):213-223
The permeability of exchange microvessels is regulated through complex interactions between signaling molecules and structural proteins in the endothelium. Endothelial barrier integrity is maintained by adhesive interactions occurring at the cell-cell and cell-matrix contacts via junctional proteins and focal adhesion complexes that are anchored to the cytoskeleton. Cyclic AMP (cAMP) and cAMP-dependent kinase counteract with the nitric oxide (NO)-cyclic GMP (cGMP) pathway to protect the basal barrier function. Upon stimulation by physical stress, growth factors, or inflammatory agents, endothelial cells undergo a series of intracellular signaling reactions involving activation of protein kinase C (PKC), protein kinase G (PKG), mitogen-activated protein kinases (MAPK), and/or protein tyrosine kinases. The phosphorylation cascades trigger biochemical and conformational changes in the barrier structure and ultimately lead to an opening of the paracellular pathway. In particular, myosin light chain kinase (MLCK) activation and subsequent myosin light chain (MLC) phosphorylation in endothelial cells directly result in cell contraction and shape changes. The phosphorylation of beta-catenin may cause disorganization of adherens junctions or dissociation of vascular endothelial (VE)-cadherin-catenin complex from its cytoskeletal anchor, leading to loose or opened intercellular junctions. Additionally, focal adhesion kinase (FAK) phosphorylation-coupled focal adhesion assembly and redistribution provide an anchorage support for the conformational changes occurring in the cells and at the cell junctions. The Src family tyrosine kinases may serve as common signals that coordinate these molecular events to facilitate the paracellular transport of macromolecules. The critical roles of protein kinases in endothelial hyperpermeability implicate the therapeutic significance of protein kinase inhibitors in the prevention and treatment of diseases and injuries that are associated with microvascular barrier dysfunction.  相似文献   

6.
Cigarette smoke is a significant independent risk factor for vascular diseases and is a leading cause of structural and functional alterations of the vascular endothelium. In this study, we show protein carbonylation in the human umbilical vein endothelial cell line (ECV-304) exposed to whole-phase cigarette smoke extract. The main carbonylated proteins, including cytoskeletal proteins, glycolytic enzymes, xenobiotic metabolizing and antioxidant enzymes, and endoplasmic reticulum proteins, were identified by means of two-dimensional electrophoresis and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry (redox proteomics). Morphological analyses by fluorescence microscopy evidenced alterations in the microtubule cytoskeleton, especially at longer exposure time to cigarette smoke extract. Morphological analyses by transmission electron microscopy showed vacuolisation of the cytoplasm, alteration of mitochondria ultrastructure, and some enlargement of the perinuclear space. The possible role played by protein carbonylation caused by reactive species contained in cigarette smoke in the cigarette smoke-induced endothelial injury is discussed.  相似文献   

7.
目的研究西红花酸对晚期糖基化终产物(advancedglycation end products,AGEs)诱导血管内皮细胞通透性增加的抑制作用并探讨其机制。方法用不同剂量西红花酸(0.01、0.1、1μmol.L-1)预孵牛主动脉血管内皮细胞(bo-vine vascular endothelial cells,BECs)12 h后,AGEs(100μg.L-1)刺激内皮细胞,以HRP作示踪剂检测内皮细胞单层通透性变化,ELISA法测定细胞上清MCP-1和TNF-α水平,罗丹明-鬼笔环肽荧光染色检测细胞骨架蛋白F-actin变化,Cell-based ELISA法和液闪法分别测定磷酸化p38 MAPK蛋白表达量和活性变化。同时设定正常对照组(control)、AGEs(100 mg.L-1)模型组和葛根素(1 g.L-1)阳性对照组。结果与AGEs模型照组相比,西红花酸(0.1、1μmol.L-1)预孵细胞后,F-actin骨架蛋白破环程度有所减轻,细胞单层通透性减小(P<0.01或0.05),TNF-α和MCP-1分泌降低,磷酸化p38MAPK的数量下降且活性被抑制(P<0.01或0.05)。结论西红花酸对AGEs诱导内皮细胞通透性增加有抑制作用,该作用可能与其抑制p38MAPK通路有关,这可能是其抗糖尿病血管病变的机制之一。  相似文献   

8.
1. Pentobarbitone-anaesthetized pigs were challenged with cigarette smoke (unfiltered or filtered through a Cambridge glass fibre filter to remove the particulate phase including nicotine), as well as nicotine aerosol and the gas phase components nitric oxide (NO) and carbon monoxide (CO); the effects on the bronchial and pulmonary circulations, and pulmonary airway mechanics, were examined. The relative importance of endogenous NO mechanisms in the pig lung was also studied by giving the NO synthesis inhibitor NG-nitro-L-arginine (L-NOARG; 50 mg kg-1) intravenously. Mean arterial pressure and blood flow in the bronchial, pulmonary and femoral circulations were measured, the latter with ultrasonic flow probes around the supplying arteries, and vascular resistance (VR) was calculated. Changes in pulmonary airways resistance (Rpulm) and lung dynamic compliance (Cdyn) were also determined. Finally, the concentration of NO in inhaled air during cigarette smoke and NO gas challenges was continuously monitored by a chemiluminescence method and the relative contribution of NO in cigarette smoke-induced vascular effects in the pig lung was calculated. 2. Cigarette smoke challenge, with or without a Cambridge filter, caused a rapid vasodilator response in the bronchial circulation and the major part (75%) of this response was probably caused by NO present in smoke. NO challenge caused profound bronchial vasodilation with dose-response characteristics between 10 and 100 p.p.m. The small part of the cigarette smoke-induced response not explained by the NO content may be caused by CO, showing weak vasodilator effect in the bronchial circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Mucus hypersecretion is an important manifestation in patients with chronic obstructive pulmonary diseases (COPD). Cigarette smoke is importantly implicated in the pathogenesis of COPD. Previous studies have shown that cigarette smoke-induced MUC5AC (a major component of airway mucus) expression involving ErbB1 (EGF receptor) signalling pathway. Recently, it has been reported that cigarette smoke induces ErbB3 activation in airway epithelia to secret mucus, and the ligand of ErbB3, neuregulin (NRG) 1β, induces MU5AC expression in human bronchial epithelial cells. In the present study, we have suggested that NRG1β/ErbB3 signalling is activated by cigarette smoke, resulting in the activation of a variety of signal cascade pathways, leading to mucin production in human bronchial epithelial (16HBE) cells. We show that cigarette smoke increases NRG1β release, ErbB3 phosphorylation and MUC5AC production. These effects are prevented by an ErbB3-neutralizing antibody and by specific knockdown using small interfering RNA (siRNA) for NRG1β, implicating NRG1β-dependent ErbB3 activation in the responses. Cigarette smoke activates ERK1/2, c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3-K) signalling pathways, which are also inhibited by an ErbB3-neutralizing antibody and NRG1β siRNA, indicating the regulation of cigarette smoke-activated pathways by NRG1β/ErbB3 signalling. Furthermore, pre-treatments with metalloprotease inhibitor (TNF-α protease inhibitor-1) and specific knockdown of TNF-α-converting enzyme (TACE) with TACE siRNA prevented cigarette smoke-induced NRG1β release, ErbB3 phosphorylation and mucin production, suggesting the role of TACE in cigarette smoke-mediated NRG1β/ErbB3 signalling activation. These results suggest that NRG1β/ErbB3 signalling regulates cigarette smoke-induced mucin overproduction via the MAPK and PI3K signal pathways in 16HBE cells.  相似文献   

11.
Endothelial barrier dysfunction is a hallmark of many severe pathologies, including sepsis or atherosclerosis. The cardiovascular hormone atrial natriuretic peptide (ANP) has increasingly been suggested to counteract endothelial leakage. Surprisingly, the precise in vivo relevance of these observations has never been evaluated. Thus, we aimed to clarify this issue and, moreover, to identify the permeability-controlling subcellular systems that are targeted by ANP. Histamine was used as important pro-inflammatory, permeability-increasing stimulus. Measurements of fluorescein isothiocyanate (FITC)-dextran extravasation from venules of the mouse cremaster muscle and rat hematocrit values were performed to judge changes of endothelial permeability in vivo. It is noteworthy that ANP strongly reduced the histamine-evoked endothelial barrier dysfunction in vivo. In vitro, ANP blocked the breakdown of transendothelial electrical resistance (TEER) induced by histamine. Moreover, as judged by immunocytochemistry and Western blot analysis, ANP inhibited changes of vascular endothelial (VE)-cadherin, beta-catenin, and p120(ctn) morphology; VE-cadherin and myosin light chain 2 (MLC2) phosphorylation; and F-actin stress fiber formation. These changes seem to be predominantly mediated by the natriuretic peptide receptor (NPR)-A, but not by NPR-C. In summary, we revealed ANP as a potent endothelial barrier protecting agent in vivo and identified adherens junctions and the contractile apparatus as subcellular systems targeted by ANP. Thus, our study highlights ANP as an interesting pharmacological compound opening new therapeutic options for preventing endothelial leakage.  相似文献   

12.
We investigated whether p42/p44 mitogen-activated protein kinase (MAPK) and/or p38 MAPK participates in the regulation of vascular smooth muscle contraction by endothelin-1 (ET-1) in Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). ET-1 (10 nM) induced a sustained contraction in WKY and SHR aortas. PD98059 (100 microM), an inhibitor of p42/p44 MAPK kinase, partially attenuated the ET-1-induced contraction in WKY and SHR. However, SB203580 (10 microM), an inhibitor of p38 MAPK, relaxed the ET-1-induced contraction to the resting levels in SHR, but not in WKY. ET-1 (10 nM) increased phosphorylation of both p42/p44 MAPK and p38 MAPK in WKY and SHR. However, in SHR, p38 MAPK phosphorylation in response to ET-1 stimulation was increased more than in WKY. PD98059 (100 microM) and SB203580 (10 microM) abolished the phosphorylation of p42/p44 MAPK and p38 MAPK in response to ET-1 stimulation in WKY and SHR, respectively. On the other hand, SB203580 (10 microM) did not affect myosin light chain (MLC) phosphorylation in response to ET-1 (10 nM) stimulation in WKY and SHR. From these results, it is concluded that p42/p44 MAPK and/or p38 MAPK partially regulates the ET-1-induced vasoconstriction in WKY. However, p38 MAPK, rather than p42/p44 MAPK, activation plays an important role for the maintenance of ET-1-induced vasoconstriction in SHR through a MLC phosphorylation-independent pathway.  相似文献   

13.

Aim:

To investigate the effect of epigallocatechin gallate (EGCG) on angiotensin II (Ang II)-induced stress fiber formation and hyperpermeability in endothelial cells.

Methods:

Human umbilical vein endothelial cells (HUVECs) were treated with Ang II in the absence or presence of EGCG or mitogen-activated protein kinases (MAPKs) inhibitors. The resulting stress fibers were stained with rhodamine-phalloidin and examined using confocal microscopy. The permeability of the endothelium was tested with fluorescein-isothiocyanate labeled bovine serum albumin (FITC-BSA), and the phosphorylation levels of several proteins were determined using Western blot analysis.

Results:

Ang II (1-100 nmol/L) treatment markedly provoked stress fiber formation and hyperpermeability in HUVECs in a time- and dose-dependent manner. These effects were abolished by pretreatment with the p38 MAPK inhibitor SB203580 10 μmol/L, indicating that the Ang II-induced endothelial barrier dysfunction was via activation of the p38 MAPK/HSP27 pathway. Furthermore, treatment with EGCG (5-25) μmol/L inhibited Ang II-induced activation of the p38 MAPK/HSP27 pathway, thereby reducing endothelial stress fiber formation and hyperpermeability.

Conclusion:

Our data demonstrate that EGCG inhibits Ang II-induced endothelial stress fiber formation and hyperpermeability via inactivation of p38 MAPK/HSP27 pathway, and suggest that EGCG may protect against endothelial barrier dysfunction and injury.  相似文献   

14.
To investigate the role of glutathione (GSH), an important cellular oxidant defense mediator, in cellular proliferation induced by cigarette smoke exposure, we utilized two experimental protocols. The first protocol was designed with four groups of rats. Two groups were pretreated with diethyl maleate (DEM) to reduce tissue GSH levels. One nontreated and one DEM-treated group received cigarette smoke exposure; the other two groups received sham smoke exposure only. For the second protocol we used a lung explant system, and in addition to smoke- and sham smoke-exposed groups, we supplemented cellular GSH levels with GSH added to the medium. Cell proliferation was assessed by cell labeling with 5-bromo-2'-deoxyuridine (BrdU). We found that, in the intact rat, cigarette smoke induced cell proliferation in the airway epithelium and walls and in the vessel walls; GSH depletion induced or increased this proliferative effect in airway walls and in the vascular endothelium and walls. In the lung explants, cigarette smoke also induced cell proliferation in airway epithelium and airway and vessel walls, and GSH supplementation reduced proliferation in both control and smoke exposed airway epithelium. In the intact animals, smoke had no effect on tissue GSH either immediately or after 24 h. However, exposure of the explants to cigarette smoke exposure increased GSH after 24 h. We conclude that (1) cigarette smoke-induced cellular proliferation is a direct effect of cigarette smoke that probably does not require the presence of smoke-evoked inflammatory cells, and (2) smoke-induced cell proliferation is related, at least partially, to the level of GSH and, by implication, to the balance between oxidants and antioxidants in the tissues.  相似文献   

15.
Tobacco smoke constituents have several adverse effects on endothelial cells. Exposure to tobacco smoke during pregnancy is associated with adverse effects on pregnancy outcome possibly related to endothelial dysfunction. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an important regulator of endothelial function. This study tests the idea that an aqueous extract of cigarette smoke alters the expression of PECAM-1 in uterine endothelial cells. Human uterine microvascular endothelial cells were cultured in cigarette smoke-conditioned medium (CSM) under arterial physiological flow conditions (shear or frictional stress in the range 7.5-15 dyne/cm(2)) and the expression of PECAM-1 was assessed by immunofluorescence microscopy and Western blotting. Thick reticular PECAM-1-associated bands found at cell-cell junctions in static cultures became significantly thinner or disappeared when the cells were exposed to shear stress or to CSM for 24 h. This diminution at cell junctions was accompanied by increased punctate cytoplasmic/cell surface staining. Under shear stress conditions, PECAM-1 was equally distributed between cell surface and intracellular sites. In contrast, when cells were exposed to both shear stress and CSM, PECAM-1 was predominantly localized to the cell surface. It was shown that shear stress increased endothelial cell migration and that CSM abrogated this effect. These results suggest that, under shear stress conditions, PECAM-1 is not predominantly concentrated at intercellular junctions in uterine endothelial cells. Exposure of cells to unidentified soluble components of cigarette smoke leads to alterations in PECAM-1 distribution that may cause endothelial dysfunction. If this occurs in vivo it could contribute to the adverse effects on pregnancy outcome associated with exposure to cigarette smoke.  相似文献   

16.
17.
《Inhalation toxicology》2013,25(8):803-817
Abstract

Rats exposed to tobacco cigarette smoke (CS) via inhalation from a high-tar cigarette for 4 h/day over a 14-day period showed measurable changes in specific biochemical and immunological markers of lung injury when compared to control rats exposed to clean dry air. We found epithelial cell layer thickening and increased lung permeability as measured by histopathological examination, and increased levels in hexose and protein exudation present in bronchoalveolar lavage fluid. Exposure to CS also caused a significant reduction in immunoglobulin A (lgA) levels (p < .001), which persisted after postexposure recovery. In addition, alveolar macrophages from rats exposed to CS were unresponsive to lipopolysaccharide stimulation in vitro as shown by reduced expression of cytokine interleukin 1β mRNA compared to air controls. These results suggest that high-tar cigarette smoke can induce disfunctional changes in immune systems. However, as no reproducible smoke-induced changes were seen using medium-tar cigarettes, we have to conclude that the rat may not be the most sensitive species in which to evaluate the mode of action of cigarette smoke on the lung.  相似文献   

18.
The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.  相似文献   

19.
Context: Cigarette smoke is known to be associated with pulmonary hypertension in humans and in animal models. Although the etiology of pulmonary hypertension in smokers is not understood, recent work has suggested a role for inducible nitric oxide synthase (iNOS) in inducing oxidative stress. Objective and Methods: To further evaluate this question, we assessed eNOS-/- mice exposed to air or cigarette smoke for the presence of pulmonary hypertension and examined vascular remodeling and expression of nitrotyrosine, a marker of reactive nitrogen species-induced oxidative damage, using immunohistochemistry. To ascertain whether oxidants may play a role in humans, we also examined lung tissue from nonsmokers, and patients with chronic obstructive pulmonary disease (COPD) with and without pulmonary hypertension. Results: We found that eNOS(-/-) mice developed increased pulmonary arterial pressure after six months cigarette smoke exposure, and this was associated with vascular remodeling and increased vascular nitrotyrosine staining. iNOS gene expression was decreased in the pulmonary arteries of the smoke exposed animals, and no protein was detectable by immunohistochemistry. In humans, vascular nitrotyrosine staining intensity was increased in smokers with COPD compared to nonsmokers, and further increased in smokers with combined COPD and pulmonary hypertension. Conclusions: We conclude that cigarette smoke-induced pulmonary hypertension is associated with evidence of oxidative vascular damage by reactive nitrogen species, but that iNOS does not appear to be the major contributor to such damage. Most likely the source of reactive nitrogen species is the cigarette smoke itself.  相似文献   

20.
目的研究小剂量阿片受体激动剂哌替啶(Peth)对香烟烟雾吸入引起的豚鼠急性气道收缩反应和炎性反应的影响。方法观察Peth0.01,0.1和1mg.kg-1对豚鼠自主吸入75%香烟烟雾(含25%O2)60mL后,气道阻力和肺动态顺应性变化的影响及气道组织血管通透性变化的影响;观察Peth0.1mg.kg-1对豚鼠2h内分6次吸入(共360mL)75%浓度的香烟烟雾后,支气管肺泡灌洗液(BALF)中白细胞总数和分类计数改变的影响,测定BALF中一氧化氮(NO)含量。结果Peth能减轻或明显抑制香烟烟雾刺激后气道阻力增高和肺动态顺应性下降的反应,抑制气道组织各段微血管通透性增加的反应,降低BALF中的白细胞总数和中性粒细胞比例,降低BALF中NO的含量。结论小剂量Peth对豚鼠急性神经源性气道收缩反应和炎性反应具有抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号