首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The corpus callosum (CC) is the largest fiber tract in the mammalian brain, linking the bilateral cerebral hemispheres. CC development depends on the proper balance of axon growth cone attractive and repellent cues leading axons to the midline and then directing them to the contralateral hemisphere. Imbalance of these cues results in CC agenesis or dysgenesis. Nogo receptors (NgR1, NgR2, and NgR3) are growth cone directive molecules known for inhibiting axon regeneration after injury. We report that mice lacking Nogo receptors (NgR123‐null mice) display complete CC agenesis due to axon misdirection evidenced by ectopic axons including cortical Probst bundles. Because glia and glial‐derived growth cone repellent factors (especially the diffusible factor Slit2) are required for CC development, their distribution was studied. Compared with wild‐type mice, NgR123‐null mice had a sharp increase in the glial marker glial fibrillary acidic protein (GFAP) and in Slit2 at the glial wedge and indusium griseum, midline structures required for CC formation. NgR123‐null mice displayed reduced motor coordination and hyperactivity. These data are consistent with the hypotheses that Nogo receptors are membrane‐bound growth cone repellent factors required for migration of axons across the midline at the CC, and that their absence results directly or indirectly in midline gliosis, increased Slit2, and complete CC agenesis. J. Comp. Neurol. 525:291–301, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Do structres exist within the embryonic central nervous system that guide axons across the midline during development of the great cerebral commissures (corpus callosum, anterior commissure)? With the use of serial section and reconstructive computer graphic techniques we have found that during normal ontogeny of the mouse forebrain and before the arrival of the pioneer fibers of the corpus callosum at the midline, a population of primitive glial cells migrates medially (through the fused walls of the dorsal septum) from the ependymal zones of each hemisphere. At the midline, and well rostral to the lamina terminalis, these cells unite to form a bridgelike structure of “sling” suspended below the longitudinal cerebral fissure. The first callosal axons grow along the surface of this cellular bridge as they travel toward the contralateral side of the brain. The “sling” disappears neonatally. The fibers of the anterior commissure grow within the lamina terminalis along a different type of preformed glial structure. Movement of these axons occurs through an aligned system of glial processes separated by wide extracellular spaces. Do these transient glial tissues actually provide guidance cues to the commissural axons? Analyses of three situations in which the glial “sling” is genetically or surgically impaired or nonexistent indicate that this structure does, indeed, play an essential role in the development of the corpus callosum. We have analyzed (1) the embryonic stages of a congenitally acallosal mouse mutant (strain BALB/cCF), (2) several pouch stages of a primitive acallosal marsupial, Didelphys virginiana (opossum), and (3) animals in which the “sling” had been lesioned surgically through the uterine wall in the normal embryo (strain C57BL/6J). In the acallosal mouse mutant fusion of the septal midline is delayed by about 72 hours and the “sling” does not form. Although the would-be callosal axons approach the midline on schedule, they do not cross. Instead, the callosal fibers whirl into a pair of large neuromas adjacent to the longitudinal fissure. Similarly, in the opossum, fusion of the medial septal walls and formation of the glial “sling” are also lacking. However, in this species, instead of traveling dorsally, the “callosal” axons turn ventrally and pass contralaterally by way of the anterior commissure pathway. Surgical disunion of the glial “sling” also resulted in acallosal individuals. The callosal pathology in these affected animals mimicked exactly that of the genetically lesioned mutant. Our observations suggest that many different types of oriented glial tissues exist within the embryonic neural anlage. We propose that such tissues have the ability to influence the directionality of axonal movements and, thereby, play a crucial role in establishing orderly fiber projections within the developing central nervous system.  相似文献   

3.
During development, axons of the mammalian cerebral cortex show a high degree of selectivity in their growth into specific regions of the central nervous system (CNS). A number of studies have shown that growing axons are guided by permissive or inhibitory membrane-bound molecules. Cryostat sections of the developing brain provide a useful assay to investigate possible membrane-bound guidance cues because such cues are retained in their normal in situ locations in specific regions of the CNS. Moreover, cryostat sections can also be subjected to various treatments that affect membrane-bound molecules. Therefore, to determine the ability of such cues to regulate the growth and guidance of cortical neurites into specific brain regions at different stages of development, we used an in vitro assay system in which explants from newborn hamster cortex were plated onto various regions of cryostat sections from developing and adult hamster brain. Neurite outgrowth from cortical explants onto the cryostat sections was visualized with a fluorescent vital dye. Results showed first that cortical neurites grew robustly on neonatal cryostat sections but only sparsely on sections from adult hamster. Second, cortical neurites grew preferentially on regions of the neonatal sections such as the cortex, basal ganglia, brainstem, thalamus, and colliculus, which are either pathways or targets for cortical axons in vivo. In contrast, cortical neurites avoided growing on the cerebellum and olfactory bulb, which are neither targets nor pathways for cortical neurites in vivo. Results also showed that cortical neurites extending onto cortical regions of neonatal sections preferred to grow along the radial axis of the cortex. Finally, heat treatment of the neonatal sections drastically reduced cortical neurite outgrowth. Taken together, these results suggest that the growth and guidance of cortical neurites is influenced by substrate-bound, developmentally regulated, heat-sensitive guidance cues preserved in the cryostat sections. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Nr-CAM is a member of the L1 subfamily of cell adhesion molecules (CAMs) that belong to the immunoglobulin superfamily. To explore the role of Nr-CAM in the developing nervous system, we prepared specific antibodies against both chick and mouse Nr-CAM using recombinant Fc fusion proteins of chick Nr-CAM and mouse Nr-CAM, respectively. First, we show the specificity of the new anti-chick Nr-CAM antibody compared with a previously employed antibody using the expression patterns of Nr-CAM in the chick spinal cord and floor plate and on commissural axons, where Nr-CAM has been implicated in axon guidance. Using the anti-mouse Nr-CAM antibody, we then studied the expression patterns of Nr-CAM in the developing mouse nervous system along with the patterns of two related CAMs, L1, which labels most growing axons, and TAG-1, which binds to Nr-CAM and has a more restricted distribution. Major sites that are positive for Nr-CAM are specialized glial formations in the ventral midline, including the floor plate in the spinal cord, the hindbrain and midbrain, the optic chiasm, and the median eminence in the forebrain. Similar to what is seen in the chick spinal cord, Nr-CAM is expressed on crossing fibers as they course through these areas. In addition, Nr-CAM is found in crossing fiber pathways, including the anterior commissure, corpus callosum, and posterior commissure, and in nondecussating pathways, such as the lateral olfactory tract and the habenulointerpeduncular tract. Nr-CAM, for the most part, is colocalized with TAG-1 in all of these systems. Based on in vitro studies indicating that the Nr-CAM-axonin-1/TAG-1 interaction is involved in peripheral axonal growth and guidance in the spinal cord [Lustig et al. (1999) Dev Biol 209:340-351; Fitzli et al. (2000) J Cell Biol 149:951-968], the expression patterns described herein implicate a role for this interaction in central nervous system axon growth and guidance, especially at points of decussation. Nr-CAM also is expressed in cortical regions, such as the olfactory bulb. In the hippocampus, however, TAG-1-positive areas are segregated from Nr-CAM-positive areas, suggesting that, in neuropilar regions, Nr-CAM interacts with molecules other than TAG-1.  相似文献   

5.
Glial cells are a large component of the developing nervous system, appearing before the onset of axon outgrowth in a variety of developing systems. Their time of appearance and their location in conjunction with developing axon pathways may allow them to define the position of axon pathways. Specific glial cells may be utilized as guideposts by growing axons, allowing them to recognize the appropriate pathway, or conversely, glial cells may inhibit axons from growing along an inappropriate pathway. The 7F7 monoclonal antibody labels a subset of glial cells in grasshopper embryos that may play a role in defining the location of selected axonal pathways. This antibody recognizes the REGA-1 molecule, a cell-surface antigen with a molecular weight of 60 kDa, which is regionally expressed on developing glial cells. REGA-1 is expressed around the edges of clusters of glial cells and on lamellae extending from glial cells to line the edges of some axonal pathways. REGA-1 expression is first seen in the neuroblast sheet, surrounding neuroblast 4-1. Slightly later in development, 2 glial cells extend processes that express REGA-1 and demarcate the caudal edge of the anterior commissure. As the animal matures, cell processes expressing REGA-1 line the edges of the longitudinal connective, then expand to surround the central neuropil of the segmental ganglia. REGA-1 expression is also seen in conjunction with axons leaving the segmental ganglia via the segmental nerves and the intersegmental connectives. REGA-1 expression is limited to a subset of glial cells; some known glial cells such as the segment boundary cell do not express REGA-1. Glial cell processes expressing REGA-1 are seen only in association with axons, which suggests that these processes may act as borders or guard rails confining axons to the appropriate regions of the developing CNS. Axons navigating a path through the CNS may be prohibited from growing into inappropriate regions based on their inability to cross the boundaries established by glial cells expressing REGA-1.  相似文献   

6.
Towards a greater understanding of the pathogenesis of holoprosencephaly   总被引:3,自引:0,他引:3  
Holoprosencephaly is a malformation of the cerebral hemispheres resulting in the absence of the inter-hemispheric fissure along with other defects of brain development. Frequently midline defects of the craniofacial structures are also present. This malformation sequence has been of interest for many years because of the well recognized genetic and environmental pathogeneses, although the molecular pathogenesis remained elusive. Recent studies have begun clarifying the molecular pathogenesis of holoprosencephaly. Herein is reviewed the syndromes associated with holoprosencephaly, the pathology of this disorder, genetic and environment factors, and a current understanding of the molecular pathogenesis of this disorder.  相似文献   

7.
Guidepost cells are specific cellular cues in the embryonic environment utilized by axonal growth cones in pathfinding decisions. In the embryonic Drosophila CNS the RP motor axons make stereotypic pathways choices involving distinct cellular contacts: (i) extension across the midline via contact with the axon and cell body of the homologous contralateral RP motoneuron, (ii) extension down the contralateral longitudinal connective (CLC) through contact with connective axons and longitudinal glia, and (iii) growth into the intersegmental nerve (ISN) through contact with ISN axons and the segmental boundary glial cell (SBC). We have now ablated putative guidepost cells in each of the CNS pathway subsections and uncovered their impact on subsequent RP motor axon pathfinding. Removal of the longitudinal glia or the SBC did not adversely affect pathfinding. This suggests that the motor axons either utilized the alternative axonal substrates, or could still make filopodial contact with the next pathway section's cues. In contrast, RP motor axons did require contact with the axon and soma of their contralateral RP homologue. Absence of this neuronal substrate frequently impeded RP axon outgrowth, suggesting that the next cues were beyond filopodial reach. Together these are the first direct ablations of putative guidepost cells in the CNS of this model system, and have uncovered both pathfinding robustness and susceptibility by RP axons in the absence of specific contacts.  相似文献   

8.
Three classes of glial cells are present early in embryogenesis and appear to play a major role in axon pathway formation in the Drosophila CNS. Six longitudinal glial (LG) cells are present over the longitudinal connective on each side of each segment. Six midline glia (MG) cells surround the anterior and posterior commissures of each segment. Finally, the intersegmental nerve root is covered by a glial cell: the segment boundary cell (SBC). All 3 classes of glial cells are present in their final position before axon outgrowth and their pattern prefigures the first axon pathways. The pioneer growth cones that establish the first axon pathways in the longitudinal connective and intersegmental nerve extend along the elongate surface of the LG and SBC glial cells; the pioneer growth cones for the anterior and posterior commissures extend toward and make close contact with the end feet of the MG glial cells. Later, all 3 classes of glial cells enwrap the axon tracts in much the same way as vertebrate oligodendrocytes. The results suggest that these early glial cells provide guidance cues for the first growth cones in the Drosophila CNS. More than simply providing a permissive substrate, the differential extension of specific early growth cones towards either the MG cells or along the LG cells suggests an active role for these glia in growth cone guidance.  相似文献   

9.
Previous work with psychophysically-based collision methods and pharmacological manipulation suggests a role in medial forebrain bundle (MFB) self-stimulation for neurons lying along the midline between the cerebral hemispheres, in the mid- and/or hindbrain. Also, recently-proposed models of the anatomical substrate for medial forebrain bundle stimulation reward suggest that at least part of the directly-activated axons of this substrate arise from mid- and/or hindbrain somata, bifurcate, and send bilateral projections to the MFB of each hemisphere. Branches of these axons are thought to cross the midline at some point near the ventral tegmental area. This study examines the effects on MFB stimulation reward of lesioning midbrain structures that lie along the midline between hemispheres. In 13 rats, lesions of the median raphe, the decussation of the superior cerebellar peduncle, or the interpeduncular nucleus were all ineffective in altering the stimulation frequency required to maintain half-maximal levels of operant responding for stimulation reward. These results are discussed in terms of implications for recent models of the anatomical substrate for brain stimulation reward.  相似文献   

10.
The early axon scaffolding in the embryonic vertebrate brain consists of a series of ventrally projecting axon tracts that grow into a single major longitudinal pathway connected across the midline by commissures. We have investigated the role of Brother of CDO (BOC), an immunoglobulin (Ig) superfamily member distantly related to the Roundabout (Robo) family of axon-guidance receptors, in the development of this embryonic template of axon tracts in the zebrafish brain. A zebrafish homologue of BOC was isolated and shown to be expressed predominantly in the developing neural plate and later in the neural tube and developing brain. Zebrafish boc was initially highly localized to discrete bands in the mid- and hindbrain, but, as the major brain subdivisions emerged, it became more evenly expressed along the rostrocaudal axis, particularly in dorsal regions. The function of zebrafish boc was examined by a loss-of-function approach. Analysis of embryos injected with antisense morpholinos designed against boc revealed highly selective defects in the development of dorsoventrally projecting axon tracts. Loss of boc caused ventrally projecting axons, particularly those arising from the presumptive telencephalon, to follow aberrant trajectories. These data indicate that boc is an axon-guidance molecule playing a fundamental role in pathfinding during the early patterning of the axon scaffold in the embryonic vertebrate brain.  相似文献   

11.
12.
Mouse models of holoprosencephaly   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Holoprosencephaly (HPE) is the most common anomaly of forebrain development in humans. The pathogenesis of HPE results in a failure of the brain hemispheres to separate during early development. Here we review experimental models of HPE in which some of the genes known to cause HPE in humans have been disrupted in the mouse. RECENT FINDINGS: To date, mutations that cause HPE have been identified in seven genes. Three of these genes encode members of the Sonic hedgehog (SHH) signaling pathway, which regulates the development of ventral structures throughout the neuraxis. Two other HPE mutations affect signaling by Nodal ligands, which also play important roles in neural patterning. The roles of the two other known HPE genes are not yet clear. Analysis of genetically altered mice has revealed that mutations in other members of the SHH and Nodal signaling pathways also result in HPE phenotypes. SUMMARY: Studies of HPE in the mouse have provided a framework for understanding key developmental events in human brain development and may provide new candidate genes for human HPE. Despite this progress, fundamental mysteries remain about how molecules that pattern ventral brain regions ultimately disrupt the formation of the cerebral hemispheres in dorsal regions.  相似文献   

13.
A monoclonal antibody, 4D7, obtained with embryonic rat brain as an immunogen, recognizes an epitope on 3 protein species of 150-160, 100-110, and 80 kDa, present in mouse and rat brain during the fetal period. Vital immunostaining of dissociated cultures of fetal forebrain indicates that the antigen is localized largely on the external plasma membrane of a subpopulation of neurites. Immunocytochemistry reveals that the distribution of the antigen in vivo is restricted to the nervous system. Immunoreactivity is concentrated primarily in the pathways of a limited set of CNS and PNS axon systems during early stages of their development, as delineated by staining with the neurofilament antibody, C2. Depending on the particular axon system, immunoreactivity with 4D7 persists only for one to several days of prenatal or perinatal development. In the spinal cord, stage-specific-neurite-associated proteins (SNAP) expression occurs first along motor axon pathways on embryonic day (E) 10 and then within the nerve trunks of dorsal root ganglia and the commissural fiber system on E11. Immunoreactivity is detectable among most cranial nerves starting in the interval from E11 to E13. Within the brain, the onset of SNAP expression within several discrete axon tracts occurs in the interval E14-16, including the lateral olfactory tract, anterior commissure, corpus callosum, fasciculus retroflexus, and fornix. Immunoreactivity within the embryonic intermediate zones of some structures matches the location of certain other axon systems. Sites of 4D7 staining which do not correspond to the location of axon populations include the internal portion of the external granular layer of the postnatal cerebellum and the cortex of the reeler mutant mouse. The predominant localization of the 4D7 antigen among axon systems and its precisely regulated spatio-temporal pattern of expression are consistent with the possibility that the SNAP antigens play a significant role in the early stages of growth of axonal tracts in vivo.  相似文献   

14.
Gliatrophic and gliatropic roles of PVF/PVR signaling during axon guidance   总被引:2,自引:0,他引:2  
Learte AR  Forero MG  Hidalgo A 《Glia》2008,56(2):164-176
Evidence of molecular and functional homology between vertebrate and Drosophila glia is limited, restricting the power of Drosophila as a model system to unravel the molecular basis of glial function. Like in vertebrates, in the Drosophila central nervous system glial cells are produced in excess and surplus glia are eliminated by apoptosis adjusting final glial number to axons. The underlying molecular mechanisms are largely unknown, as the only gliatrophic pathway known to date in flies is the EGFR and its ligands. The PDGFR signaling pathway plays a major role in regulating oligodendrocyte migration and number in vertebrates. Here, we show that the Drosophila PDGFR/VEGFR homologue PVR is required in midline glia during axon guidance for glial survival and migration, ultimately enabling axonal enwrapment. The midline glia migrate aided by the VUM and the MP1 midline neurons--sources of PVF ligands--and concomitantly interactions with neurons maintain midline glia survival. Upon loss of function for PVF/PVR signaling midline glia apoptosis increases, and gain of function induces supernumerary midline glia. Midline glial cells are displaced towards ectopic sources of PVF ligands. PVR signaling promotes midline glia survival through AKT and ERK pathways. This work shows that the PVR/PDGFR pathway plays conserved gliatrophic and gliatropic roles in subsets of glial cells in flies and vertebrates.  相似文献   

15.
We are interested in the expression patterns of nestin, an embryonic intermediate filament that represent a neural precursor marker, in the mammalian central nervous system. With an immunohistochemical approach, distribution of nestin-containing cells and their colocalization with glial fibrillary acidic protein (GFAP) or neuronal nuclear specific protein (NeuN) were studied in adult and postnatal days 2-30 (P2-30) mice. Nestin-immunoreactivity was predominately distributed in certain proliferative regions, such as cerebral cortex, hippocampus, hypothalamus, subfornical organ, cerebellar cortex, area postrema, midline raphe glial structures, as well as ependymal and subependymal zones of the brain and spinal cord. The majority of nestin-immunoreactive cells, characterized by astroglial profiles of multiple and radial processes, showed a partial overlapping distribution with that of GFAP-immunoreactive astroglial cells. Double immunofluorescence confirmed that about 77% of these nestin-immunoreactive cells exhibited GFAP-immunoreactivity, indicating that a large percentage of nestin-expressing cells may have committed to astroglial cells. In developing mice, down-regulation of nestin expression was observed between P7 and P14. Although co-expression of nestin and NeuN occurred in cortical neurons of P2-7 mice, nestin-containing cells showing NeuN-immunoreactivity disappeared in CNS in older animals. Our results reveal the distribution pattern of nestin-containing neural precursors in the postnatal CNS and provide evidence on their differentiation fate to neurons and astrocytes, suggesting that nestin-containing glial cells may play an important role in remodeling and repairing in the postnatal and adult central nervous system.  相似文献   

16.
The ontogeny of the serotonergic axonal projections may be divided into three periods: one of initial axon elongation (E12-E16), the development of selective pathways (E15-E19) and terminal field development (E19-E21). All serotonergic axons that enter the prosencephalon ascend in the medial forebrain bundle From this bundle fascicles of immunoreactive axons enter several well-defined fiber tracts: specifically, the fasciculus retroflexus, stria medullaris, external capsule, fornix, and supracallosal stria. Axons from these pathways form terminal arborizations in the thalamus, hypothalamus, basal and limbic forebrain, and cerebral cortex. Serotonergic axons appear to be guided by pre-existing non-serotonergic tracts in reaching targets in the forebrain. Innervation of the cerebral cortex is a prolonged process extending from E19 through PND21. Axons enter directly into the marginal and intermediate zones of the immature cortex, at the medial, frontal and lateral edges of the hemisphere, and subsequently spread tangentially to cover the hemispheres. Terminal ramifications then arise from the bilaminar axons and fill in the middle cortical layers. This growth pattern gives rise to tangential and radial gradients in innervation density. While the growth of serotonin axons across the forebrain appears to be a continuous, sequential process, the development of terminal innervation is highly heterogeneous, occurring at different times and at different rates from region to region. Serotonergic axons do not innervate immature, primarily proliferative neuronal populations. The delay in serotonin innervation of the suprachiasmatic nucleus, striatum, and middle cortical layers long after the axons have reached these structures suggests that the formation of serotonin axon terminals is dependent on maturation of other elements in local neuronal circuitry.  相似文献   

17.
Acute maternal ethanol administration to C57B1/6J mice on gestational day 7 (GD7) results in facial and brain abnormalities similar to those reported in human fetal alcohol syndrome (FAS). Using this model, we assessed the damage to brain structures using histological methods and changes in developing neurotransmitter systems with immunocytochemistry. Cholinergic neurons in the forebrain were stained with a monoclonal antibody to choline acetyltransferase (ChAT). Catecholaminergic neurons in the midbrain and serotoninergic neurons in the hindbrain were stained with polyclonal antisera to tyrosine hydroxylase (TH) and serotonin (5-HT), respectively. Forebrain deficiencies, including loss of midline structures (olfactory bulbs, midline septation, medial septal area) and deficits in lateral and dorsal regions (neostriatum and cerebral cortex) were found in both GD14 embryos and GD18 fetuses. In severely affected offspring, complete loss of the septal region resulted in conjoined lateral ventricles and a reduction in the thickness of the ventricular zone surrounding the single ventricle, as well as a severe loss of ChAT neurons which would normally be located in this territory. However, no consistent changes were seen in the distribution or size of TH or 5-HT neuronal cell groups in the midbrain and hindbrain. These differences in effects on specific neurotransmitter systems reflect the fact that the forebrain is most severely affected by early ethanol administration, whereas the hindbrain is relatively spared. Such differential effects could produce an imbalance in developing neurotransmitter systems in the embryonic and fetal brain, which could explain some of the functional deficits observed in children with FAS.  相似文献   

18.
Glial cells and extracellular matrix (ECM) molecules surround developing fiber tracts and are implicated in axonal pathfinding. These and other molecules are produced by these strategically located glial cells and have been shown to influence axonal growth across the midline in rodents. We searched for similar cellular and molecular structures surrounding the telencephalic commissures of fetal human brains. Paraffin-embedded brain sections were immunostained for glial fibrillary acidic protein (GFAP) and vimentin (VN) to identify glial cells; for microtubule-associated protein-2 (MAP-2) and neuronal nuclear protein (NeuN) to document neurons; for neurofilament (NF) to identify axons; and for chondroitin sulfate (CS), tenascin (TN), and fibronectin (FN) to show the ECM. As in rodents, three cellular clusters surrounding the corpus callosum were identified by their expression of GFAP and VN (but not MAP-2 or NeuN) from 13 to at least 18 weeks postovulation (wpo): the glial wedge, the glia of the indusium griseum, and the midline sling. CS and TN (but not FN) were expressed pericellularly in these cell groups. The anterior commissure was surrounded by a GFAP+/VN+ glial tunnel from 12 wpo, with TN expression seen between the GFAP+ cell bodies. The fimbria showed GFAP+/VN+ cells at its lateral and medial borders from 12 wpo, with pericellular expression of CS. The fornix showed GFAP+ cells somewhat later (16 wpo). Because these structures are similar to those described for rodents, we concluded that the axon guiding mechanisms postulated for commissural formation in nonhuman mammals may also be operant in the developing human brain.  相似文献   

19.
Our previous studies showed that axonal outgrowth from dorsal root ganglia (DRG) transplants in the adult rat brain could be directed toward a specific target location using a preformed growth-supportive pathway. This pathway induced axon growth within the corpus callosum across the midline to the opposite hemisphere. In this study, we examined whether such pathways would also support axon growth either through or around a lesion of the corpus callosum. Pathways expressing GFP, NGF, or FGF2/NGF were set up by multiple injections of adenovirus along the corpus callosum. Each pathway included the transplantation site in the left corpus callosum, 2.8 mm away from the midline, and a target site in the right corpus callosum, 2.5 mm from the midline. At the same time, a 1 mm lesion was made through the corpus callosum at the midline in an anteroposterior direction. A group of control animals received lesions and Ad-NGF injections only at the transplant and target sites, without a bridging pathway. DRG cell suspensions from postnatal day 1 or 2 rats were injected at the transplantation site three to four days later. Two weeks after transplantation, brain sections were stained using an anti-CGRP antibody. The CGRP+ axons were counted at 0.5 mm and 1.5 mm from the lesion site in both hemispheres. Few axons grew past the lesion in animals with control pathways, but there was robust axon growth across the lesion site in the FGF2/NGF and NGF-expressing pathways. This study indicated that preformed NGF and combination guidance pathways support more axon growth past a lesion in the adult mammalian brain.  相似文献   

20.
When the cerebral midline is lesioned in the embryo or neonate, the would-be callosal axons form neuromas. We have shown that an untreated Millipore implant inserted between the neuromas in young acallosal animals can support the migration of immature astrocytes that, in turn, support the de novo growth of commissural axons between the hemispheres. Since callosal neuromas persist into adulthood, we asked whether a critical period exists after which reactive glia no longer promote axon growth. We found that a critical period does exist and have documented a variety of changes in reactive gliosis that, in part, may lead to the axon growth-refractory state. In acallosal mouse postnates given untreated implants on or prior to day 8, glial fibrillary acidic protein (GFAP)+, stellate-shaped astrocytes migrated and attached to the implant by inserting foot processes into the pores of the filter. This form of gliotic response established an axon growth-promoting substratum within 24-48 hours after implantation. During this critical stage there was no evidence of scar formation or necrosis at or around the implant surface. However, when acallosal mice were implanted on or later than postnatal day 14, extensive tissue degeneration occurred, and a mixed population of astrocytes and fibroblasts invaded the surface of the filter, producing a dense scar. Reactive cells within the scar did not promote axonal outgrowth. To determine whether glia from neonates can influence the host environment and/or induce axonal regeneration in acallosal animals after the critical period, we harvested immature astrocytes on Millipore from critical-period mouse forebrains and transplanted the glia-coated prostheses into the brains of post-critical-period acallosal animals. Such transplants reduced glial scarring in the host, inhibited extensive bleeding and secondary necrosis, and promoted axonal regeneration. Our studies suggest that when controlled with a prosthesis, gliosis during the critical period is a beneficial process that can promote the reconstruction of malformed axon pathways; that in older animals a variety of changes in reactive glia and the extracellular matrix may work together to hinder axon regeneration after the critical period; and that axonal regeneration in the postcritical CNS may be stimulated by reintroducing an immature glial environment at the lesion site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号