首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Torsade de pointes is a rare but potentially fatal ventricular arrhythmia associated with drug-induced delayed repolarization and prolongation of the QT interval. To determine if the arrhythmogenic potential of noncardiac drugs can be assessed in vitro, we evaluated the effects of 12 drugs on the action potential duration (APD) of cardiac Purkinje fibers and compared results with clinical observations. APD changes in canine and porcine fibers were evaluated under physiologic conditions (37 degrees C, [K+]0 = 4 mM) using standard microelectrode techniques. Six of seven drugs associated with QT prolongation or torsade de pointes in man (cisapride, erythromycin, grepafloxacin, moxifloxacin, sertindole, and sotalol) affected concentration-dependent prolongation of the APD in canine fibers during slow stimulation (2-s basic cycle length), attaining greater than 15% prolongation at high concentrations (> or = 10-fold clinically encountered plasma levels). Each of five drugs not linked clinically to QT prolongation and torsade de pointes (azithromycin, enalaprilat, fluoxetine, indomethacin, and pinacidil) failed to attain 15% prolongation, with fluoxetine, indomethacin, and pinacidil abbreviating the APD. Drugs eliciting the greatest prolongation also demonstrated prominent reverse rate-dependent effects. The antihistamine terfenadine (linked to dose-dependent QT prolongation and torsade de pointes clinically) only minimally prolonged the APD in canine and porcine fibers (and exerted no effect on midmyocardial fibers from left ventricular free wall) at supratherapeutic concentrations. On the basis of concentration-dependent APD prolongation and reverse rate-dependent effects, this Purkinje fiber model detects six of seven drugs linked clinically to acquired long QT syndrome and torsade de pointes, and clears each of five drugs not associated with repolarization abnormalities (overall 92% accuracy), validating the utility of this Purkinje fiber model in the preclinical evaluation of QT prolongation and proarrhythmic risk by noncardiac drugs.  相似文献   

2.
M D Drici  N Clément 《Drug safety》2001,24(8):575-585
Drug-induced torsade de pointes is a rare life-threatening adverse drug reaction (ADR) which is strongly influenced by gender. Drugs that prolong cardiac repolarisation include antiarrhythmics, gastrokinetics, antipsychotics, antihistamines and antibacterials. Such drugs share the potential to block cardiac voltage-gated potassium channels, particularly the rapid component (I(Kr)) of the delayed rectifier potassium current (I(K)). By doing so, such drugs usually, but not always, prolong the QT interval. Even if the electrocardiographic signs are subdued, the underlying blockade of I(Kr) current may precipitate the occurrence of arrhythmia. Women are perceived to be more prone to ADRs than men. Such a propensity may result from gender-associated differences in drug exposure, in the number of drugs prescribed (polypharmacy), in drug pharmacology, as well as from possible differences in the way the adverse event is perceived. A prolonged QT interval on the electrocardiogram (time that elapses from the onset of the cardiac ventricular depolarisation to the completion of its repolarisation) is associated with the occurrence of torsade de pointes and related ventricular arrhythmias. The QT interval is influenced by heart rate, autonomic nervous system, electrolyte disturbances and above all, drugs that block potassium channels. Two-thirds of the cases of drug-induced torsade de pointes occur in women. Therefore, this adverse effect represents a perfect example of gender differences impairing women's health. Clinical and experimental studies show that female gender is associated with a longer corrected QT interval at baseline and a greater response to drugs that block I(Kr), both of which facilitate the emergence of arrhythmia. This results most likely from a specific regulation of ionic channel expression (potassium, calcium, etc) by sex steroids, even though nongenomic effects may play a role as well. Estrogens facilitate bradycardia-induced prolongation of the QT interval and the emergence of arrhythmia whereas androgens shorten the QT interval and blunt the QT response to drugs. Hence, underlying genetic defects of potassium channels that may be asymptomatic in normal conditions, may precipitate drug-induced arrhythmia in women more frequently than in men. Even in the presence of a drug that mildly blocks I(Kr) and seldom prolongs the QT interval, women are still more prone to drug-induced torsade de pointes, due to their reduced cardiac 'repolarisation reserve'. This is an important aspect of I(Kr) blockade to be aware of during the development of new drugs.  相似文献   

3.
Drug-induced torsade de pointes   总被引:3,自引:0,他引:3  
Three patients who developed torsade de pointes associated with antiarrhythmic or psychotropic drugs are described, and the electrocardiographic characteristics, clinical presentation, predisposing factors, and management of this form of ventricular tachycardia are reviewed. The first patient was a 56-year-old schizophrenic man receiving thioridazine hydrochloride, trifluoperazine hydrochloride, and benztropine mesylate who was admitted to a hospital after a syncopal episode. Subsequently, the patient experienced several episodes of ventricular tachycardia combined with multifocal premature ventricular contractions (PVCs) and torsade de pointes; the arrhythmias were attributed to antipsychotic therapy. The second patient was a 69-year-old man who experienced ventricular tachycardia that progressed to ventricular fibrillation 41 days after surgery. Quinidine sulfate probably induced the ventricular tachycardia, which was identified as torsade de pointes. The third patient was a 71-year-old man admitted to the hospital for treatment of refractory ventricular arrhythmias. Previous drug therapy with quinidine sulfate and procainamide hydrochloride had been associated with torsade de pointes. Despite unsuccessful treatment of ventricular ectopy, the patient was discharged on maintenance therapy with pindolol, topical nitrates, and phenytoin. No additional episodes of torsade de pointes have been observed. Torsade de pointes is characterized by polymorphous electrocardiographic appearance and delayed repolarization (prolonged QT interval). It may occur in association with a number of disease states and also as a complication of treatment with therapeutic doses of drugs that affect repolarization (quinidine, disopyramide, procainamide, and phenothiazines). Clinical outcomes range from asymptomatic, self-terminating arrhythmias to ventricular fibrillation resulting in cardiac arrest. The definitive emergency therapy for torsade de pointes is overdrive pacing; cautious isoproterenol administration can also be used. Lidocaine and bretylium are often ineffective in treating this form of ventricular tachycardia. Potassium and magnesium repletion appear to be essential in abolishing drug-induced torsade de pointes. Drug-induced torsade de pointes is best prevented by avoiding agents known to induce arrhythmias in patients with a pre-existing prolonged QT interval. Periodic serum electrolyte assessment is warranted, and new drugs that prolong the QT interval should be considered potential causative agents of torsade de pointes.  相似文献   

4.
BACKGROUND AND PURPOSE: Drug-induced prolongation of the QT interval can lead to torsade de pointes, a life-threatening ventricular arrhythmia. Finding appropriate assays from among the plethora of options available to predict reliably this serious adverse effect in humans remains a challenging issue for the discovery and development of drugs. The purpose of the present study was to develop and verify a reliable and relatively simple approach for assessing, during preclinical development, the propensity of drugs to prolong the QT interval in humans. EXPERIMENTAL APPROACH: Sixteen marketed drugs from various pharmacological classes with a known incidence -- or lack thereof -- of QT prolongation in humans were examined in hERG (human ether a-go-go-related gene) patch-clamp assay and an anaesthetized guinea-pig assay for QT prolongation using specific protocols. Drug concentrations in perfusates from hERG assays and plasma samples from guinea-pigs were determined using liquid chromatography-mass spectrometry. KEY RESULTS: Various pharmacological agents that inhibit hERG currents prolong the QT interval in anaesthetized guinea-pigs in a manner similar to that seen in humans and at comparable drug exposures. Several compounds not associated with QT prolongation in humans failed to prolong the QT interval in this model. CONCLUSIONS AND IMPLICATIONS: Analysis of hERG inhibitory potency in conjunction with drug exposures and QT interval measurements in anaesthetized guinea-pigs can reliably predict, during preclinical drug development, the risk of human QT prolongation. A strategy is proposed for mitigating the risk of QT prolongation of new chemical entities during early lead optimization.  相似文献   

5.
The QT interval in electrocardiogram (ECG) reflects the total duration of ventricular myocardial depolarization and repolarization. It has been well recognized that many condition may cause QT interval prolongation. Unfortunately, numbers of cardiac and non-cardiac drug prolong the QT interval and cause a distinctive polymorphic ventricular tachycardia termed torsade de pointes (TdP). TdP can degenerate into ventricular fibrillation, which leads to sudden cardiac death. Recently various regulatory and clinical bodies of Europe, USA, Canada and Australia have made their focus on the drugs that induce prolongation of QT interval. Committee for Proprietary Medicinal Products (CPMP) of the European Agency issued a document entitled 'Points to Consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products' [1, 2]. In addition, USFDA adopted the guideline 'Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-anti arrhythmic drugs' [3]. These documents and guidelines are primarily concern with development of novel agents and the new use or new dose of already approved drugs. The scope of this guideline is to study the effect of drugs on QT prolongation and give idea of evaluation of drug's effects on QT prolongation. Today more than 50 available drugs (both old and new) have been identify, which prolong the QT interval [1]. Several drugs have been withdrawn from many countries on this basis but many of these drugs are still available in Indian market and potentially creating life-threatening arrhythmias. This article will focus on recommendation of study on the normal limits of QT interval in Indian population and preparation of the database, which can be helpful in withdrawal of drugs from the market that produces QT prolongation.  相似文献   

6.
Torsade de pointes is a rare but potentially fatal ventricular arrhythmia that is often triggered by drugs that prolong the rate-corrected QT (QTc) interval. This arrhythmia has been attributed to levacetylmethadol and methadone, synthetic opioids used to treat heroin addiction. Levacetylmethadol, a derivative of methadone, is being withdrawn from the United States market because its use waned after a black box warning was issued to require electrocardiographic monitoring. Therefore, methadone and buprenorphine are the only opioids available for the treatment of heroin addiction. To our knowledge, the cardiac safety of buprenorphine in patients with methadone-related QTc prolongation has not been described. We report a patient who developed torsade de pointes while receiving high-dose methadone and was successfully inducted onto buprenorphine under close medical supervision. No clinically important QTc prolongation was observed in the acute setting or during follow-up. This observation suggests that buprenorphine may be a safe alternative to oral methadone in patients with opioid addiction who develop torsade de pointes.  相似文献   

7.
Drugs that prolong the QT interval can trigger the life-threatening arrhythmia, torsade de pointes, but there is a poor correlation between the extent of QT prolongation and the occurrence of torsade de pointes. The clinical status of a patient may modify the arrhythmogenicity of drugs; thus, we have investigated whether a mediator of fever and inflammation, prostaglandin E(2), alters the proarrhythmic effects of clofilium. In pentobarbitone-anaesthetized, open-chest, alpha-adrenoceptor-stimulated rabbits, prostaglandin E(2) 0.28, 0.84 and 2.80 nmol kg(-1) min(-1), infused into the left ventricle, reduced the incidence of torsade de pointes from 50% in controls to 20%, 20% and 0%, respectively (n=10 per group). Pretreatment with glibenclamide (10 micromol kg(-1)) did not alter the antiarrhythmic effect of prostaglandin E(2) (2.80 nmol kg(-1) min(-1)). These results indicate that prostaglandin E(2) prevents drug-induced torsade de pointes and that this action of prostaglandin E(2) is not mediated via opening of ATP-dependent K(+) channels (K(ATP)).  相似文献   

8.
Antimuscarinic agents are the main drugs used to treat patients with the overactive bladder (OAB) syndrome, defined as urgency, with or without urgency incontinence, usually with increased daytime frequency and nocturia. Since the treatment is not curative and since OAB is a chronic disease, treatment may be life-long. Antimuscarinics are generally considered to be ‘safe’ drugs, but among the more serious concerns related to their use is the risk of cardiac adverse effects, particularly increases in heart rate (HR) and QT prolongation and induction of polymorphic ventricular tachycardia (torsade de pointes). An elevated resting HR has been linked to overall increased morbidity and mortality, particularly in patients with cardiovascular diseases. QT prolongation and its consequences are not related to blockade of muscarinic receptors, but rather linked to inhibition of the hERG potassium channel in the heart. However, experience with terodiline, an antimuscarinic drug causing torsade de pointes in patients, has placed the whole drug class under scrutiny. The potential of the different antimuscarinic agents to increase HR and/or prolong the QT time has not been extensively explored for all agents in clinical use. Differences between drugs cannot be excluded, but risk assessments based on available evidence are not possible.  相似文献   

9.
10.
M Malik  A J Camm 《Drug safety》2001,24(5):323-351
Assessment of proarrhythmic toxicity of newly developed drugs attracts significant attention from drug developers and regulatory agencies. Although no guidelines exist for such assessment, the present experience allows several key suggestions to be made and an appropriate technology to be proposed. Several different in vitro and in vitro preclinical models exist that, in many instances, correctly predict the clinical outcome. However, the correspondence between different preclinical models is not absolute. None of the available models has been demonstrated to be more predictive and/or superior to others. Generally, compounds that do not generate any adverse preclinical signal are less likely to lead to cardiac toxicity in humans. Nevertheless, differences in likelihood offer no guarantee compared with entities with a preclinical signal. Thus, the preclinical investigations lead to probabilistic answers with the possibility of both false positive and false negative findings. Clinical assessment of drug-induced QT interval prolongation is crucially dependent on the quality of electrocardiographic data and the appropriateness of electrocardiographic analyses. An integral part of this is a precise heart rate correction of QT interval, which has been shown to require the assessment of QT/RR relationship in each study individual. The numbers of electrocardiograms required for such an assessment are larger than usually obtained in pharmacokinetic studies. Thus, cardiac safety considerations need to be an integral part of early phase I/II studies. Once proarrhythmic safety has been established in phase I/II studies, large phase III studies and postmarketing surveillance can be limited to less strict designs. The incidence of torsade de pointes tachycardia varies from 1 to 5% with clearly proarrhythmic drugs (e.g. quinidine) to 1 in hundreds of thousands with drugs that are still considered unsafe (e.g. terfenadine, cisapride). Thus, not recording any torsade de pointes tachycardia during large phase III studies offers no guarantee, and the clinical premarketing evaluation has to rely on the assessment of QT interval changes. However, since QT interval prolongation is only an indirect surrogate of predisposition to the induction of torsade de pointes tachycardia, any conclusion that a drug is safe should be reserved until postmarketing surveillance data are reviewed. The area of drug-related cardiac proarrhythmic toxicity is fast evolving. The academic perspective includes identification of markers more focused compared with simple QT interval measurement, as well as identification of individuals with an increased risk of torsade de pointes. The regulatory perspective includes careful adaptation of new research findings.  相似文献   

11.
Nonclinical assessment of potential of QT interval prolongation caused by non-antiarrhythmic drugs has been an issue for drug development because QT interval prolongation increases the risk of ventricular tachyarrhythmia, including torsade de pointes when combined with other risk factors. However, there is no scientific consensus on approaches and no international consensus on regulatory recommendations. This guideline is being developed to provide the general nonclinical testing strategy for evaluating the potential risk of QT prolongation and presents some major principles for in vitro and in vivo electrophysiology studies. The basis of this guideline is the integrated risk assessment that provides overall evaluations based on nonclinical study results and chemical/pharmacological class information to predict the potential of a test substance to prolong QT interval in humans (i.e., evidence of risk) and that contributes clinical study design and interpretation of clinical results. Safety margins are also components of integrated risk assessment. Since this guideline addresses a field of research that is in a state of rapid evolution, the proposed concept for evidence of risk and safety margins needs to be further refined based on the data being collected by international initiatives. In this article, the draft S7B guideline is outlined.  相似文献   

12.
13.
The long and growing list of non-antiarrhythmic drugs associated with prolongation of the QT interval of the electrocardiogram has generated concern not only for regulatory interventions leading to drug withdrawal, but also for the unjustified view that QT prolongation is usually an intrinsic effect of a whole therapeutic class [e.g. histamine H(1) receptor antagonists (antihistamines)], whereas, in many cases, it is displayed only by some compounds within a given class of non-antiarrhythmic drugs because of an effect on cardiac repolarisation. We provide an overview of the different classes of non-antiarrhythmic drugs reported to prolong the QT interval (e.g. antihistamines, antipsychotics, antidepressants and macrolides) and discusses the clinical relevance of the QT prolonging effect. Drug-induced torsade de pointes are sometimes considered idiosyncratic, totally unpredictable adverse drug reactions, whereas a number of risk factors for their occurrence is now recognised. Widespread knowledge of these risk factors and implementation of a comprehensive list of QT prolonging drugs becomes an important issue. Risk factors include congenital long QT syndrome, clinically significant bradycardia or heart disease, electrolyte imbalance (especially hypokalaemia, hypomagnesaemia, hypocalcaemia), impaired hepatic/renal function, concomitant treatment with other drugs with known potential for pharmacokinetic/pharmacodynamic interactions (e.g. azole antifungals, macrolide antibacterials and class I or III antiarrhythmic agents). This review provides insight into the strategies that should be followed during a drug development program when a drug is suspected to affect the QT interval. The factors limiting the predictive value of preclinical and clinical studies are also outlined. The sensitivity of preclinical tests (i.e. their ability to label as positive those drugs with a real risk of inducing QT pronglation in humans) is sufficiently good, but their specificity (i.e. their ability to label as negative those drugs carrying no risk) is not well established. Verapamil is a notable example of a false positive: it blocks human ether-a-go-go-related (HERG) K(+) channels, but is reported to have little potential to trigger torsade de pointes. Although inhibition of HERG K(+) channels has been proposed as a primary test for screening purposes, it is important to remember that several ion currents are involved in the generation of the cardiac potential and that metabolites must be specifically tested in this in vitro test. At the present state of knowledge, no preclinical model has an absolute predictive value or can be considered as a gold standard. Therefore, the use of several models facilitates decision making and is recommended by most experts in the field.  相似文献   

14.
Drug-induced action potential duration (APD) prolongation was first proposed to be antiarrhythmic, but is now widely presumed to be torsadogenic. To elucidate this paradox, we tested the effect of APD upon liability for torsade de pointes. In addition, torsadogenicity is commonly associated with disturbances of repolarization, but at least in theory, it could also result from disturbances of conduction. These possibilities were tested in female rabbit hearts. Dofetilide, ATX II, and sodium channel blockers that did not prolong the action potential duration were used to modulate the APD and induce disturbances of conduction and disturbances of repolarization. Torsadogenicity could be induced by dofetilide and ATX II starting at normal APD (210 ms), reaching a peak incidence around a doubling of APD (400 to 450 ms), to then sharply decline with further APD prolongation, until torsade de pointes disappeared above 725 ms. Early afterdepolarizations (EAD) were regular triggers for torsade de pointes; while most of the EADs occurred in the plateau range, their incidence declined with repolarization but their potential for torsadogenicity increased. Sodium channel blockers that shorten the APD, even when devoid of hERG blocking properties, can yield torsade de pointes. Torsade de pointes can occur at normal, prolonged, and shortened APD, so that QT prolongation is an incomplete predictor of torsadogenicity. Torsade de pointes can result not only from disturbances of repolarization but also from disturbances of conduction.  相似文献   

15.
Since the 1960s, physicians have been aware of electrocardiographic (ECG) abnormalities and cases of sudden death associated with the use of antipsychotic drugs in patients with schizophrenia. Explanations for such deaths have traditionally focused on drug-induced prolongation of the QT interval leading to the development of life-threatening ventricular arrhythmias such as torsade de pointes (TdP). It is now apparent that most conventional and atypical antipsychotics can cause dose-related prolongation of the corrected QT interval (QTc), although there are important differences in the potency of individual agents. This review discusses potential mechanisms underlying QTc prolongation and arrhythmogenesis and examines the evidence for a relationship between antipsychotic drugs and prolongation of the QTc interval. New electrophysiological and epidemiological data are presented which suggest there may not be a clear-cut cause-effect relationship between QTc prolongation and the development of ventricular tachyarrhythmias for all atypical antipsychotics. For at least one of these agents (sertindole), counterbalancing mechanisms may act to reduce the risk of proarrhythmic activity arising as a result of QTc prolongation.  相似文献   

16.
西沙必利与其他药物的相互作用   总被引:3,自引:0,他引:3  
目的 了解促胃肠动力药西沙必利与其他药物合用时的相互作用。方法 通过对近期文献的阅读、分析和归纳,加以综述。结果 西沙必利由细胞色素P—450(CYP)3A4代谢,有较强的首过效应,所以许多CYP3A4底物或(和)抑制剂都能抑制西沙必利的代谢,使其血药浓度升高,从而可能引起心脏QT间期延长、心律失常,甚至导致扭转型室速(TdP)。药效学研究表明,西沙必利与可以引起QT间期延长的药物合用后,也可能增加心脏的毒性反应。结论 西沙必利应避免与CYP3A4抑制刑、CYP3A4底物及易引起QT间期延长的药物合用。如果必需合用,应密切观察合用后的情况,并进行心电监护或血药浓度的监测,以保证临床用药的安全有效。  相似文献   

17.
18.
Many non-cardiovascular drugs of common clinical use cause, as an unwanted accessory property, the prolongation of the cardiac repolarisation process, due to the block of the HERG (Human Ether-a-go-go Related Gene) potassium channel, responsible for the repolarising I(Kr) current. This delayed cardiac repolarisation process can be often unmasked by a prolongation of the QT interval of the ECG. In these conditions, premature action potentials can generate morphologically anomalous after-polarisations, and trigger a dangerous kind of polymorphic ventricular tachyarrhythmia, known as torsade de pointes, which can evolve in ventricular fibrillation and death. The risk associated with the torsadogenic cardiotoxicity of drugs, which prolong the QT interval has been the topic of documents produced by many health authorities, giving important issues about the preclinical and clinical evaluation of cardiac safety. Besides, public and private research laboratories developed several experimental in vitro or in vivo strategies, aimed to an early recognition of the influence of a drug (or of a drug-candidate) on the HERG channel and/or on the cardiac repolarisation process. Also the identification of a possible pharmacophore model, common in all or at least in numerous torsadogenic drugs, could represent a first step for the development of useful in silico approaches, allowing a preliminary indication about the potential torsadogenic property of a given molecule. In this work, we described the electrophysiological basis of torsade de pointes and listed several pharmacological classes of torsadogenic drugs. Among them, we focused our attention on antipsychotics, with an accurate overview on the experimental and clinical reports about their torsadogenic properties. Moreover, a common structural feature exhibited by these drugs, despite of their remarkable chemical differences, is evidenced by a computational approach and is indicated as a possible "facilitating" requirement for their torsadogenic properties. Together with other remarks, coming from different computational studies, the individuation of a satisfactory "toxicophore" model could be greatly useful, for the theoretical prediction of torsadogenic properties of a given chemical moiety and for the design of new drugs devoid of such an undesired and potentially lethal side-effect.  相似文献   

19.
Many non-cardiovascular drugs can prolong the QT interval of the electrocardiogram (ECG); this is an accessory property not necessary for their pharmacological action and generally linked to the block of the potassium HERG channels and delayed cardiac repolarization. The QT prolongation can lead to a dangerous tachyarrhythmia, called torsade de pointes, and potentially to fatal ventricular fibrillation. The experimental approaches, aimed at an early identification of this undesidered property, often require sophisticated and expensive equipment or the use of superior animal species (dog, primates) that cannot be employed easily for ethical and/or economic reasons.This work aimed to study drug-induced QT prolongation in anaesthetized guinea-pigs and to evaluate the reliability of such an experimental approach to obtain a satisfying predictive parameter of the torsadogenicity of drugs in humans. Seven drugs that were torsadogenic in humans (astemizole, cisapride, haloperidol, quinidine, sotalol, terfenadine and thioridazine) and two that were non-torsadogenic (chlorprotixene and diazepam) were administered i.v. to guinea-pigs under pentobarbital anaesthesia. The ECGs were recorded by four electrodes inserted in the subcutaneous layer of the limbs. Both RR and QT intervals were measured in Leads II and III and then the correct QT values were calculated by Bazett and Fridericia algorithms (QTcB and QTcF, respectively). All the drugs, with the exception of chlorprotixene and diazepam, produced a dose-dependent prolongation of the QT and RR intervals and a significant increase of QTcB and QTcF values. It can be concluded that this method represents a rapid and low-cost procedure to evaluate the cardiac safety pro fi le in the preliminary screening of a high number of drugs or drug candidates.  相似文献   

20.
Concomitant use of drugs that prolong the QT interval is a risk factor for torsades de pointes, a ventricular arrhythmia associated with sudden death. This study compared the concomitant use of drugs that may prolong the QT interval ("other QT drugs") among two groups of patients: one that took antipsychotics that may prolong the QT interval (the QT antipsychotic group, n = 1,750) and one that used antipsychotics that do not result in QT prolongation (the non-QT antipsychotic group, n = 1,139). Data were pharmacy claim and eligibility information from January 1, 2000, through December 31, 2000, from a research database of a large pharmacy benefit manager. Concomitant use of antipsychotics and other QT drugs was examined for each participant over a 3- to 12-month follow-up period. Results showed that 51% of QT antipsychotic group members used other QT drugs concomitantly for at least 1 day in the follow-up period. Logistic regression indicated that there was no significant difference between the QT antipsychotic and non-QT antipsychotic groups with concomitant use of other QT drugs when potential confounders were controlled ( p = 0.6013). Although female sex is a risk factor for drug-induced torsades de pointes, women were more likely to concomitantly use other QT drugs than men in both the QT (56.2% vs. 43.2%; p < 0.001) and non-QT (53.1% vs. 43.0%;p < 0.001) antipsychotic groups. Findings suggest that the use of other QT drugs is not being minimized among patients taking QT antipsychotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号