首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sato Y  Kanoko T  Satoh K  Iwamoto J 《BONE》2005,36(1):61-68
A high incidence of fractures, particularly of the hip, represents an important problem in patients with Alzheimer's disease (AD), who are prone to falls and may have osteoporosis. We previously showed deficiency of vitamins D and K1 causes reduced bone mineral density (BMD) in female AD patients. The present study was undertaken to address the possibility that treatment with vitamin K2 (menatetrenone; MK-4) may maintain BMD and reduce the incidence of nonvertebral fractures in elderly female patients with AD. In a random and prospective study of AD patients, 100 patients received 45 mg menatetrenone, 1000 IU ergocalciferol and 600 mg calcium daily for 2 years, and the remaining 100 (untreated group) did not. At baseline, patients of both groups showed vitamin D and K1 deficiencies. They also had high serum levels of parathyroid hormone (PTH) and Glu osteocalcin (OC) and low serum ionized calcium, indicating that vitamin D deficiency stimulates compensatory PTH secretion. During the 2-year study period, BMD in the second metacarpals increased by 2.3% in the treated group and decreased by 5.2% in the untreated group (P < 0.0001). Serum levels of vitamin K2 and 25-hydroxyvitamin D increased by 284.9% and 147.9%, respectively, in the treated group. Correspondingly, a significant decrease in Glu OC and PTH were observed, in association with an increased calcium levels, in the treated group. Twenty-two patients in the untreated group sustained nonvertebral fractures (15 with hip fractures, two fractures each at the distal forearm and the proximal femur, each one fracture at the proximal humerus, ribs, and pelvis), and three fractures (2 with hip fractures, one fracture at the proximal femur) occurred among the treated patients (P = 0.0003; odds ratio = 7.5). Treatment with MK-4 and vitamin D2 with calcium supplements increases the BMD in elderly female patients with AD and leads to the prevention of nonvertebral fractures.  相似文献   

2.
Osteoporotic fractures are an extremely common and serious health problem in the elderly. This article presents the rationale for calcium and vitamin D supplementation in the prevention and treatment of osteoporotic fractures and reviews the literature evidence on the efficacy of this strategy. Two musculoskeletal risk factors are implicated in osteoporotic fractures in the elderly: the loss of bone mass due to secondary hyperparathyroidism and the increased propensity to falls. Calcium and vitamin D reverse secondary hyperparathyroidism with resultant beneficial effects on bone mineral density (BMD). Additionally, calcium and vitamin D supplementation significantly improves body sway and lower extremity strength, reducing the risk of falls. The effects of combined calcium and vitamin D on parathyroid function and BMD provide a strong rationale for the use of this therapy in the prevention and treatment of osteoporosis and osteoporotic fractures. There is general agreement that, in patients with documented osteoporosis, calcium and vitamin D supplementation should be an integral component of the management strategy, along with antiresorptive or anabolic treatment. Frail elderly individuals constitute another major target population for calcium and vitamin D because evidence from randomized studies in institutionalized elderly subjects demonstrates that these supplements reduce osteoporotic fracture risk, particularly in the presence of dietary deficiencies. However, the results of trials in community-dwelling subjects have been equivocal. Within the primary-care setting, further research is required to establish appropriate target subgroups for calcium and vitamin D supplementation; overall, the data are consistent with a benefit individuals with insufficient calcium and/or vitamin D, although patients with documented osteoporosis will derive further benefit in terms of fracture prevention from the addition of an antiresorptive agent.  相似文献   

3.
There is a decline in serum 25 hydroxyvitamin D (25OHD), 1,25 dihydroxyvitamin D (1,25(OH)2D), and calcium absorption with advancing age, which may lead to secondary hyperparathyroidism and bone loss. Studies show a relationship between serum 25OHD and bone density in older men and women, with an inverse correlation between bone density and parathyroid hormone (PTH). Vitamin D supplementation in this age group improves calcium absorption, suppresses PTH, and decreases bone loss. Vitamin D many also reduce the incidence of hip and other nonvertebral fractures, particularly in the frail elderly who are likely to have vitamin D deficiency. Patients with established vertebral osteoporosis have lower calcium absorption than age-matched control subjects, possibly due to reduced serum 1,25(OH)2D or to relative resistance to the action of vitamin D on the bowel. Malabsorption of calcium in women with vertebral crush fractures does not usually respond to treatment with physiological doses of vitamin D, but can be corrected by pharmacological doses of vitamin D or by low doses of calcitriol or alfacalcidol. In a recent randomized, controlled study in 46 elderly women with radiological evidence of vertebral osteoporosis, alfacalcidol 0.25 μg twice daily improved calcium absorption, decreased serum PTH, and reduced alkaline phosphatase, whereas vitamin D2 500–1000 IU daily had no effect over the 6-month study period. Studies of the effect of the vitamin D metabolites in the management of elderly women with established vertebral osteoporosis have yielded conflicting results, but suggest that alfacalcidol and calcitriol may decrease spinal bone loss and reduce the incidence of vertebral fractures. Although vitamin D supplementation decreases bone loss and fracture risk in the frail elderly, vitamin D metabolites may prove more useful in the treatment of elderly women with vertebral osteoporosis.  相似文献   

4.
In a random and prospective study, Alzheimer's disease (AD) patients were assigned to regular sunlight exposure (n = 132) or sunlight deprivation (n = 132) and followed for 1 year. Serum 25-OHD level increased by 2.2-fold in the sunlight-exposed group. Eleven patients sustained fractures in the sunlight-deprived group, and three fractures occurred among the sunlight-exposed group (p = 0.0362; odds ratio = 3.7). INTRODUCTION: A high incidence of fractures, particularly of the hip, represents an important problem in patients with Alzheimer's disease (AD), who are prone to falls and have osteoporosis. We previously showed that 25-hydroxyvitamin D (25-OHD) deficiency caused by sunlight deprivation with compensatory hyperparathyroidism causes reduced BMD in elderly women with AD. This study was undertaken to address the possibility that sunlight exposure with calcium supplementation may maintain BMD and reduce the incidence of nonvertebral fractures in elderly women with AD. MATERIALS AND METHODS: In a random and prospective study, AD patients were assigned to regular sunlight exposure (n = 132) or sunlight deprivation (n = 132) and followed for 1 year. BMD of the second metacarpal bone was measured using a computed X-ray densitometer (CXD). The CXD method measures BMD and cortical thickness at the middle of the second metacarpal bone on a radiogram of the hand and an aluminum step wedge as a standard (20 steps; 1 mm/step). Incidence of nonvertebral fractures in the two patient groups during the 1-year follow-up period was assessed. RESULTS AND CONCLUSION: At baseline, average hospitalization period was 1.7 years in both groups, and activity of daily living (ADL) was decreased. Patients of both groups showed vitamin D deficiency caused by sunlight deprivation and decreased dietary intake of vitamin D with compensatory hyperparathyroidism. The exposed group patients were exposed to sunlight (3615 minutes/year). BMD increased by 2.7% in the sunlight-exposed group and decreased by 5.6% in the sunlight-deprived group (p < 0.0001). Serum 25-OHD level increased from 24.0 to 52.2 nM in the sunlight-exposed group. Eleven patients sustained fractures in the sunlight-deprived group, and three fractures occurred among the sunlight-exposed group (p = 0.0362; odds ratio = 3.7). Sunlight exposure can increase the BMD of vitamin D-deficient bone by increasing 25-OHD concentration and lead to the prevention of nonvertebral fractures.  相似文献   

5.
Vitamin D and calcium supplementation significantly reduces the incidence of fractures. Evidence suggests vitamin D deficiency impairs neuromuscular function, causing an increase in falls and thereby fractures. The relationship between vitamin D, functional performance, and psychomotor function in elderly people who fall was examined in a prospective cross-sectional study. Patients were recruited from a falls clinic and stratified according to serum 25-hydroxyvitamin-D levels (25OHD): group 1, 25OHD < 12 microg/liter; group 2 25OHD, 12-17 microg/liter; and group 3, 25OHD > 17 microg/liter. Healthy elderly volunteers with 25OHD > 17 microg/liter comprised group 4 (n = 20/group). Measures included aggregate functional performance time (AFPT, seconds), isometric quadriceps strength (Newtons), postural sway (degrees), and choice reaction time (CRT, seconds). Serum bone biochemistry, 25OHD, and parathyroid hormone levels were measured. Patients who fell had significantly impaired functional performance, psychomotor function, and quadriceps strength compared with healthy subjects (AFPT: 51.0 s vs. 32.8 s,p < 0.05; CRT: 1.66 s vs. 0.98 s,p < 0.05; strength: 223N vs. 271N, t = 2.35, p = 0.02). Group 1 had significantly slower AFPT (66.0 s vs. 44.8 s, t = 4.15, p < 0.05) and CRT (2.37 s vs. 0.98 s, t = 3.59, p < 0.05) than groups 2 and 3. Group 1 had the greatest degree of postural sway and the weakest quadriceps strength, although this did not reach significance. Multivariate analysis revealed 25OHD as an independent variable for AFPT, CRT, and postural sway. PTH was an independent variable for muscle strength. Older people who fall have impaired functional performance, psychomotor function, and muscle strength. Within this group, those with 25OHD < 12 microg/liter are the most significantly affected.  相似文献   

6.
Introduction There is little evidence of a preventive effect of vitamin D on falling in Japanese populations. The purpose of this study was to evaluate the effect of vitamin D status on postural sway, muscle strength, and the incidence of falls in elderly community-dwelling Japanese women. This study utilized a cross-sectional design for postural sway and muscle strength as outcomes and a prospective design for the 1-year incidence of falls. Methods Subjects included 633 ambulant elderly women 69 years of age and older who participated in the baseline examinations of the Muramatsu Study. Measurements of serum 25-hydroxyvitamin D (25[OH]D) and 1,25-dihydroxyvitamin D (1,25[OH]2D) concentrations, intact parathyroid hormone (PTH), locus length (cm/s) of gravity-center sway, grip strength, body height, body weight, body mass index (BMI), and physical activity levels were recorded. Falls that occurred between May 2003 and early July 2004 were documented. Results The average age and serum 25(OH)D concentration of the subjects was 74.3 years (SD 4.4) and 60.0 nmol/l (SD 17.9), respectively. The 1-year cumulative incidence of falls was 73/609 (12.0%). Multiple linear regression analysis showed that log-transformed locus length of the center of gravity was associated with age (R2=0.069, P<0.0001) and BMI (R2=0.025, P<0.0001) and that grip strength was associated with age (R2=0.141, P<0.0001) and height (R2=0.100, P<0.0001). A subgroup analysis revealed that log-transformed locus length was significantly associated with serum 25(OH)D concentrations (R2=0.075, P=0.0189) in 75 subjects who had vitamin D insufficiency [serum 25(OH)D <40 nmol/l]. Conclusions The 1-year incidence of falls was associated with locus length of gravity-center sway. The present study failed to find associations between vitamin D status and gravity-center sway, grip strength, or the incidence of falls. This may be due to relatively high serum 25(OH)D level differences in this population. However, a significant association between vitamin D status and postural sway was found in the vitamin-D-insufficient subgroup, suggesting supplementation of vitamin D should be considered for those with vitamin D insufficiency.  相似文献   

7.
In this population-based study, seasonal periodicity was seen with reduced serum vitamin D, increased serum PTH, and increased bone resorption in winter. This was associated with an increased proportion of falls resulting in fracture and an increased risk of wrist and hip fractures. INTRODUCTION: In a population of women who reside in a temperate climate and do not generally receive dietary vitamin D supplementation, we investigated whether seasonal vitamin D insufficiency is associated with increased risk of fracture. MATERIALS AND METHODS: An observational, cross-sectional, population-based study set in southeastern Australia (latitude 38-39 degrees S). Participants were drawn from a well-defined community of 27,203 women >/=55 years old: 287 randomly selected from electoral rolls, 1635 with incident fractures, and 1358 presenting to a university hospital with falls. The main outcome measures were annual periodicities of ultraviolet radiation, serum 25-hydroxyvitamin D [25(OH)D], serum parathyroid hormone (PTH), serum C-telopeptide (CTx), BMD, falls, and fractures. RESULTS: Cyclic variations in serum 25(OH)D lagged 1 month behind ultraviolet radiation, peaking in summer and dipping in winter (p < 0.001). Periodicity of serum PTH was the inverse of serum 25(OH)D, with a phase shift delay of 1 month (p = 0.004). Peak serum CTx lagged peak serum PTH by 1-2 months. In late winter, a greater proportion of falls resulted in fracture (p < 0.001). Seasonal periodicity in 439 hip and 307 wrist fractures also followed a simple harmonic model (p = 0.078 and 0.002, respectively), peaking 1.5-3 months after the trough in 25(OH)D. CONCLUSIONS: A fall in 25(OH)D in winter is accompanied by increases in (1) PTH levels, (2) bone resorption, (3) the proportion of falls resulting in fracture, and (4) the frequency of hip and wrist fracture. Whether vitamin D supplementation in winter can reduce the population burden of fractures requires further investigation.  相似文献   

8.
Data on the association between dietary vitamin K intake and fracture risk are limited among Chinese. This study examined such an association in community-dwelling elderly in Hong Kong. We present data from 2,944 subjects (1,605 men, 1,339 women) who participated in a prospective cohort study. Baseline dietary intakes of energy, protein, calcium, vitamin D, and vitamin K were assessed using a food-frequency questionnaire. Data on incident hip fracture and nonvertebral fracture during a median of 6.9 follow-up years were collected from a hospital database. Cox regression analyses were performed with adjustments for age, education attainment, smoking status, alcohol use, body mass index, hip bone mineral density, physical activity, use of calcium supplement, and energy-adjusted nutrient intakes. There were 29 (1.8 %) men and 19 (1.4 %) women with incident hip fractures and 97 (6.0 %) men and 88 (6.6 %) women with nonvertebral fractures. The median (interquartile range) of dietary vitamin K intake was 241.8 (157.5–360.8) and 238.9 (162.4–343.6) μg/day in men and women, respectively. Similar dietary vitamin K intakes were observed between subjects with hip or nonvertebral fractures and subjects without hip or nonvertebral fractures. In both men and women, dietary vitamin K intake was not associated with fracture risks at all measured sites in either crude or adjusted models. In Chinese community-dwelling elderly, hip or nonvertebral fracture risk was not associated with dietary vitamin K intake. The high dietary vitamin K intake of the studied group may have limited the ability to detect the association between vitamin K intake and fracture risk.  相似文献   

9.
Sato Y  Honda Y  Kaji M  Asoh T  Hosokawa K  Kondo I  Satoh K 《BONE》2002,31(1):114-118
Significant reduction in bone mineral density (BMD) occurs in patients with Parkinson's disease (PD), correlating with immobilization and with vitamin D deficiency, and increasing the risk of hip fracture, especially in elderly women. As a biological indicator of compromised vitamin K status, an increased serum concentration of undercarboxylated osteocalcin (Oc) has been associated with reduced BMD in the hip and an increased risk of fracture in otherwise healthy elderly women. We evaluated treatment with vitamin K(2) (menatetrenone; MK-4) in maintaining BMD and reducing the incidence of nonvertebral fractures in elderly female patients with PD. In a random and prospective study of PD patients, 60 received 45 mg of MK-4 daily for 12 months, and the remaining 60 (untreated group) did not. At baseline, patients of both groups showed vitamin D and K(1) deficiencies, high serum levels of ionized calcium, and glutaminic residue (Glu) Oc, and low levels of parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], indicating that immobilization-induced hypercalcemia inhibits renal synthesis of 1,25-(OH)(2)D and compensatory PTH secretion. BMD in the second metacarpals increased by 0.9% in the treated group and decreased by 4.3% in the untreated group (p < 0.0001). Vitamin K(2) level increased by 259.8% in the treated group. Correspondingly, significant decreases in Glu Oc and calcium were observed in the treated group, in association with an increase in both PTH and 1,25-(OH)(2)D. Ten patients sustained fractures (eight at the hip and two at other sites) in the untreated group, and one hip fracture occurred among treated patients (p = 0.0082; odds ratio = 11.5). The treatment with MK-4 can increase the BMD of vitamin D- and K-deficient bone by increasing vitamin K concentration, and it can also decrease calcium levels through inhibition of bone resorption, resulting in an increase in 1,25-(OH)(2)D concentration.  相似文献   

10.
Y. Sato  T. Asoh  K. Oizumi 《BONE》1998,23(6):555-557
Patients with Alzheimer’s disease (AD) are at increased risk for falls and hip fractures. To better understand causes and prevention, we measured bone mineral density (BMD) in the second metacarpals of 46 ambulatory elderly women with AD and analyzed its relation to serum biochemical indices, sunlight exposure, and vitamin D intake. BMD was significantly less than in age-matched controls. In 26% of AD patients, the serum 25-hydroxyvitamin D (25-OHD) concentration was at a deficient level (5–10 ng/mL), and in 54% it was at an osteomalacic level (<5 ng/mL). Concentrations of ionized calcium were significantly lower in patients. Conversely, concentrations of serum bone Gla-protein and urinary hydroxyproline in patients were significantly higher than in controls. BMD correlated positively with 25-OHD concentration (p = 0.0041) and negatively with parathyroid hormone (PTH) concentration (p = 0.0022). PTH was higher in patients than in controls, and correlated negatively with 25-OHD (p < 0.0001). Many AD patients were sunlight-deprived and consumed less than 100 IU of vitamin D per day. We concluded that vitamin D deficiency due to sunlight deprivation and malnutrition, together with compensatory hyperparathyroidism, contributes significantly to reduced BMD in AD patients. Low BMD increases risk of hip fractures in patients with AD, but may be improved by vitamin D supplementation.  相似文献   

11.
Dietary supplementation with vitamin K(1), with vitamin D(3) and calcium or their combination, was examined in healthy older women during a 2-year, double-blind, placebo-controlled trial. Combined vitamin K with vitamin D plus calcium was associated with a modest but significant increase in BMC at the ultradistal radius but not at other sites in the hip or radius. INTRODUCTION: The putative beneficial role of high dietary vitamin K(1) (phylloquinone) on BMD and the possibility of interactive benefits with vitamin D were studied in a 2-year double-blind, placebo-controlled trial in healthy Scottish women > or =60 years of age. MATERIALS AND METHODS: Healthy, nonosteoporotic women (n = 244) were randomized to receive either (1) placebo, (2) 200 microg/day vitamin K(1), (3) 10 microg (400 IU) vitamin D(3) plus 1000 mg calcium/day, or (4) combined vitamins K(1) and D(3) plus calcium. Baseline and 6-month measurements included DXA bone mineral scans of the hip and wrist, markers of bone turnover, and vitamin status. Supplementation effects were tested using multivariate general linear modeling, with full adjustment for baseline and potential confounding variables. RESULTS: Significant bone mineral loss was seen only at the mid-distal radius but with no significant difference between groups. However, women who took combined vitamin K and vitamin D plus calcium showed a significant and sustained increase in both BMD and BMC at the site of the ultradistal radius. Serum status indicators responded significantly to respective supplementation with vitamins K and D. Over 2 years, serum vitamin K(1) increased by 157% (p < 0.001), the percentage of undercarboxylated osteocalcin (%GluOC) decreased by 51% (p < 0.001), serum 25-hydroxyvitamin D [25(OH)D] increased by 17% (p < 0.001), and PTH decreased by 11% (p = 0.049). CONCLUSIONS: These results provide evidence of a modest synergy in healthy older women from nutritionally relevant intakes of vitamin K(1) together with supplements of calcium plus moderate vitamin D(3) to enhance BMC at the ultradistal radius, a site consisting of principally trabecular bone. The substantial increase in gamma-carboxylation of osteocalcin by vitamin K may have long-term benefits and is potentially achievable by increased dietary intakes of vitamin K rather than by supplementation.  相似文献   

12.
Vitamin D inadequacy is pandemic in adults. Vitamin D deficiency causes osteopenia, precipitates and exacerbates osteoporosis, causes the painful bone disease osteomalacia, and increases muscle weakness, which worsens the risk of falls and fractures. Vitamin D deficiency can be prevented by sensible sun exposure and adequate supplementation. Monitoring serum 25-hydroxyvitamin D is the only way to determine vitamin D status. Recent recommendations suggest that in the absence of sun exposure, adults should ingest 1000 IU of vitamin D3 per day. The ideal healthy blood level of 25-hydroxyvitamin D should be 30 to 60 ng/mL. Vitamin D intoxication occurs when 25-hydroxyvitamin D levels are greater than 150 ng/mL. Three recent reports suggesting that vitamin D and calcium supplementation does not decrease the risk of fracture will be put into perspective in light of the vast literature supporting increasing vitamin D and calcium intake as an effective method for decreasing risk of vertebral and nonvertebral fractures.  相似文献   

13.
Randomized controlled trials have shown that a combination of vitamin D and calcium can prevent fragility fractures in the elderly. Whether this effect is attributed to the combination of vitamin D and calcium or to one of these nutrients alone is not known. We studied if an intervention with 10 microg of vitamin D3 per day could prevent hip fracture and other osteoporotic fractures in a double-blinded randomized controlled trial. Residents from 51 nursing homes were allocated randomly to receive 5 ml of ordinary cod liver oil (n = 569) or 5 ml of cod liver oil where vitamin D was removed (n = 575). During the study period of 2 years, fractures and deaths were registered, and the principal analysis was performed on the intention-to-treat basis. Biochemical markers were measured at baseline and after 1 year in a subsample. Forty-seven persons in the control group and 50 persons in the vitamin D group suffered a hip fracture. The corresponding figures for all nonvertebral fractures were 76 persons (control group) and 69 persons (vitamin D group). There was no difference in the incidence of hip fracture (p = 0.66, log-rank test), or in the incidence of all nonvertebral fractures (p = 0.60, log-rank test) in the vitamin D group compared with the control group. Compared with the control group, persons in the vitamin D group increased their serum 25-hydroxyvitamin D concentration with 22 nmol/liter (p = 0.001). In conclusion, we found that an intervention with 10 microg of vitamin D3 alone produced no fracture-preventing effect in a nursing home population of frail elderly people.  相似文献   

14.
Specific receptors for vitamin D have been identified in human muscle tissue. Cross-sectional studies show that elderly persons with higher vitamin D serum levels have increased muscle strength and a lower number of falls. We hypothesized that vitamin D and calcium supplementation would improve musculoskeletal function and decrease falls. In a double-blind randomized controlled trial, we studied 122 elderly women (mean age, 85.3 years; range, 63-99 years) in long-stay geriatric care. Participants received 1200 mg calcium plus 800 IU cholecalciferol (Cal+D-group; n = 62) or 1200 mg calcium (Cal-group; n = 60) per day over a 12-week treatment period. The number of falls per person (0, 1, 2-5, 6-7, >7 falls) was compared between the treatment groups. In an intention to treat analysis, a Poisson regression model was used to compare falls after controlling for age, number of falls in a 6-week pretreatment period, and baseline 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D serum concentrations. Among fallers in the treatment period, crude excessive fall rate (treatment - pretreatment falls) was compared between treatment groups. Change in musculoskeletal function (summed score of knee flexor and extensor strength, grip strength, and the timed up&go test) was measured as a secondary outcome. Among subjects in the Cal+D-group, there were significant increases in median serum 25-hydroxyvitamin D (+71%) and 1,25-dihydroxyvitamin D (+8%). Before treatment, mean observed number of falls per person per week was 0.059 in the Cal+D-group and 0.056 in the Cal-group. In the 12-week treatment period, mean number of falls per person per week was 0.034 in the Cal+D-group and 0.076 in the Cal-group. After adjustment, Cal+D-treatment accounted for a 49% reduction of falls (95% CI, 14-71%; p < 0.01) based on the fall categories stated above. Among fallers of the treatment period, the crude average number of excessive falls was significantly higher in the Cal-group (p = 0.045). Musculoskeletal function improved significantly in the Cal+D-group (p = 0.0094). A single intervention with vitamin D plus calcium over a 3-month period reduced the risk of falling by 49% compared with calcium alone. Over this short-term intervention, recurrent fallers seem to benefit most by the treatment. The impact of vitamin D on falls might be explained by the observed improvement in musculoskeletal function.  相似文献   

15.
In this 2-year randomized controlled study of 167 men >50 years of age, supplementation with calcium-vitamin D3-fortified milk providing an additional 1000 mg of calcium and 800 IU of vitamin D3 per day was effective for suppressing PTH and stopping or slowing bone loss at several clinically important skeletal sites at risk for fracture. INTRODUCTION: Low dietary calcium and inadequate vitamin D stores have long been implicated in age-related bone loss and osteoporosis. The aim of this study was to assess the effects of calcium and vitamin D3 fortified milk on BMD in community living men >50 years of age. MATERIALS AND METHODS: This was a 2-year randomized controlled study in which 167 men (mean age +/- SD, 61.9 +/- 7.7 years) were assigned to receive either 400 ml/day of reduced fat ( approximately 1%) ultra-high temperature (UHT) milk containing 1000 mg of calcium plus 800 IU of vitamin D3 or to a control group receiving no additional milk. Primary endpoints were changes in BMD, serum 25(OH)D, and PTH. RESULTS: One hundred forty-nine men completed the study. Baseline characteristics between the groups were not different; mean dietary calcium and serum 25(OH)D levels were 941 +/- 387 mg/day and 77 +/- 23 nM, respectively. After 2 years, the mean percent change in BMD was 0.9-1.6% less in the milk supplementation compared with control group at the femoral neck, total hip, and ultradistal radius (range, p < 0.08 to p < 0.001 after adjusting for covariates). There was a greater increase in lumbar spine BMD in the milk supplementation group after 12 and 18 months (0.8-1.0%, p < or = 0.05), but the between-group difference was not significant after 2 years (0.7%; 95% CI, -0.3, 1.7). Serum 25(OH)D increased and PTH decreased in the milk supplementation relative to control group after the first year (31% and -18%, respectively; both p < 0.001), and these differences remained after 2 years. Body weight remained unchanged in both groups at the completion of the study. CONCLUSIONS: Supplementing the diet of men >50 years of age with reduced-fat calcium- and vitamin D3-enriched milk may represent a simple, nutritionally sound and cost-effective strategy to reduce age-related bone loss at several skeletal sites at risk for fracture in the elderly.  相似文献   

16.
Summary  In 242 community-dwelling seniors, supplementation with either 1000 mg of calcium or 1000 mg of calcium plus vitamin D resulted in a decrease in the number of subjects with first falls of 27% at month 12 and 39% at month 20. Additionally, parameters of muscle function improved significantly. Introduction  The efficacy of vitamin D and calcium supplementation on risk of falling in the elderly is discussed controversially. Randomized controlled trials using falls as primary outcome are needed. We investigated long-term effects of calcium and vitamin D on falls and parameters of muscle function in community-dwelling elderly women and men. Methods  Our study population consisted of 242 individuals recruited by advertisements and mailing lists (mean [ ± SD] age, 77 ± 4 years). All serum 25-hydroxyvitamin D (25[OH]D) levels were below 78 nmol/l. Individuals received in a double blinded fashion either 1000 mg of calcium or 1000 mg of calcium plus 800 IU of vitamin D per day over a treatment period of 12 months, which was followed by a treatment-free but still blinded observation period of 8 months. Falls were documented using diaries. The study took place in Bad Pyrmont, Germany (latitude 52°) and Graz, Austria (latitude 46°). Results  Compared to calcium mono, supplementation with calcium plus vitamin D resulted in a significant decrease in the number of subjects with first falls of 27% at month 12 (RR = 0.73; CI = 0.54–0.96) and 39% at month 20 (RR = 0.61; CI = 0.34–0.76). Concerning secondary endpoints, we observed significant improvements in quadriceps strength of 8%, a decrease in body sway of 28%, and a decrease in time needed to perform the TUG test of 11%. Discussion  Combined calcium and vitamin D supplementation proved superior to calcium alone in reducing the number of falls and improving muscle function in community-dwelling older individuals. Parts of this work were presented as oral presentations at the 26th Annual Meeting of the American Society for Bone and Mineral Research (ASBMR) in Seattle, Washington, October 2004 and at the IOF World Congress on Osteoporosis in Toronto, Canada, June 2006.  相似文献   

17.
Inadequate serum 25-hydroxyvitamin D (25[OH]D) concentrations are associated with muscle weakness, decreased physical performance, and increased propensity in falls and fractures. This paper discusses several aspects with regard to vitamin D status and supplementation when treating patients with osteoporosis in relation to risks and prevention of falls and fractures. Based on evidence from literature, adequate supplementation with at least 700 IU of vitamin D, preferably cholecalciferol, is required for improving physical function and prevention of falls and fractures. Additional calcium supplementation may be considered when dietary calcium intake is below 700 mg/day. For optimal bone mineral density response in patients treated with antiresorptive or anabolic therapy, adequate vitamin D and calcium supplementation is also necessary. Monitoring of 25(OH)D levels during follow-up and adjustment of vitamin D supplementation should be considered to reach and maintain adequate serum 25(OH)D levels of at least 50 nmol/L, preferably greater than 75 nmol/L in all patients.  相似文献   

18.
Bone ultrasound measures (QUSs) can assess fracture risk in the elderly. We compared three QUSs and their association with nonvertebral fracture history in 7562 Swiss women 70-80 years of age. The association between nonvertebral fracture was higher for heel than phalangeal QUS. INTRODUCTION: Because of the high morbidity and mortality associated with osteoporotic fractures, it is essential to detect subjects at risk for such fractures with screening methods. Because quantitative bone ultrasound (QUS) discriminated subjects with osteoporotic fractures from controls in several cross-sectional studies and predicted fractures in prospective studies, QUS could be more practical than DXA for screening. MATERIAL AND METHODS: This cross-sectional and retrospective multicenter (10 centers) study was performed to compare three QUSs (two heel ultrasounds: Achilles+ [GE-Lunar] and Sahara [Hologic]; the phalanges: ultrasound DBM sonic 1200 [IGEA]) for determining by logistic regression nonvertebral fracture odds ratio (OR) in a sample of 7562 Swiss women, 75.3 +/- 3.1 years of age. The two heel QUSs measured the broadband ultrasound attenuation (BUA) and the speed of sound (SOS). In addition, Achilles+ calculated the stiffness index (SI) and the Sahara calculated the quantitative ultrasound index (QUI) from BUA and SOS. The DBM sonic 1200 measured the amplitude-dependent SOS (AD-SOS). RESULTS: Eighty-six women had a history of a traumatic hip fracture after the age of 50, 1594 had a history of forearm fracture, and 2016 had other nonvertebral fractures. No fracture history was reported by 3866 women. Discrimination for hip fracture was higher than for the other nonvertebral fractures. The two heel QUSs had a significantly higher discrimination power than the QUSs of the phalanges, with standardized ORs, adjusted for age and body mass index, ranging from 2.1 to 2.7 (95% CI = 1.6, 3.5) compared with 1.4 (95% CI = 1.1, 1.7) for the AD-SOS of DBM sonic 1200. CONCLUSION: This study showed a high association between heel QUS and hip fracture history in elderly Swiss women. This could justify integration of QUS among screening strategies for identifying elderly women at risk for osteoporotic fractures.  相似文献   

19.
The association between vitamin D receptor gene polypmorphisms and bone mineral density is controversial. The relationship between vitamin D receptor genotype and risk of fracture is uncertain. To determine whether vitamin D receptor polymorphisms were associated with the risk of hip, vertebral, and other (nonhip, nonvertebral) fractures in elderly women, we conducted a case-cohort study within a prospective study of 9704 community-dwelling women aged 65 years and older. Vitamin D receptor allele and genotype frequencies in women who experienced first incident hip (n = 181), vertebral (n = 127), and other (n = 223) fractures were compared with those of control women selected randomly from the cohort. Average length of follow-up was 6.5, 3.7, and 5.4 years for women in hip, vertebral, and other fracture analyses, respectively. Vitamin D receptor polymorphisms were determined by polymerase chain reaction amplification of genomic DNA using TaqI and ApaI restriction site endonuclease digestion. All nonvertebral fractures were confirmed by X-ray reports; hip fractures were validated by review of X-ray films. Vertebral fractures were defined by morphometry using lateral spine radiography at baseline and an average of 3.7 years later. Allele or genotype frequencies did not differ between fracture cases and their respective controls. Vitamin D receptor genotype (defined by TaqI, ApaI, or the combination of TaqI and ApaI) was not significantly associated with the risk of hip, vertebral, or other fractures. For example, compared with the referent group of women with TT genotype, those with Tt and tt genotypes had similar age- and weight-adjusted risks of fracture at the hip (hazard ratios 0.9, 95% confidence interval [CI] 0.6-1.3, and 0.8, 95% CI 0.5-1.2, respectively), spine (odds ratios 1.1, 95% CI 0.7-1.8, and 0.7, 95% CI 0.4-1.3, respectively), or other skeletal site (hazard ratios 1.0, 95% CI 0. 7-1.4, and 1.0, 95% CI 0.7-1.5, respectively). These findings were not altered in additional analyses including those adjusted for and stratified by age, ethnic ancestry, calcaneal bone density, dietary calcium intake, use of calcium supplements, use of vitamin D supplements, and oral estrogen use. We conclude that Vitamin D receptor polymorphisms defined by TaqI and ApaI are not associated with the risk of fracture in older women. Our results suggest that determination of these vitamin D receptor polymorphisms is not a clinically useful test for the prediction of fracture risk in elderly women.  相似文献   

20.
Vitamin D (25(OH)D) increases the efficiency of intestinal calcium absorption. Low levels of serum calcium stimulate the secretion of parathyroid hormone (PTH), which maintains serum calcium levels at the expense of increased bone turnover, bone loss and increased risk of fractures. We studied the association between 25(OH)D and PTH levels, and their associations with bone mineral density (BMD), bone loss, and prevalence of hip fractures in 615 community-dwelling postmenopausal aged 50–97 years. Mean level of 25(OH)D and PTH were 102.0 nmol/l±35.0 nmol/l and 49.4 ng/l±23.2 nmol/l, respectively; 49% of women were current hormone therapy users. The overall prevalence of vitamin D insufficiency (25(OH)D<50 nmol/l) was 2%, and prevalence of high PTH levels (>65 ng/l) was 17.4%. In multiple linear regression analyses hip BMD was negatively and independently associated with PTH levels ( p =0.04), and positively and independently associated with 25(OH)D levels ( p =0.03). There were only 23 women (3.7%) who experienced a hip fracture. In age-adjusted analyses there were no significant differences of 25(OH)D and PTH levels by hip fracture status. Across the entire range of values, the overall correlation between 25(OH)D and PTH was moderate ( r =–0.20). However, after the threshold vitamin D level of 120 nmol/l, all PTH values were below 65 ng/l. Further studies are necessary to identify the optimal vitamin D levels necessary to prevent secondary hyperparathyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号