首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The G protein alpha-subunit Gsalpha is required for hormone-stimulated cAMP generation. The Gsalpha gene Gnas is a complex gene with multiple imprinted gene products. Mice with heterozygous disruption of the Gnas paternal allele (+/p-) are partially Gsalpha deficient and totally deficient in XLalphas, a neuroendocrine-specific Gsalpha isoform that is expressed only from the paternal Gnas allele. We previously showed that these mice are hypermetabolic and lean and have increased insulin sensitivity. We now performed hyperinsulinemic-euglycemic clamp studies, which confirmed the markedly increased whole body insulin sensitivity in +/p- mice. +/p- mice had 1.4-, 7- and 3.8-fold increases in insulin-stimulated glucose uptake in muscle and white and brown adipose tissue, respectively, and markedly suppressed endogenous glucose production from the liver. This was associated with increased phosphorylation of insulin receptor and a downstream effector (Akt kinase) in both liver and muscle in response to insulin. Triglycerides cleared more rapidly in +/p- mice after a bolus administered by gavage. This was associated with decreased liver and muscle triglyceride content and increased muscle acyl-CoA oxidase mRNA expression. Resistin and adiponectin were overexpressed in white adipose tissue of +/p- mice, although there was no difference in serum adiponectin levels. The lean phenotype and increased insulin sensitivity observed in +/p- mice is likely a consequence of increased lipid oxidation in muscle and possibly other tissues. Further studies will clarify whether XLalphas deficiency is responsible for these effects and if so, the mechanism by which XLalphas deficiency leads to this metabolic phenotype.  相似文献   

2.
Xie T  Chen M  Gavrilova O  Lai EW  Liu J  Weinstein LS 《Endocrinology》2008,149(5):2443-2450
The G protein alpha-subunit G(s)alpha mediates receptor-stimulated cAMP production and is imprinted with reduced expression from the paternal allele in specific tissues. Disruption of the G(s)alpha maternal (but not paternal) allele leads to severe obesity, hypertriglyceridemia, and insulin resistance in mice and obesity in patients with Albright hereditary osteodystrophy. Paternal deletion of a G(s)alpha imprint control region (1A) leads to loss of tissue-specific G(s)alpha imprinting. To determine whether the metabolic abnormalities resulting from disruption of the G(s)alpha maternal allele could be reversed by loss of paternal G(s)alpha imprinting, females with a heterozygous G(s)alpha exon 1 deletion were mated to males with heterozygous deletion of the imprint control region (1A) to generate mice with maternal G(s)alpha deletion (E1(m-)), paternal 1A deletion (1A(p-)), double mutants (E1(m-):1A(p-)), and wild type. E1(m-) mice developed obesity, glucose intolerance, insulin resistance, and hypertriglyceridemia, which were all normalized by the paternal 1A deletion in E1(m-):1A(p-) mice. Obesity in E1(m-) was associated with reduced energy expenditure and sympathetic nerve activity, and these were also normalized in E1(m-):1A(p-) mice. 1A(p-) mice had reduced body weight associated with proportional decreases in fat and lean mass as well as increased activity levels. The metabolic phenotype resulting from maternal G(s)alpha deletion is rescued by a genetic lesion that leads to loss of tissue-specific G(s)alpha imprinting, consistent with this phenotype being a direct consequence of G(s)alpha imprinting in one or more specific tissues.  相似文献   

3.
4.
Stimulatory heterotrimeric G protein (Gs) transduces signals from various cell-surface receptors to adenylyl cyclases, which generate cAMP. The alpha subunit of Gs (Gsalpha) is encoded by GNAS (Gnas in mice), and heterozygous Gsalpha inactivating mutations lead to Albright hereditary osteodystrophy. The in vivo role of Gsalpha in skeletogenesis is largely unknown, because of early embryonic lethality of mice with disruption of Gnas exon 2 (Gnas(E2-/E2-)) and the absence of easily detectable phenotypes in growth plate chondrocytes of heterozygous mutant mice (Gnas(+/E2-)). We generated chimeric mice containing wild-type cells and either Gnas(E2-/E2-) or Gnas(+/E2-) cells. Gnas(E2-/E2-) chondrocytes phenocopied PTH/PTHrP receptor (PPR)(-/-) cells by prematurely undergoing hypertrophy. Introduction of a transgene expressing Gsalpha, one of several gene products that include Gnas exon 2, into Gnas(E2-/E2-) cells prevented premature hypertrophy. Gsalpha mRNA expression detected by real-time RT-PCR analysis was reduced to approximately half that of the wild-type in both paternal and maternal Gnas(+/E2-) growth plate chondrocytes, indicating biallelic expression of Gsalpha in these cells. Hypertrophy of Gnas(+/E2-) chondrocytes was modestly but significantly premature in chimeric growth plates of mice containing wild-type and Gnas(+/E2-) cells. These data suggest that Gsalpha is the primary mediator of the actions of PPR in growth plate chondrocytes and that there is haploinsufficiency of Gsalpha signaling in Gnas(+/E2-) chondrocytes.  相似文献   

5.
Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein alpha-subunit (G(s)alpha) is unmethylated, although in some tissues (e.g., renal proximal tubules), G(s)alpha is poorly expressed from the paternal allele. Just upstream of the G(s)alpha promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L(-/-) mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-G(s)alpha) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in G(s)alpha overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on G(s)alpha expression in other tissues where G(s)alpha is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress G(s)alpha expression from the paternal allele in a tissue-specific manner.  相似文献   

6.
XLαs, a variant of the stimulatory G protein α-subunit (Gsα), can mediate receptor-activated cAMP generation and, thus, mimic the actions of Gsα in transfected cells. However, it remains unknown whether XLαs can act in a similar manner in vivo. We have now generated mice with ectopic transgenic expression of rat XLαs in the renal proximal tubule (rptXLαs mice), where Gsα mediates most actions of PTH. Western blots and quantitative RT-PCR showed that, while Gsα and type-1 PTH receptor levels were unaltered, protein kinase A activity and 25-hydroxyvitamin D 1-α-hydroxylase (Cyp27b1) mRNA levels were significantly higher in renal proximal tubules of rptXLαs mice than wild-type littermates. Immunohistochemical analysis of kidney sections showed that the sodium-phosphate cotransporter type 2a was modestly reduced in brush border membranes of male rptXLαs mice compared to gender-matched controls. Serum calcium, phosphorus, and 1,25 dihydroxyvitamin D were within the normal range, but serum PTH was ~30% lower in rptXLαs mice than in controls (152 ± 16 vs. 222 ± 41 pg/ml; P < 0.05). After crossing the rptXLαs mice to mice with ablation of maternal Gnas exon 1 (E1(m-/+)), male offspring carrying both the XLαs transgene and maternal Gnas exon 1 ablation (rptXLαs/E1(m-/+)) were significantly less hypocalcemic than gender-matched E1(m-/+) littermates. Both E1(m-/+) and rptXLαs/E1(m-/+) offspring had higher serum PTH than wild-type littermates, but the degree of secondary hyperparathyroidism tended to be lower in rptXLαs/E1(m-/+) mice. Hence, transgenic XLαs expression in the proximal tubule enhanced Gsα-mediated responses, indicating that XLαs can mimic Gsα in vivo.  相似文献   

7.
Most loss of function mutations of GNAS identified in different forms of pseudohypoparathyroidism disrupt not only the stimulatory G protein alpha-subunit (Gsalpha), but also its paternally expressed variant, XLalphas. However, the possibility that XLalphas deficiency contributes to disease pathogenesis has remained unexplored. We therefore examined the signaling property of human XLalphas and the effects of one novel (XLalphas(H704P) or Gsalpha(H362P)) and two previously described (XLalphas(DelI724) and XLalphas(Y733X) or Gsalpha(DelI382) and Gsalpha(Y391X), respectively) GNAS mutations on either XLalphas or Gsalpha activity. Confocal immunofluorescence microscopy detected human XLalphas immunoreactivity at the plasma membrane of transduced mouse embryonic fibroblasts null for endogenous Gsalpha and XLalphas (Gnas(E2-/E2-) cells). Cholera toxin- and isoproterenol-induced cAMP accumulation in Gnas(E2-/E2-) cells transiently expressing wild-type human XLalphas was similar to that in cells transiently expressing wild-type Gsalpha. Human XLalphas, like Gsalpha, mediated PTH-induced cAMP accumulation in Gnas(E2-/E2-) cells coexpressing PTH receptor type 1 and either of these proteins. Moreover, overexpression of human XLalphas or Gsalpha markedly enhanced the PTH-induced cAMP accumulation in opossum kidney cells that endogenously express PTH receptor type 1. In contrast, each XLalphas mutant failed to mediate isoproterenol- and PTH-induced cAMP accumulation in transduced Gnas(E2-/E2-) cells. XLalphas(DelI724) showed a reduced cholera toxin response over the basal level compared with wild-type XLalphas, and XLalphas(H704P) completely failed to respond to cholera toxin. These findings were comparable to those observed with each corresponding Gsalpha mutant transiently expressed in Gnas(E2-/E2-) cells. Thus, mutations that typically inactivate Gsalpha also impair XLalphas activity, consistent with a possible role for XLalphas deficiency in diseases caused by paternal GNAS mutations.  相似文献   

8.
Minireview: GNAS: normal and abnormal functions   总被引:12,自引:0,他引:12  
Weinstein LS  Liu J  Sakamoto A  Xie T  Chen M 《Endocrinology》2004,145(12):5459-5464
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present in various endocrine tumors and fibrous dysplasia of bone, and in a more widespread distribution in patients with McCune- Albright syndrome. Heterozygous inactivating G(s)alpha mutations lead to Albright hereditary osteodystrophy. G(s)alpha is imprinted in a tissue-specific manner, being primarily expressed from the maternal allele in renal proximal tubules, thyroid, pituitary, and ovary. Maternally inherited mutations lead to Albright hereditary osteodystrophy (AHO) plus PTH, TSH, and gonadotropin resistance (pseudohypoparathyroidism type 1A), whereas paternally inherited mutations lead to AHO alone. Pseudohypoparathyroidism type 1B, in which patients develop PTH resistance without AHO, is almost always associated with a GNAS imprinting defect in which both alleles have a paternal-specific imprinting pattern on both parental alleles. Familial forms of the disease are associated with a mutation within a closely linked gene that deletes a region that is presumably required for establishing the maternal imprint, and therefore maternal inheritance of the mutation results in the GNAS imprinting defect. Imprinting of one differentially methylated region within GNAS is virtually always lost in pseudohypoparathyroidism type 1B, and this region is probably responsible for tissue-specific G(s)alpha imprinting. Mouse knockout models show that G(s)alpha and the alternative G(s)alpha isoform XLalphas that is expressed from the paternal GNAS allele may have opposite effects on energy metabolism in mice.  相似文献   

9.
Maternal deletion of the NESP55 differentially methylated region (DMR) (delNESP55/ASdel3-4(m), delNAS(m)) from the GNAS locus in humans causes autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib(delNASm)), a disorder of proximal tubular parathyroid hormone (PTH) resistance associated with loss of maternal GNAS methylation imprints. Mice carrying a similar, maternally inherited deletion of the Nesp55 DMR (ΔNesp55(m)) replicate these Gnas epigenetic abnormalities and show evidence for PTH resistance, yet these mice demonstrate 100% mortality during the early postnatal period. We investigated whether the loss of extralarge αs (XLαs) imprinting and the resultant biallelic expression of XLαs are responsible for the early postnatal lethality in ΔNesp55(m) mice. First, we found that ΔNesp55(m) mice are hypoglycemic and have reduced stomach-to-body weight ratio. We then generated mice having the same epigenetic abnormalities as the ΔNesp55(m) mice but with normalized XLαs expression due to the paternal disruption of the exon giving rise to this Gnas product. These mice (ΔNesp55(m)/Gnasxl(m+/p-)) showed nearly 100% survival up to postnatal day 10, and a substantial number of them lived to adulthood. The hypoglycemia and reduced stomach-to-body weight ratio observed in 2-d-old ΔNesp55(m) mice were rescued in the ΔNesp55(m)/Gnasxl(m+/p-) mice. Surviving double-mutant animals had significantly reduced Gαs mRNA levels and showed hypocalcemia, hyperphosphatemia, and elevated PTH levels, thus providing a viable model of human AD-PHP-Ib. Our findings show that the hypoglycemia and early postnatal lethality caused by the maternal deletion of the Nesp55 DMR result from biallelic XLαs expression. The double-mutant mice will help elucidate the pathophysiological mechanisms underlying AD-PHP-Ib.  相似文献   

10.
11.
12.
Albright hereditary osteodystrophy is caused by heterozygous inactivating mutations in GNAS, a gene that encodes not only the alpha-chain of Gs (Galphas), but also NESP55 and XLalphas through use of alternative first exons. Patients with GNAS mutations on maternally inherited alleles are resistant to multiple hormones such as PTH, TSH, LH/FSH, GHRH, and glucagon, whose receptors are coupled to Gs. This variant of Albright hereditary osteodystrophy is termed pseudohypoparathyroidism type 1a and is due to presumed tissue-specific paternal imprinting of Galphas. Previous studies have shown that mice heterozygous for a targeted disruption of exon 2 of Gnas, the murine homolog of GNAS, showed unique phenotypes dependent on the parent of origin of the mutated allele. However, hormone resistance occurred only when the disrupted gene was maternally inherited. Because disruption of exon 2 is predicted to inactivate Galphas as well as NESP55 and XLalphas, we created transgenic mice with disruption of exon 1 to investigate the effects of isolated loss of Galphas. Heterozygous mice that inherited the disruption maternally (-m/+) exhibited PTH and TSH resistance, whereas those with paternal inheritance (+/-p) had normal hormone responsiveness. Heterozygous mice were shorter and, when the disrupted allele was inherited maternally, weighed more than wild-type littermates. Galphas protein and mRNA expression was consistent with paternal imprinting in the renal cortex and thyroid, but there was no imprinting in renal medulla, heart, or adipose. These findings confirm the tissue-specific paternal imprinting of GNAS and demonstrate that Galphas deficiency alone is sufficient to account for the hormone resistance of pseudohypoparathyroidism type 1a.  相似文献   

13.
Albright hereditary osteodystrophy (AHO), an autosomal dominant disorder characterized by short stature, obesity, and skeletal defects, is associated with heterozygous inactivating mutations of GNAS1, the gene encoding the heterotrimeric G protein α-subunit (Gsα) that couples multiple receptors to the stimulation of adenylyl cyclase. It has remained unclear why only some AHO patients present with multihormone resistance and why AHO patients demonstrate resistance to some hormones [e.g., parathyroid hormone (PTH)] but not to others (e.g., vasopressin), even though all activate adenylyl cyclase. We generated mice with a null allele of the mouse homolog Gnas. Homozygous Gs deficiency is embryonically lethal. Heterozygotes with maternal (m−/+) and paternal (+/p−) inheritance of the Gnas null allele have distinct phenotypes, suggesting that Gnas is an imprinted gene. PTH resistance is present in m−/+, but not +/p−, mice. Gsα expression in the renal cortex (the site of PTH action) is markedly reduced in m−/+ but not in +/p− mice, demonstrating that the Gnas paternal allele is imprinted in this tissue. Gnas is also imprinted in brown and white adipose tissue. The maximal physiological response to vasopressin (urinary concentrating ability) is normal in both m−/+ and +/p− mice and Gnas is not imprinted in the renal inner medulla (the site of vasopressin action). Tissue-specific imprinting of Gnas is likely the mechanism for variable and tissue-specific hormone resistance in these mice and a similar mechanism might explain the variable phenotype in AHO.  相似文献   

14.
15.
The stimulatory G protein alpha-subunit G(s)alpha couples receptors to adenylyl cyclase and is required for hormone-stimulated cAMP generation. In Albright hereditary osteodystrophy, heterozygous G(s)alpha null mutations only lead to PTH, TSH, and gonadotropin resistance when inherited maternally [pseudohypoparathyroidism type 1A; (PHP1A)]. Maternal-specific expression of G(s)alpha in specific hormone targets could explain this observation. Using hot-stop PCR analysis on total RNA from six normal human thyroid specimens, we showed that the majority of the G(s)alpha mRNA (72 +/- 3%) was derived from the maternal allele. This is consistent with the presence of TSH resistance in patients with maternal G(s)alpha null mutations (PHP1A) and the absence of TSH resistance in patients with paternal G(s)alpha mutations (pseudopseudohypoparathyroidism). Patients with PTH resistance in the absence of Albright hereditary osteodystrophy (PHP1B) have an imprinting defect of the G(s)alpha gene resulting in both alleles having a paternal epigenotype, which would lead to a more moderate level of thyroid-specific G(s)alpha deficiency. We found evidence of borderline TSH resistance in 10 of 22 PHP1B patients. This study provides further evidence for tissue-specific imprinting of G(s)alpha in humans and provides a potential mechanism for mild to moderate TSH resistance in PHP1A and borderline resistance in some patients with PHP1B.  相似文献   

16.
Maternal loss of heterozygosity (LOH) of the 11p15 region and overexpression of the insulin-like growth factor (IGF)-II gene are associated with the malignant phenotype in sporadic adrenocortical tumors. In the imprinted 11p15 region, the p57KIP2 gene is maternally expressed and encodes a cyclin-dependent kinase (CDK) inhibitor involved in G1/S phase of the cell cycle. We hypothesized that maternal LOH in malignant adrenocortical tumors could be responsible for loss of p57KIP2 gene expression and, thus, could favor progression through the cell cycle. We investigated 3 normal adrenals, 31 adrenocortical tumors [11 tumors with normal expression of the IGF-II gene (mainly benign) and 20 with IGF-II gene overexpression (mainly malignant)], and the human adrenocortical tumor cell line NCI H295R for expression of the p57KIP2 gene, G1 cyclins (cyclin D2 and E) and G1 CDK (CDK2, CDK3 and CDK4) protein contents and for kinase activity of G1 cyclin-CDK complexes. The expression of p57KIP2, G1 cyclins, and G1 CDKs in benign tumors was similar to that in normal adrenal tissues, as were kinase activities of G1 cyclin-CDK complexes. By contrast, abrogation of the p57KIP2 gene expression and increased expression of G1 cyclins (cyclin E) and G1 CDKs (CDK2 and CDK4) were associated with high activity of G1 cyclin-CDK complexes in malignant tumors and in the H295R cell line. These data suggest that the p57KIP2 gene might act as a tumor suppressor gene in adrenocortical tumors. Maternal LOH with duplication of the paternal allele or pathological functional imprinting of the 11p15 region are responsible for loss of expression of the p57KIP2 gene and increased expression of the IGF-II gene. Consequently, both events favor cell proliferation in malignant adrenocortical tumors.  相似文献   

17.
Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P < 0.0005) than ob/+ mouse hearts. Histological examinations showed marked accumulation of neutral lipid droplets within cardiac myocytes but not increased deposition of collagen between myocytes in ob/ob compared with ob/+ mouse hearts. On echocardiography, the ratio of E to A transmitral flow velocities (an indicator of diastolic function) was 1.8 +/- 0.1 in ob/ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased expression of cardiac gene products that stimulate myocyte fatty acid uptake and triglyceride storage and accumulate neutral lipids within the cardiac myocytes. The results also suggest that the cardiac lipid accumulation is paralleled by cardiac diastolic dysfunction in ob/ob mice.  相似文献   

18.
19.
Two types of alpha-globin variants were found in 0.2% of a large number of newborn from Malta. The two hemoglobins were identified from tryptic maps on a Vydac C18 column and by alpha-globin gene sequencing as Hb St. Luke's (isoelectric point = 7.18+/-0.017) and Hb Setif (isoelectric point = 7.26+/-0.010). Hb St. Luke's [alpha95(G2)Pro-->Arg] was found to result from a C-->G mutation at the second position of codon 95 on an alpha1-globin gene, and Hb Setif [alpha94(G1) Asp-->Tyr] resulted from a G-->T mutation at the first position of codon 94 on an alpha2-globin gene. Quantification of Hb St. Luke's (11.1+/-1.12%) and Hb Setif (14.7+/-2.22%) in peripheral blood hemolysates indicated that, in the absence of either an alpha- or a beta-thalassemia allele, the protein products of the alpha1- and alpha2-globin genes were nearly equal in quantity.  相似文献   

20.
The serotonin transporter (SERT) gene has been proposed as a candidate gene responsible for the sudden infant death syndrome (SIDS). In this study, for the first time we obtained a SERT-knockout (KO) mouse model which reproduces SIDS phenotype. SERT-KO mice were generated by mating SERTCre/+ heterozygous mice. The SERT-KO mouse embryos at the pre-natal stage E18.5 were lacking of SERT mRNA and protein expression in the heart. A premature death of 75% of SERT-KO mice occurred in the first week after birth. LacZ staining of whole mounts and tissue sections of the heart from SERTCre/+;ROSA26R adult mice and E18.5 embryos demonstrated a marked localized expression of SERT in the right ventricle, the conal region, the vasculature, the atrial septum, the ventricular valves, and the sinoatrial node of the conduction system. These data suggest a cardiac phenotype for the sudden death of SERT-KO mice. Histological analysis of heart sections showed that SERT-KO mice develop cardiac fibrosis. Increased collagen accumulation in the myocardium and the valvular and perivascular regions, and enhanced expression of α-smooth muscle actin were detected in the heart of SERT-KO mice versus wild-type (WT) mice. Interestingly, higher expression levels of the 5-HT2A receptor and increased levels of phospho-SMAD2/3 and phospho-ERK1/2 were detected in SERT-KO mouse heart versus WT mice. Overall, our findings provide i) new insights into the role of SERT gene in SIDS, and ii) the first in vivo validation of the molecular mechanism involving the activation of TGF-β1 signalling in the cardiac fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号