首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The status of various cholinergic markers was compared in Alzheimer's and Parkinson's diseases. Rather unexpectedly, similar decrements were observed in choline acetyltransferase (ChAT) activity and in density of muscarinic M2 and nicotinic receptors in various cortical areas in these two disorders. This may relate to the existence of important functional interactions between cholinergic and dopaminergic systems in cortical and hippocampal areas. Additionally, the parallel decrements in nicotinic and muscarinic M2 receptor subtypes, with that of ChAT activities in these disorders suggest their presynaptic location. A series of pharmacological data do in fact reveal that nicotinic receptors may act as positive autoreceptors modulating basal acetylcholine release while muscarinic M2 receptors could act as negative autoreceptors. This information may have significance for the development of new treatment strategies (for example, M2 antagonists) of disorders associated with cholinergic hypofunction.  相似文献   

2.
Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons. The dopamine D2 receptor, which attenuates acetylcholine release, has been implicated in drug relapse and is targeted by therapeutic drugs that are used to treat a variety of neurological disorders including Tourette Syndrome, Parkinson's disease and schizophrenia. The present study provides the first direct evidence for the localization of dopamine D2 receptors on striatal cholinergic interneurons of the rat brain using dual labeling immunocytochemistry procedures. Using light microscopy, dopamine D2 receptors were localized on the cell somata and dendritic and axonal processes of striatal cholinergic interneurons in the dorsal striatum and nucleus accumbens of the rat brain. These findings provide a foundation for understanding the specific roles that cholinergic neuronal network systems and interacting dopaminergic signaling pathways play in striatal function and in a variety of clinical disorders including drug abuse and addiction.  相似文献   

3.
Allosteric modulators of ligand-receptor interactions are found for a variety of receptors (Christopoulos, 2002). Allosteric agents attach to a binding site being topographically distinct from the site for conventional (orthosteric) agonists or antagonists. In the case of the muscarinic receptor, a huge selection of structurally divergent modulators has been described for different receptor subtypes (Mohr et al., 2003). Alkane-bisammonio-type compounds carrying lateral phthalimido substituents are known to have a high affinity for the common allosteric binding site of the muscarinic acetylcholine M2 receptor (mAChR M2), which is already occupied by the orthosteric antagonist N-methylscopolamine (NMS). The resulting allosteric inhibition of the dissociation of [3H]NMS from the M2 receptors in porcine cardiac homogenates served to indicate binding of the test compounds to the allosteric site. Additionally, allosteric modulators can strongly influence equilibrium binding of the orthosteric ligand: Its binding can be reduced, left unaltered or elevated, and encoded as negative, neutral, and positive cooperativity, respectively (Christopoulos and Kenakin, 2002). The cooperativity is strongly dependent on the pair of allosteric/orthosteric ligands and on the receptor subtype.  相似文献   

4.
Loss of forebrain acetylcholine is an early neurochemical lesion in Alzheimer's disease (AD). As muscarinic acetylcholine receptors are involved in memory and cognition, a muscarinic agonist could therefore provide a "replacement therapy" in this disease. However, muscarinic receptors occur throughout the CNS and the periphery. A selective locus of action of a muscarinic agonist is therefore crucial in order to avoid intolerable side effects. The five subtypes of muscarinic receptors, M1-M5, have distinct regional distributions with M2 and M3 receptors mediating most of the peripheral effects. M1 receptors are the major receptor subtype in the cortex and hippocampus-the two brain regions most associated with memory and cognition. This localization has led to a, so far unsuccessful, search for a truly M1-selective muscarinic agonist. However, acetylcholinesterase inhibitors, such as donepezil (Aricept), which potentiate cholinergic neurotransmission, do have a therapeutic role in the management of AD and so the M1 receptor remains a viable therapeutic target. Our approach is to develop muscarinic allosteric enhancers-compounds that bind to the receptor at an "allosteric" site, which is distinct from the "primary" site to which ACh binds, and which enhance ACh affinity (or efficacy). Having discovered that a commercially available compound, WIN 62577, is an allosteric enhancer with micromolar potency at M3 receptors, we report here some results of a chemical synthesis project to develop this hit. Modification of WIN 62577 has led to compounds with over 1000-fold increased affinity but, so far, none of these extremely potent compounds are allosteric enhancers.  相似文献   

5.
The classification of dopamine receptors proposed more than two decades ago remains valid today. Based on biochemical and pharmaceutical properties two main classes of dopamine receptors can be distinguished: D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), and D(4)) dopamine receptors. Dopamine receptors belong to the class of G protein-coupled receptors and signal to a wide range of membrane bound and intracellular effectors such as ion channels, secondary messenger systems and enzymes. Although the pharmacological properties of ligands for D(1)-like and D(2)-like dopamine receptors are quite different, the number of selective ligands for each of the five receptors subtypes is rather small. Many drugs used to treat neurological and neuropsychiatric disorders like Parkinson's disease, restless leg syndrome and schizophrenia have affinities for dopamine receptors. Such medications are not without limitations so the development of novel (selective or aselective) dopamine receptor ligands is of the utmost importance for improved therapeutic approaches for these diseases. In that respect it is also important to understand how dopamine receptor ligands affect receptor signalling processes such as desensitization, receptor heterodimerization and agonist-receptor trafficking, issues which will be discussed in the present review. Furthermore, attention is paid to interactions of dopamine receptors with serotonin receptors since many drugs used to treat above mentioned disorders of the brain also possess affinities for serotonin receptors. Because of the enormity of this area we have tried to focus more specifically on interactions within the prefrontal cortex where it appears that the serotonergic modulation of dopaminergic function might be very relevant to schizophrenia.  相似文献   

6.
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.  相似文献   

7.
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M(1)-M(5). Of the mAChR subtypes, M(1) is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M(1) and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M(1). Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M(1) allosteric agonists. These compounds activate M(1) with EC(50) values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M(1) receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M(1) allosteric agonists provides critical research tools to allow dissection of M(1)-mediated effects in the CNS and potential leads for novel treatments for Alzheimer's disease and schizophrenia.  相似文献   

8.
The monoclonal antibody M35, one of the first monoclonal antibodies successfully raised against muscarinic acetylcholine receptors, has been widely used to study the distribution of this protein in a variety of tissues and cell types of different species. It is not fully known, however, to which muscarinic acetylcholine receptor subtypes M35 binds. Knowledge of subtype-selectivity of M35 is a necessary step towards a functional interpretation of the obtained immunocytochemical data. The aim of the present study was to determine the subtype-selectivity of M35 employing transfected CHO-K1 cells stably expressing human m1-m5 muscarinic acetylcholine receptors separately, and to study M35 immunoreactivity in areas of rat central and peripheral tissues known to be specifically enriched in a single muscarinic acetylcholine receptor subtype. The results show that (a) all five transfected cell lines were immunopositive for M35, (b) nontransfected control cells were immunonegative, (c) the number of mAChRs expressed per cell correlated positively with the intensity of M35 immunoreactivity, and (d) cell types in aldehyde-fixed rat tissue enriched in a single m1-m4 subtypes revealed clear M35 immunoreactivity. Taken together, the present results show that M35 does not discriminate between muscarinic acetylcholine receptor subtypes. Evidently, the epitope of M35 on the receptor-protein is preserved on all muscarinic acetylcholine receptor subtypes. The epitope for M35 must, therefore, be localized on a homologous part of each subtype.  相似文献   

9.
Emission tomography investigations of the pathophysiological involvement of the cerebral dopaminergic transmitter system in the living human brain relies heavily on a careful selection of the most suitable radioligand. In recent years, many clinical studies have employed [(123)I]IBZM in SPECT studies. The aim of the present study was to characterize the binding of IBZM to dopaminergic receptor subtypes as a means of elucidating which receptor subtypes are visualized and examined by [(123)I]IBZM. The affinity of IBZM for each of the major human dopamine receptors (D1, D2(short), D3, D4(4. 2), and D5 receptor) was determined by competitive radioligand binding assay using membranes prepared from clonal cell lines expressing the different subtypes. Radioligands with high affinity for the D1(A) and D5 receptors ([(3)H]SCH-23390), dopamine D2(short) and D4(4.2) receptors ([(3)H]Spiroperidol), and dopamine D3 receptor ([(3)H]7-OH-DPAT) were used to measure specific binding. Corresponding unlabeled displacing ligands for determination of nonspecific binding were employed. Assays were performed at 25 degrees C. These experiments show that for IBZM K(i) values were 1.6 nM for dopamine D2(s) receptors and 2.2 nM for dopamine D3 receptors. There was no binding of IBZM to D1(A), D5, or D4(4.2) receptors. In conclusion, when [(123)I]IBZM is used as SPECT tracer, the studies reflect dopaminergic D2 as well as D3 receptor binding.  相似文献   

10.
Olanzapine, an atypical antipsychotic, has a broad receptor binding profile, which may account for its pharmacological effects in schizophrenia. In vitro receptor binding studies showed a high affinity for dopamine D2, D3, and D4 receptors; all 5-HT2 receptor subtypes and the 5-HT6 receptor; muscarinic receptors, especially the M1 subtype: and alpha 1-adrenergic receptors. In vivo studies showed that olanzapine had potent activity at D2 and 5-HT2A receptors, but much less activity at D1 and muscarinic receptors, and that it inhibited dopaminergic neurons in the A10 but not the A9 tract, suggesting that this agent will not cause extrapyramidal side-effects (EPS). Microdialysis studies showed that olanzapine increased the extracellular levels of norepinephrine and dopamine, but not 5-HT, in the prefrontal cortex, and increased extracellular dopamine levels in the neostriatum and nucleus accumbens, areas of the brain associated with schizophrenia. Studies of gene expression showed that olanzapine 10 mg/kg also increased Fos expression in the prefrontal cortex, the dorsolateral striatum, and the nucleus accumbens. These findings are consistent with the effectiveness of olanzapine on both negative and positive symptoms and suggest that, with careful dosing, olanzapine should not cause EPS.  相似文献   

11.
The five muscarinic acetylcholine receptors (M1-M5 mAChRs) mediate a very large number of important physiological functions (Caulfield, 1993; Caulfield and Birdsall, 1998; Wess, 2004). Because of the lack of small molecule ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proved to be a challenging task. To overcome these difficulties, we recently generated mutant mouse lines deficient in each of the five mAChR genes (M1R-/- mice, M2R-/- mice, M3R-/- mice, etc. [Wess, 2004]). Phenotyping studies showed that each of the five mutant mouse lines displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits (Wess, 2004). This chapter summarizes recent findings dealing with the importance of the M2mAChR for cognitive processes and the roles of the M1 and M3 mAChRs in mediating stimulation of glandular secretion.  相似文献   

12.
Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors.  相似文献   

13.
Analysis of lymphocyte muscarinic cholinergic receptors using quantitative techniques such as radioligand binding assay is made difficult due to the low density of these sites and the lack of subtype-specific selectivity of most available muscarinic ligands. In this study, a combined kinetic and equilibrium labeling technique recently developed for brain tissue was used for labeling the five muscarinic cholinergic receptor subtypes in intact human peripheral blood lymphocytes. No specific muscarinic M1 receptor binding was detectable in human peripheral blood lymphocytes using [3H]-pirenzepine as a ligand. Labeling of M2-M5 muscarinic receptors using [3H]N-methyl-scopolamine (NMS) by occluding various receptor subtypes with muscarinic antagonist and mamba venom resulted in the labeling of M2-M5 receptors in brain as well as in human peripheral blood lymphocytes. The relative density of different receptor subtypes was M3 > M5 > M4 > M2. The development of a reproducible technique for assaying muscarinic cholinergic receptor subtypes expressed by human peripheral blood lymphocytes may contribute to clarify their role in lymphocyte function.  相似文献   

14.
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Among the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles but showed a more prominent, size-dependent plasmalemmal location in nondopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R- or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA.  相似文献   

15.
It is well established that learning and memory are complex processes involving and recruiting different brain modulatory neurotransmitter systems. Considerable evidence points to the involvement of dopamine in various aspects of cognition, and interest has been focused on investigating the clinical relevance of dopamine systems to age-related cognitive decline and manifestations of cognitive impairment in schizophrenia, Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. In the past decade or so, in spite of the molecular cloning of the five dopamine receptor subtypes, their specific roles in brain function remained inconclusive due to the lack of completely selective ligands that could distinguish between the members of the D1-like and D2-like dopamine receptor families. One of the most important advances in the field of dopamine research has been the generation of mutant mouse models permitting evaluation of the dopaminergic system using gene targeting technologies. These mouse models represent an important approach to explore the functional roles of closely related receptor subtypes. In this review, we present and discuss evidence on the role of dopamine receptors in different aspects of learning and memory at the cellular, molecular and behavioral levels. We compare evidence using conventional pharmacological, lesion or electrophysiological studies with results from mice with targeted deletions of different subtypes of dopamine receptor genes. We particularly focus on dopamine D1 and D2 receptors in an effort to delineate their specific roles in various aspects of cognitive function. We provide strong evidence, from our own recent work as well as others, that dopamine is part of the network that plays a very important role in cognitive function, and that although multiple dopamine receptor subtypes contribute to different aspects of learning and memory, the D1 receptor seems to play a more prominent role in mediating plasticity and specific aspects of cognitive function, including spatial learning and memory processes, reversal learning, extinction learning, and incentive learning.  相似文献   

16.
Dopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e., the mitogen‐activated protein kinase (MAPK). We focus on the synaptic pool of MAPKs because of the fact that these kinases reside in peripheral synaptic structures in addition to their somatic locations. We show that a systemic injection of dopamine D1 receptor (D1R) agonist SKF81297 enhances phosphorylation of extracellular signal‐regulated kinases (ERKs), a prototypic subclass of MAPKs, in the adult rat striatum. Similar results were observed in another dopamine‐responsive region, the medial prefrontal cortex (mPFC). The dopamine D2 receptor agonist quinpirole had no such effects. Pretreatment with a positive allosteric modulator (PAM) of muscarinic acetylcholine M4 receptors (M4Rs), VU0152100, attenuated the D1R agonist‐stimulated ERK phosphorylation in the two regions, whereas the PAM itself did not alter basal ERK phosphorylation. All drug treatments had no effect on phosphorylation of c‐Jun N‐terminal kinases (JNKs), another MAPK subclass, in the striatum and mPFC. These results demonstrate that dopamine and acetylcholine are integrated to control synaptic ERK but not JNK activation in striatal and mPFC neurons in vivo. Activation of M4Rs exerts an inhibitory effect on the D1R‐mediated upregulation of synaptic ERK phosphorylation. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Recent evidence has identified directly muscarinic acetylcholine receptor (m-ACh R) and nicotinic acetylcholine receptor (n-ACh R) in the brain utilizing receptor binding assay. Several studies suggest that release of dopamine (DA) in the striatum is regulated by presynaptic receptors present on dopaminergic terminals. In the present study, the effects of cholinergic drugs on [3H]DA release were examined using micropunched tissue and synaptosomes obtained from rat striatum. ACh (5 x 10(-4) M) significantly increased spontaneous [3H]DA release, and the overflow was partially inhibited by D-tubocurarine (1 mM) but not atropine. Nicotine, lobeline, coniine and spartein, nicotinic agonists, significantly increased spontaneous and 25 mM K + evoked [3H]DA release almost in a dose-dependent manner. In contrast, oxotremorine (2 x 10(-4) M), muscarinic agonist, did not any change in [3H]DA efflux. Furthermore, the metabolites of [3H]DA were separated by column chromatography. The main metabolite of [3H]DA in the spontaneous release from rat striatal synaptosomes was [3H]DOPAC (3,4-dihydroxyphenylacetic acid). Lobeline (5 x 10(-5) M) accelerated the outflow of [3H]DOPAC and [3H]OMDA metabolites (O-methylated and deaminated metabolites). These results could give rise to the suggestion that there was n-ACh R on the dopaminergic nerve terminals in the striatum and n-ACh R might have related to a directly excitatory effect on the DA release.  相似文献   

18.
M1 muscarinic receptor signaling in mouse hippocampus and cortex   总被引:3,自引:0,他引:3  
The five subtypes (M1-M5) of muscarinic acetylcholine receptors signal through G(alpha)(q) or G(alpha)(i)/G(alpha)(o). M1, M3 and M5 receptors couple through G(alpha)(q) and function predominantly as postsynaptic receptors in the central nervous system. M1 and M3 receptors are localized to brain regions involved in cognition, such as hippocampus and cortex, but their relative contribution to function has been difficult to ascertain due to the lack of subtype specific ligands. A functional and genetic approach was used to identify the predominant muscarinic receptor subtype(s) mediating responses in mouse hippocampus and cortex, as well as the relative degree of spare muscarinic receptors in hippocampus. The nonselective muscarinic agonist oxotremorine-M stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding in a concentration dependent manner with a Hill slope near unity in wild type mouse hippocampus and cortex. Muscarinic receptor stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding was virtually abolished in both the hippocampus and cortex of M1 receptor knockout (KO) mice. In contrast, there was no loss of signaling in M3 receptor KO mice in either brain region. Muscarinic receptor reserve in wildtype mouse hippocampus was measured by Furchgott analysis after partial receptor alkylation with propylbenzylcholine mustard. Occupation of just 15% of the M1 receptors in mouse hippocampus was required for maximal efficacy of oxotremorine-M-stimulated GTP-gamma-35S binding indicating a substantial level of spare receptors. These findings support a role for the M1 receptor subtype as the primary G(alpha)(q)/11-coupled muscarinic receptor in mouse hippocampus and cortex.  相似文献   

19.
This study determined the role of ventral tegmental area acetylcholine and glutamate receptors in modulating laterodorsal tegmentum stimulation-evoked dopamine efflux in the nucleus accumbens. Rapid changes in dopamine oxidation current were measured at carbon fiber microelectrodes using fixed potential amperometry in urethane anesthetized male mice. Intraventral tegmental area infusions of the muscarinic acetylcholine receptor antagonist scopolamine, the nicotinic acetylcholine receptor antagonist mecamylamine, or the ionotropic glutamate receptor antagonist kynurenate significantly diminished dopamine efflux in the nucleus accumbens evoked by brief electrical stimulation of the laterodorsal tegmentum. These findings suggest that acetylcholine and ionotropic glutamate receptors influence rapid dopaminergic activity and thus the communication of behaviorally relevant information from ventral tegmental area dopamine cells to forebrain areas.  相似文献   

20.
The effects on the binding to cholinergic and dopaminergic receptors in the brain during continuous intravenous infusion of the muscarinic cholinergic receptor agonist milameline (CI-979) were studied in the rhesus monkey by means of positron emission tomography. Binding to milameline cholinergic receptors was quantified using the muscarinic receptor antagonist [(11)C]-N-methyl-4-piperidinylbenzilate ([(11)C]NMP), and the effects on nicotine receptor binding were measured with (S)-[(11)C-methyl]nicotine. Changes in the binding of the D(2) dopamine receptor antagonist [(11)C]raclopride were measured as well. The binding of [(11)C]NMP increased in most brain regions with the infusion of increasing doses of milameline from 0.5 to 10 microg/kg/h. (S)-[(11)C-methyl]nicotine binding was unchanged or increased somewhat. Binding of [(11)C]raclopride to the D(2) dopaminergic receptors in the striatum of the brain increased by 10 +/- 4% following 2 microg/kg/h of milameline. The results suggest a possible action of milameline both on presynaptic muscarinic receptor subtypes as well as dopamine levels dependent on the receptor reserve of the muscarinic receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号