首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Subcutaneous injection of the kappa-opioid agonists U50,488 (10 mg kg-1) and tifluadom (3.5 mg kg-1) into Inactin-anaesthetized, saline-infused rats was associated with a diuresis, antinatriuresis and antikaliuresis which lasted for up to 2 h. A high (5 mg kg-1), but not low (0.1 mg kg-1), dose of naloxone blocked the renal effects of U50,488. 2. U50,488 administration in anaesthetized, vasopressin-deficient Brattleboro DI rats was associated with an attenuated diuresis, though the antinatriuretic response remained intact. 3. The diuretic action of U50,488 was associated with an increase in glomerular filtration rate while fractional fluid reabsorption remained steady. In contrast, fractional sodium and potassium reabsorption were increased. 4. These data suggest that kappa-opioid agonists alter renal handling of both water and electrolytes. This appears to be mediated by two separate mechanisms: increased fluid loss largely reflects altered glomerular events while the fall in electrolyte excretion results from altered tubular handling.  相似文献   

2.
The modulatory effects of opioids on urine production in adult rats have been well-documented. We report here the first investigation of the effects of these agents on urination in neonatal rats. The kappa-agonists U50,488H (1,10 mg kg-1) and (+)-tifluadom (10 mg kg-1) produced an increase in urine output in 10-day old pups whereas the (-)-isomer of tifluadom was ineffective in this model. The diuretic effects of the highest dose of U50,488H were attenuated by a 10 but not a 1 mg kg-1 dose of the opioid antagonist naltrexone. These findings suggest that kappa-agonists, as in adult animals, produce diuresis in neonates by activity at kappa-opioid receptors and also confirm the stereoselective nature of the response. The increase in urination produced by U50,488H (10 mg kg-1) was also reduced by the alpha-adrenoceptor antagonist phentolamine (1 mg kg -1), an observation which supports the hypothesis that kappa-agonists--in addition to their well-established inhibitory effects on the release of antidiuretic hormone--may increase urination via an adrenergic mechanism at the level of the adrenal medulla. The mu-opioid agonist morphine (0.1-10 mg kg-1), in contrast to its observed effects in older animals, did not produce antidiuresis in either normally-hydrated or water-loaded 10-day old rat pups. The results of this study therefore show that the stimulatory effects of kappa-agonists on urine production appear to be fully-functional at 10-days but the inhibitory effects of opioids on urination lag behind in development.  相似文献   

3.
The effect of 1,4-dihydropyridine (DHP) calcium channel blockers (CCBs), nimodipine (NIM) and lercanidipine (LDP) on the analgesic response of selective kappa-opioid receptor agonists, U50,488H, PD117,302 and U69,593 was determined in male Sprague-Dawley rats using the tail-flick test. The effect of NIM on development of tolerance to U50,488H-induced analgesia and the status of brain DHP-sensitive Ca(2+) channel (L-type) binding sites in both U50,488H-naive and tolerant rats was determined using the highly selective DHP radioligand, [(3)H]PN200-110. Tolerance was induced by injecting U50,488H (25 mg/kg, i.p.) twice daily for 4 days. Intraperitoneal (i.p.) injection of kappa-opioid receptor agonists produced a dose-dependent acute analgesic response. NIM (1 mg/kg; i.p.) and LDP (0.3 mg/kg; i.p.) used in the study produced no tail-flick analgesia. Administration of NIM and LDP (15 min prior) significantly potentiated the analgesia produced by three kappa-opioid receptor agonists. Tolerance developed completely to the analgesic effect induced by U50,488H (25 mg/kg, i.p.) administered on the 5th day. NIM (1 mg/kg, i.p.) twice daily for 4 days not only completely inhibited the development of tolerance to analgesic response but also significantly potentiated it (supersensitivity). There was a significant up-regulation of DHP binding sites (B(max): +41%) in whole brain membranes of tolerant rats when compared to vehicle treated naive rats, implicating increased influx of Ca(2+) through L-type channels in kappa-opioid tolerance. U50,488H (25 mg/kg, i.p.) and NIM (1 mg/kg, i.p.) twice daily for 4 days also resulted in an equivalent up-regulation of DHP binding sites (+36%) as that of U50,488H alone. These results strongly suggest a functional role of L-type Ca(2+) channels in the regulation of pain sensitivity, mechanism of kappa-opioid analgesia and expression of tolerance.  相似文献   

4.
Fedotozine is a kappa opioid receptor agonist having antinociceptive properties but devoid of diuretic effects. The aim of the study was to evaluate the discriminative stimulus effects of fedotozine at doses previously reported to produce maximal effects in in vivo assays measuring kappa-mediated analgesia. By using a two-lever drug discrimination task, two groups of rats were trained to discriminate either a 3 mg/kg i.p. dose of the kappa opioid agonist, U50,488, or a 5 mg/kg i.p. dose of the mu opioid agonist, morphine, from saline. Once trained, rats were used to conduct tests of stimulus generalization with morphine, U50,488 and fedotozine along with another kappa agonist, CI-977, and another mu agonist, fentanyl. The stimulus effect of U50,488 was shared by CI-977 but not by morphine. Conversely, the stimulus effect of morphine was shared by fentanyl but not by U50,488. Fedotozine (1–10 mg/kg) failed to substitute to either U50,488 or morphine. These results indicate that, when administered at doses fully effective in producing antinociception, the interoceptive stimulus effects of fedotozine, if any, can be distinguished from those produced by U50,488 and morphine.  相似文献   

5.
1. Electrophysiological experiments have been performed to assess the effects of intravenously administered mu and kappa opioid agonists on the responses to noxious thermal and mechanical and non-noxious tactile stimuli of single convergent neurones in laminae III-VI of the dorsal horn of spinalized rats anaesthetized with alpha-chloralose. 2. The mu receptor agonists tested were fentanyl (1-16 micrograms kg-1) and morphine (0.5-16 mg kg-1) and the kappa-receptor agonists U-50,488 (1-16 mg kg-1) and tifluadom (0.1-1.6 mg kg-1). Multiple drug tests were made on each cell so that compounds could be compared under closely comparable conditions. 3. In one protocol, thermal and mechanical nociceptive responses of matched amplitudes were elicited alternately. Both mu and kappa agonists dose-dependently reduce the neuronal responses. Thermal nociceptive responses were as sensitive to the kappa agents as were the mechanical nociceptive responses; the mu agonists similarly reduced both types of response in parallel. 4. In another protocol, nociceptive and non-nociceptive responses were elicited alternately to permit the degree of selective antinociception to be assessed. The mu agonists were scarcely selective, fentanyl reducing nociceptive only slightly (but significantly at 4-16 micrograms kg-1) more than non-nociceptive responses. The kappa-opioid agonist U50,488 reduced tactile responses somewhat more than nociceptive responses. 5. The spontaneous discharge of these cells with ongoing activity was reduced to a significantly greater degree than the evoked responses; this is likely to have contributed to the non-selectivity of the reduction of the evoked responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of fluoxetine, a selective 5-HT reuptake inhibitor on the analgesic and hypothermic response of trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide methane sulphonate (U-50,488H) and (+/-)-trans-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzo[b] thiophene-4-acetamide (PD 117302), kappa-opioid receptor agonists, was determined in female Sprague-Dawley rats using the tail-flick method and telethermometer, respectively. Intraperitoneal injections of U-50,488H (U50) and PD 117302 (PD117) produced a dose-dependent analgesic and hypothermic response. Fluoxetine (10 mg/kg, i.p.) by itself did not produce an analgesic response. The analgesic response to U50 (10, 20, and 40 mg/kg, i.p.) and PD117 (7.5, 15, and 22.5 mg/kg, i.p.) was potentiated by fluoxetine injected intraperitoneally 60 min prior to the injection of kappa-opioid agonists. Similarly, the hypothermic response of U50 (20 and 40 mg/kg, i.p.) and PD117 (7.5, 15, and 22.5 mg/kg, i.p.) was potentiated by fluoxetine. The results indicate that selective kappa-opioid receptor agonists-induced analgesia and hypothermia is potentiated by fluoxetine, suggesting the role of extracellular 5-HT in the kappa-opioid receptor-mediated analgesia and hypothermia.  相似文献   

7.
The antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, were examined in mice. The p.o. administration of N. sativa oil (50-400 mg/kg) dose-dependently suppressed the nociceptive response in the hot-plate test, tail-pinch test, acetic acid-induced writhing test and in the early phase of the formalin test. The systemic administration (2.5-10 mg/kg, p.o. and 1-6 mg/kg, i.p.) and the i.c.v. injection (1-4 microgram/mouse) of thymoquinone attenuated the nociceptive response in not only the early phase but also the late phase of the formalin test. Naloxone injected s.c. (1 mg/kg) significantly blocked N. sativa oil- and thymoquinone-induced antinociception in the early phase of the formalin test. Moreover, the i.c.v. injection of naloxone (10 microgram/mouse), the mu(1)-opioid receptor antagonist, naloxonazine (1-5 microgram/mouse), or the kappa-opioid receptor antagonist, nor-binaltorphimine (1-5 microgram/mouse), significantly reversed thymoquinone-induced antinociception in the early phase but not the late phase of the formalin test, whereas the delta-opioid receptor antagonist, naltrindole (1-5 ng/mouse, i.c.v.), had no effect on either phase. The antinociceptive effect of morphine was significantly reduced in thymoquinone- and N. sativa oil-tolerant mice, but not vice versa. These results suggest that N. sativa oil and thymoquinone produce antinociceptive effects through indirect activation of the supraspinal mu(1)- and kappa-opioid receptor subtypes.  相似文献   

8.
1. In electrophysiological experiments in spinalized, alpha-chloralose anaesthetized rats, opioids and anaesthetics were tested intravenously (i.v.) on the responses of individual motoneurones to alternating noxious (heat or pinch) and non-noxious (tap or vibration) stimuli. 2. On cells that were sensitive to low doses of mu-opioids, both fentanyl (0.5-4 micrograms kg-1 i.v.) and morphine (0.5 mg kg-1 i.v.) selectivity reduced reflexes to noxious stimuli to a greater degree than the higher doses required to reduce nociceptive reflexes (fentanyl 8 micrograms kg-1 i.v.; morphine 1-8 mg kg-1 i.v.) depressed non-nociceptive reflexes to a similar degree. 3. A similar spectrum of selectivity was seen with U-50,488 (0.5-16 mg kg-1 i.v.) although statistically significant selective depression of reflexes was only evident at the lowest dose tested (0.5 mg kg-1 i.v.). All effects of U-50,488 were readily reversed by low doses of the opioid antagonist, naloxone (10-100 micrograms kg-1 i.v.). 4. The dissociative anaesthetic/PCP ligand ketamine (0.5-4 mg kg-1 i.v.) was similar in having selective actions at low doses on sensitive cells but non-selective actions when higher doses were required. In contrast, the general anaesthetics methohexitone (4 mg kg-1 i.v.) and alphadolone/alphaxalone (1 mg kg-1 i.v.) were consistently non-selective between reflexes to noxious and non-noxious stimuli. alpha-Chloralose (20-40 mg kg-1 i.v.) had very little effect on reflexes to any of the synaptic inputs tested.  相似文献   

9.
We examined the analgesic and anti-allodynic effects of morphine and U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide methanesulfonate salt), a selective kappa-opioid receptor agonist, and the development of tolerance to their effects in neuropathic pain model mice induced by sciatic nerve ligation (SNL). In the tail-pinch method, morphine at 10 mg/kg, s.c. produced a weak analgesic effect in SNL mice; however, U-50,488H at 5 mg/kg, s.c. produced an analgesic effect equipotent to that in normal mice. In contrast, morphine produced an adequate analgesic effect when given either intracerebroventricularly (i.c.v.) or intrathecally (i.t.), but U-50,488H only produced analgesia when given i.t. Repeated administration of morphine (either i.c.v. or i.t.) or U-50,488H (either s.c. or i.t.), did not induce tolerance to the effect. In the static allodynia test with an application of von Frey filaments, both compounds given s.c. suppressed the allodynic effect, but in the dynamic allodynia test involving lightly stroking the plantar surface with a cotton bud, only U-50,488H produced an anti-allodynic effect. Repeated administrations of both compounds did not develop tolerance to these anti-allodynic effects. Thus, U-50,488H was found to be a highly effective at blocking hyperalgesia and allodynia in nerve injury, and these findings suggest that kappa-opioid receptor agonists are attractive pharmacological targets for the control of patients with neuropathic pain.  相似文献   

10.
It has been widely accepted that repeated administration of kappa-opioid receptor agonists leads to the development of antinociceptive tolerance. The present study was designed to investigate the effect of repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride ((-)U-50,488H) on the mu- and delta-opioid receptor agonist-induced antinociception and G-protein activation in mice. The mice were injected either subcutaneously (s.c.) or intracerebroventricularly (i.c.v.) pretreated with saline or (-)U-50,488H once a day for seven consecutive days. Two hours after the last injection, the mice were challenged by either mu- or delta-opioid receptor agonist for the antinociceptive assay. Repeated treatment with (-)U-50,488H (s.c. or i.c.v.) significantly enhanced antinociceptive effect of both mu-opioid receptor agonist (morphine) and delta-opioid receptor agonists ([d-Ala2]deltorphin (DELT) and (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dime thyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80) compared to saline-treated groups. Under these conditions, repeated s.c. injection of (-)U-50,488H significantly enhanced both mu- and delta-opioid receptor agonist-stimulated [35S]GTPgammaS binding in the membrane of the thalamus. On the contrary, either repeated administration of morphine (s.c. or i.c.v.) or SNC-80 failed to affect the kappa-opioid receptor agonist-induced antinociception and G-protein activation. Taken together, these results suggest that repeated stimulation of kappa-opioid receptor markedly increases the functional mu- and delta-opioid receptors, whereas repeated stimulation of either mu- or delta-opioid receptor had no direct effect on kappa-opioidergic function in mice.  相似文献   

11.
The development of tolerance to morphine analgesia was completely blocked by the coadministration of a selective kappa-opioid agonist, U-50,488H at doses of 3.2 or 10 mg/kg i.p. These doses of U-50,488H exerted no analgesic effect by themselves and did not affect the analgesia induced by 10 mg/kg of morphine. The analgesic effect of morphine was restored when 10 mg/kg of U-50,488H was coinjected in morphine-tolerant rats. These findings suggest that activation of the kappa-opioid system prevents the development of tolerance to morphine analgesia.  相似文献   

12.
1. The effects of several K+ channel blockers (sulphonylureas, 4-aminopyridine and tetraethylammonium) on the antinociception induced by clonidine, baclofen and U50,488H were evaluated by use of a tail flick test in mice. 2. Clonidine (0.125-2 mg kg-1, s.c.) induced a dose-dependent antinociceptive effect. The ATP-dependent K+ (KATP) channel blocker gliquidone (4-8 micrograms/mouse, i.c.v.) produced a dose-dependent displacement to the right of the clonidine dose-response line, but neither 4-aminopyridine (4-AP) (25-250 ng/mouse, i.c.v.) nor tetraethylammonium (TEA) (10-20 micrograms/mouse, i.c.v.) significantly modified clonidine-induced antinociception. 3. The order of potency of sulphonylureas in antagonizing clonidine-induced antinociception was gliquidone > glipizide > glibenclamide > tolbutamide, which is the same order of potency as these drugs block KATP channels in neurones of the CNS. 4. Baclofen (2-16 mg kg-1, s.c.) also induced a dose-dependent antinociceptive effect. Both 4-AP (2.5-25 ng/mouse, i.c.v.) and TEA (10-20 micrograms/mouse, i.c.v.) dose-dependently antagonized baclofen antinociception, producing a displacement to the right of the baclofen dose-response line. However, gliquidone (8-16 micrograms/mouse, i.c.v.) did not significantly modify the baclofen effect. 5. None of the K+ channel blockers tested (gliquidone, 8-16 micrograms/mouse; 4-AP, 25-250 ng/mouse and TEA, 10-20 micrograms/mouse, i.c.v.), significantly modified the antinociception induced by U50,488H (8 mg kg-1, s.c.). 6. These results suggest that the opening of K+ channels is involved in the antinociceptive effect of alpha 2 and GABAB, but not kappa-opioid, receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The present study was designed to explore the nature of the interaction between mu and kappa opioid agonists in the rat drug discrimination procedure. In rats trained to discriminate the kappa agonist U50,488 (5.6 mg/kg) from water, the other kappa agonist bremazocine substituted completely for the U50,488 training stimulus, and the additional kappa agonist tifluadom substituted in three of five of rats tested. In contrast, the mu agonists morphine, fentanyl, and buprenorphine produced primarily vehicle-appropriate responding. When morphine, fentanyl, and buprenorphine were combined with the training dose of U50,488, all three mu agonists reduced U50,488-appropriate responding. In rats trained to discriminate the mu agonist morphine (10.0 mg/kg) from saline, the other mu agonists morphine and buprenorphine all substituted in a dose-dependent manner for the morphine training stimulus, whereas U50,488, bremazocine, and tifluadom produced primarily vehicle-appropriate responding. When combined with the training dose of morphine, bremazocine antagonized morphine's discriminative stimulus effects, whereas U50,488 and tifluadom had no effect. The barbiturate pentobarbital neither substituted for, nor antagonized, the discriminative stimulus effects of either U50,488 or morphine. These results suggest that mu agonists and kappa agonists produce interacting effects in the drug discrimination procedure in rats.  相似文献   

14.
The effect of dexamethasone on hypotension induced by mu-, kappa- and delta-opioid receptor agonists was investigated in pentobarbital-anaesthetised rats. Morphine (nonselective opioid receptor agonist), DAGO (D-Ala2-N-methyl-[Phe4-Gly5-ol]enkephalin; mu-opioid receptor-selective agonist), U50-488H (trans(+/-)-3,4-dichloro-N-methyl-N-(2[1pyrrolidynyl]cyclohexyl)-benzeneacetamide; kappa-opioid receptor-selective agonist) and deltorphin II (delta-opioid receptor-selective agonist), given intravenously, 5 micromol/kg, induced hypotension in rats. This hypotension was characterised by a fall in mean arterial blood pressure in 1-2 min that recovered in 30 min for morphine and U50-488H and in 5 or 20 min for DAGO and deltorphin II, respectively. Dexamethasone per se at a dose of 7.5 micromol/kg, i.v. did not significantly modify the mean arterial blood pressure of animals. Dexamethasone administration 90 min, but not 30 or 60 min, before the opioid agonists injection, prevented the hypotension induced by morphine or U50-488H, but not that induced by DAGO or deltorphin II. Pretreatment with RU-38486 (mifepristone; 7.5 micromol/kg, i.v.), a glucocorticoid receptor antagonist, 15 min before the steroid, prevented dexamethasone inhibition of hypotension induced by morphine and U50-488H. Furthermore, pretreatment with cycloheximide, a protein synthesis inhibitor (3.5 micromol/kg, i.v.), was also able to abolish the effects of dexamethasone on morphine- and U50-488H-induced hypotension. Results of the present study indicate that dexamethasone inhibited kappa-opioid receptor-mediated hypotension in rats, indicating a further important functional interaction between corticosteroids and the opioid system at kappa receptors. The ability of cycloheximide and RU-38486 to block dexamethasone effects indicates that steroid interference with kappa-opioid receptor-mediated hypotension involves a protein synthesis-dependent mechanism via glucocorticoid receptors.  相似文献   

15.
The potency of opiates for suppressing oxytocin release relative to their potency as analgesics was tested in lactating rats. Oxytocin release was evoked by the sucking of the young in urethane-anaesthetized and unanaesthetized rats, and was detected by the characteristic behaviour of the young and milk yield respectively. The tail-flick test, using noxious radiant heat, was used to assess analgesia. Intraperitoneal injection of morphine (1 mg kg-1 and 5 mg kg-1) significantly reduced milk yield in unanaesthetized rats. Urethane-anaesthetized rats displayed a pattern of reflex milk-ejection responses similar to that found in conscious rats. This reflex was significantly inhibited in a dose-related, naloxone-reversible manner by buprenorphine (ED50 0.18 mg kg-1), meptazinol (ED50: 14.0 mg kg-1), morphine (ED50: 0.67 mg kg-1), pentazocine (ED50: 15.0 mg kg-1) and pethidine (ED50: 7.9 mg kg-1). Although intraperitoneal injection of morphine (5 mg kg-1) abolished the increase in intramammary pressure occurring at reflex milk-ejection, that evoked by intravenous oxytocin (0.5-1 mu) was unaffected. Each opiate also caused significant, dose-related, naloxone-reversible increases in tail-flick latency. The ED50 doses were buprenorphine (ED50: 0.14 mg kg-1), meptazinol (ED50: 12.5 mg kg-1), morphine (ED50: 5.0 mg kg-1), pentazocine (ED50: 12.5 mg kg-1) and pethidine (ED50: 6.1 mg kg-1). The order of potency for analgesia and for suppression of oxytocin release were identical, namely: buprenorphine greater than morphine greater than pethidine greater than meptazinol greater than pentazocine. The results obtained with lactating rats suggest that secretion of the hormone oxytocin is substantially reduced during opiate-induced analgesia.  相似文献   

16.
Since endogenous opiate mechanisms are activated during parturition, the present study examined in rats the effects of opiate antagonism on maternal care during and shortly after parturition. Endogenous opiate mechanisms were blocked in late pregnant rats by (1) naltrexone pellet implants (Experiment 1); (2) acute naloxone injections of 10 mg/kg (Experiment 2) or 0.1 mg/kg (Experiment 7); or (3) induction of opiate tolerance (Experiment 3). All methods resulted in a significant decrease in placentophagia and/or in cleaning pups of umbilical cords and birth fluids (Experiment 6). Other aspects of maternal care appeared relatively unaffected and 24 hr pup survival rats were lowered only by induction of morphine tolerance (probably via its effects on the young). In nonpregnant females, naloxone produced a small but significant decrease in placentophagia (Experiment 4) whereas morphine-tolerant nonpregnant females consumed placentas as readily as controls (Experiment 5). Thus the inhibition of placentophagia produced by opiate antagonism may be specific to conditions associated with parturition. These findings suggest that endogenous opiates support placenta eating and pup cleaning during and immediately after birth. Mediation may be via opiate effects on ingestive behavior, and/or via a reduction in the stress of parturition which otherwise can interfere with the female's ability to perform these tasks.  相似文献   

17.
The effects of highly selective agonists and antagonists to the mu-, delta- and kappa-opioid receptor subtypes were studied on the vasopressin and oxytocin release in 24 h water-deprived male rats. The delta-agonist [D-Pen2,D-Pen5]enkephalin (dose range 0.01-5 mg/kg) did not affect plasma levels of either hormone 30 min after s.c. administration, whereas the mu-agonist DALDA (H-Tyr-D-Arg-Phe-Lys-NH2) over the same dose range strongly inhibited the release of both vasopressin and oxytocin, an effect that was maximal 30-60 min after s.c. injection. The same effect was found for s.c. administration of the kappa-agonist U-69,593. Intracerebroventricular (i.c.v.) administration of DALDA (0.5 and 5 micrograms/kg) but not U-69,593 suppressed both plasma hormone levels 30 min after injection. Also the effects of selective antagonists were tested over the s.c. dose range of 0.01-1 mg/kg. Whereas both the kappa-selective antagonist nor-binaltorphimine and the relatively mu-selective antagonist naloxone elevated oxytocin plasma levels (peak at 15 and 30 min after injection, respectively), the delta-selective antagonist naltrindole was without any effect. Nor-binaltorphimine, naloxone, and naltrindole did not affect vasopressin release. When the antagonists were administered i.c.v. (dose range 2.5-25 micrograms/kg), only the kappa-antagonist nor-binaltorphimine enhanced oxytocin and vasopressin release 30 min after injection. In conclusion, both mu- and kappa-opioid receptors are involved in the regulation of the secretion of vasopressin and oxytocin from the rat neural lobe; in contrast, delta-opioid receptors do not play a role.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. In the present work we have studied in the heart the expression of Fos, the protein product of the c-fos proto-oncogene and the adaptive changes in noradrenergic neurons after naloxone or nor-binaltorphimine (nor-BNI) administration to morphine or U-50,488H pretreated rats. 2. Male rats were implanted with placebo (na?ve) or morphine (tolerant/dependent) pellets for 7 days. On day 8 rats received saline s.c., naloxone (5 mg kg(-1) s.c.) or nor-BNI (5 mg kg(-1) i.p.). Other groups of rats were rendered tolerant/dependent on U-50,488H by injecting the drug twice daily (15 mg kg(-1) i.p.) for 4 days. Control animals received saline. On day 5 the animals were injected with vehicle i.p. or nor-BNI (5 mg kg(-1) i.p.). 3. Using immunohistochemical staining of Fos, present results indicate that morphine withdrawal induced marked Fos immunoreactivity (Fos-IR) within the cardiomyocyte nuclei. Moreover, Western blots analysis revealed a peak expression of c-fos in right and left ventricle after naloxone induced withdrawal in parallel with an increase in noradrenaline (NA) turnover. 4. However, after nor-BNI administration to rats chronically treated with U-50,488H, we found a decrease in the NA turnover. In addition, the administration of nor-BNI to rats chronically treated with U-50,488H or morphine did not induce modifications in the Fos-IR, in the heart. 5. These results demonstrated that morphine withdrawal induces the expression of Fos protein, as well as an enhancement of noradrenergic activity in the heart. In contrast to morphine U-50,488 withdrawal produces no changes in Fos-IR in parallel with a decrease in NA turnover, indicating that the kappa-opioid receptors are not involved in the molecular adaptive mechanisms responsible for the development of opioid dependence in the heart.  相似文献   

19.
1 The antinociceptive effects of systemically-administered procaine, lignocaine and bupivacaine were examined in mice and rats by using the hot-plate, writhing and tail flick tests. 2 In both species all three local anaesthetics produced significant antinociception which was prevented by atropine (5 mg kg-1, i.p.) and by hemicholinium-3 (1 microgram per mouse, i.c.v.), but not by naloxone (3 mg kg-1, i.p.), alpha-methyl-p-tyrosine (100 mg kg-1, s.c.), reserpine (2 mg kg-1, i.p.) or atropine methylbromide (5.5 mg kg-1, i.p.). 3 Atropine (5 mg kg-1, i.p.) which totally antagonized oxotremorine (40 micrograms kg-1, s.c.) antinociception did not modify morphine (5 mg kg-1, s.c.) or baclofen (4 mg kg-1, s.c.) antinociception. On the other hand, hemicholinium, which antagonized local anaesthetic antinociception, did not prevent oxotremorine, morphine or baclofen antinociception. 4 Intracerebroventricular injection in mice of procaine (200 micrograms), lignocaine (150 microgram) and bupivacaine (25 micrograms), doses which were largely ineffective by parenteral routes, induced an antinociception whose intensity equalled that obtainable subcutaneously. Moreover, the i.c.v. injection of antinociceptive doses did not impair performance on the rota-rod test. 5 Concentrations below 10(-10) M of procaine, lignocaine and bupivacaine did not evoke any response on the isolated longitudinal muscle strip of guinea-pig ileum, or modify acetylcholine (ACh)-induced contractions. On the other hand, they always increased electrically-evoked twitches. 6 The same concentrations of local anaesthetics which induced antinociception did not inhibit acetylcholinesterase (AChE) in vitro. 7 On the basis of the above findings and the existing literature, a facilitation of cholinergic transmission by the local anaesthetics is postulated; this could be due to blockade of presynaptic muscarinic receptors.  相似文献   

20.
This study was conducted to determine whether sex differences in opioid antinociception may be explained by sex differences in opioid receptor activation. The time course, dose-effect and selectivity of antagonists that have been previously shown to be relatively mu (beta-funaltrexamine, beta-FNA), kappa (norbinaltorphimine, norBNI), or delta (naltrindole, NTI) receptor selective in male animals were compared in female and male Sprague-Dawley rats using a 52 degrees C hotplate test. In both sexes, beta-FNA (10 or 20 microg intracerebroventricularly [i.c.v.]) dose-dependently blocked the antinociceptive effects of fentanyl (0.056 mg/kg subcutaneously); antagonism was observed 24 h after beta-FNA, and diminished within 7-14 days. In both sexes, norBNI (1 or 10 microg i.c.v.) dose-dependently blocked the antinociceptive effects of U69,593 (1.0 mg/kg subcutaneously); antagonism was maximal by 1-3 days post-norBNI and lasted longer than 56 days. NTI (1 or 10 microg i.c.v.) dose-dependently blocked the antinociceptive effects of [D-Pen2, D-Pen5]enkephalin (DPDPE, 100 nmol i.c.v.) in both sexes; however, the duration of action of NTI was shorter in females than in males. The antinociceptive effects of the mu receptor-preferring agonists fentanyl, morphine and buprenorphine were significantly and dose-dependently antagonized by beta-FNA, but not by norBNI or NTI, in both sexes. Beta-FNA antagonism was significantly greater in females compared with males given morphine, but not fentanyl or buprenorphine. The antinociceptive effects of the kappa receptor-preferring agonists U69,593 and U50,488 were significantly and dose-dependently antagonized by norBNI; U50,488 but not U69,593 was also antagonized to a lesser extent by NTI and beta-FNA, in both sexes. The antinociceptive effect of the delta receptor-preferring agonist SNC 80 was significantly antagonized by NTI, but not by norBNI or beta-FNA, in both sexes. The sex difference in beta-FNA antagonism of morphine suggests that there may be sex differences in functional mu opioid receptor reserve or signal transduction; however, the lack of consistency across all mu agonists weakens this hypothesis. Overall, the opioids tested had very similar receptor selectivity in male and female subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号