首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The purpose of the present study was to investigate whether the muscle fibre composition is related to the number of muscle fibres. To resolve this issue, we developed fast-twitch fibre dominant rats (FFDR) by selective breeding and compared the findings to those of control rats (CR) obtained by random breeding. Percentage of type I fibres of the deep portion of gastrocnemius (DG), soleus (SOL), vastus intermedius (VI), adductor longus (AL), and biceps brachii (BB) muscles in FFDR were lower than CR. Percentage of type IIB fibres in DG, VI and AL and percentage of type IIA fibres of SOL in FFDR were higher than CR. However, fibre composition of plantaris (PLAN), extensor digitorum longus (EDL), rectus abdominis (RA), diaphragm (DIA), and palmaris longus (PL) muscles in FFDR were identical with CR. Total fibre numbers on the cross-sectional area in SOL, PLAN, EDL, AL and PL were counted. Numbers of type I fibres of all those muscles in FFDR were not different from CR. Numbers of type IIA fibres of SOL and AL and of type IIB fibres of AL in FFDR were greater than CR, but there were no significant differences in the number of type IIA or type IIB fibres of PLAN, EDL or PL between the two groups. Based on these observations, it is suggested that there are pleiotropic and muscle-specific effects on muscle fibre composition. In addition, the number of type II fibres is a possible determinant of muscle fibre composition.  相似文献   

2.
The maximum velocity of unloaded shortening (V0) and the myosin heavy chain (MyHC) and light chain (MyLC) isoform composition were determined in single fibres from soleus and extensor digitorum longus (EDL) muscles of male and female rats 3–6 and 22–24 months old. In the soleus muscle, the β/slow (type I MyHC) isoform predominated in both young and old animals, irrespective of gender. In the EDL, fibres expressing type IIX MyHC or a combination of IIX and IIB (IIXB) MyHC isoforms were predominant in old rats, while type IIB MyHC fibres predominated in young individuals of both genders. The V0 of soleus fibres expressing the type I MyHC isoform decreased (P < 0.001) by 40% with age in spite of an unchanged MyLC composition. In the EDL, the V0 of fibres expressing IIX, IIXB and IIB MyHC isoforms did not change with age or differ between males and females. In conclusion, similar age-related changes in V0 and MyHC composition were observed in single muscle cells from both male and female rats. The present results demonstrate that the relationship between V0 and MyHC isoform composition at the single fibre level is similar in male and female rats, and that similar qualitative changes take place during ageing in both genders.  相似文献   

3.
The right extensor digitorum longus (EDL) muscle of growing male rats was overloaded by ablation of its synergist tibialis anterior (TA) muscle. Four weeks later, the overloaded muscle was heavier and contained larger type IIA, IIX and IIB fibres than either untreated contralateral muscle or control muscle from an untreated animal. The myonuclear-to-myoplasmic volume ratio was maintained in the overloaded muscle. Overloaded EDL muscle, previously subjected to a dose of irradiation sufficient to sterilise satellite cells, and EDL muscle which had been only irradiated, were significantly lighter and contained significantly smaller fibres than controls, though a significant amount of normal EDL muscle growth did occur following either treatment. The myonuclear-to-myoplasmic volume ratio of the irradiated muscles was smaller than in controls. Overloaded muscle, with or without prior irradiation, possessed a smaller proportion of fibres containing IIB myosin heavy chain (MHC) and a larger proportion of fibres containing IIA and IIX MHC; a significant percentage of these fibres coexpressed either type IIA and IIX MHC or type IIX and IIB MHC. Thus in the absence of satellite cell mitosis, muscles of young rats possess a limited capacity for normal growth but not for compensatory hypertrophy. Adaptations in MHC gene expression to chronic overload are completely independent of satellite cell activity.  相似文献   

4.
Experimental myotonia was induced by feeding rats with 20,25-diazacholesterol for up to 8 months. Histochemical analysis of myotonic extensor digitorum longus (EDL) muscle showed a progressive decrease of type IIB fibres and a concomitant increase of type IIA and type I fibres. A transient hypertrophy of type IIA fibres was observed 6 months after beginning the treatment. Analysis of the pattern of myosin light chains of single fibres from EDL showed that myotonia caused a progressive decrease of fibres showing a pure fast myosin light chain pattern and an increase of fibres showing coexistence of fast and slow myosin light chains (intermediate fibres). Only a small percentage of intermediate fibres showed coexistence of fast and slow myosin heavy chains. Myotonic fibres presented an increased sensitivity to caffeine which approached that of normal soleus fibres. Furthermore, sarcoplasmic reticulum (SR) vesicles isolated from hind limb fast muscles of myotonic rats demonstrated a decrease of Ca2+-dependent ATPase and Ca2+-transport activities as well as a decrease of immunoreactivity with anti-rabbit SR fast Ca2+-ATPase antibody. These results suggest that the increased electrical activity brought about by 20,25-diazacholesterol-induced myotonia, caused a fast to slow transition in the phenotypic expression of myosin and sarcoplasmic reticulum proteins.  相似文献   

5.
Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.  相似文献   

6.
In the present study, we examined the changes in two-dimensional distribution of fiber types in the whole area of the rat skeletal muscle and the effect of growth on this distribution. Muscles of rats aged 3 (body weight 58 g), 4 (89 g), 8 (276 g), 12 (312 g), 18 weeks (368 g), and 6 months (450 g) were stained for myofibrillar adenosine triphosphatase (mATPase) with preincubation at pH 4.35. Muscle fibers were classified into type I (slow oxidative), IIA (fast oxidative), IIB (fast glycolytic), and IIX (fast oxidative glycolytic). The x-y coordinates of each fiber were used to analyze the growth-related changes using an image analyzing system. In the tibialis anterior (TA) muscle, type I fibers were predominant in the deep and middle regions at 3 to 4 weeks of age, but became restricted to the deeper region with growth. In the extensor digitorum longus (EDL) muscle, type I fibers were predominant in the deep region at 3 to 8 weeks of age, but decreased gradually with growth and completely disappeared at 6 months of age. Compared with the TA and EDL, type I fibers of the soleus (SOL) muscle were spread throughout the muscle and the number of these fibers tended to increase with growth. Type IIA and IIX fibers of the SOL decreased in number and became restricted to the superficial region with growth. No type IIB fibers were detected in the SOL throughout life. Our results indicated that the growing process influences the distribution, proportion and characteristics of individual muscle fiber types in the rat hind limb muscles.  相似文献   

7.
Kangaroo rats (Dipodomys spp.) use specialized bipedal hopping like that of kangaroos. In contrast to kangaroos that have elastic tendons capable of storing energy, kangaroo rats have inelastic tendons that are unable to store large amounts of energy. Thus, the musculature of the ankle joint provides the greatest power contribution to kangaroo rat hopping. Skeletal muscle can be characterized by several fiber types, including slow twitch (Type I) and fast twitch (Type II) fibers. Fast fibers are found in higher concentration in muscles that perform quick, dynamic movements, whereas slow fibers are found in higher proportion in muscles that perform slow, endurant movements. Using fiber type specific antibodies, we identified four pure (Types I, IIA, IIB, and IIX) and two hybrid (Types I/IIA and IIA/IIX) fiber types in six hindlimb muscles from three kangaroo rats (Dipodomys merriami) to investigate the relationship between fiber composition and hindlimb muscle function. Hindlimb muscles (except soleus) were dominated by Type IIB fibers, which were largest in cross-sectional area, and are known to be best suited for rapid and explosive movements. Oxidative Type IIA and Type IIX fibers were found at moderate concentrations and likely function in maintaining continual saltatory locomotion. Thus, kangaroo rats can use these two fiber type populations as “gears” for both endurant and explosive behaviors.  相似文献   

8.
We have analysed the fibre type composition of soleus and extensor digitorum longus (EDL) muscles of normal female 4-6-month-old inbred Lewis rats. This rat strain is used in our ongoing study of the effects of thyroid hormone on myosin heavy chain (MyHC) isoform expression. On the basis of the mATPase reaction, soleus muscles contained 96.1 +/- 2.9% of type 1 fibres supplemented by 2A fibres. EDL muscles contained type 1 (5.5 +/- 1.0%), type 2A (18.8 +/- 1.7%) and type 2B (75.7 +/- 2.2%) fibres. Immunohistochemical analysis and SDS gel electrophoresis confirmed that most fibres in the soleus muscle expressed the type 1 (slow) MyHC isoform and that only a small proportion of fibres expressed the fast 2a MyHC isoform. Immunohistochemical analysis and SDS gel electrophoresis demonstrated that almost half of the 2B fibres of EDL muscles expressed the 2x/d MyHC isoform. In both muscle types, many fibres expressed more than one MyHC isoform. The content of slow fibres in the soleus muscle of female inbred Lewis rats was slightly higher than that reported for Wistar rats, but was considerably higher than that of Sprague-Dawley rats, whereas substantial differences were not found in the proportion of slow and fast fibre types in EDL muscles in these strains.  相似文献   

9.
Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA ≫ I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.  相似文献   

10.
The effects of 4 weeks of thyroid hormone (3,5,3′-triiodothyronine, T3) treatment on the myosin heavy chain (MHC) composition were compared in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles from young (3–6 months) and old (20–24 months) male albino rats. Four MHC isoforms were separated on silverstained 6% sodium dodecyl sulphate polyacrylamide gel electrophoresis. According to immunoblotting experiments with specific MHC monoclonal antibodies, the four MHCs corresponded to types I, IIB, IIX and IIA. In the soleus, the type I MHC content was higher in the old than in the young animals, and the type IIA content lower. Type IIX myosin was observed in some young control soleus, but not in old ones. After T3 treatment, the content of type I MHC decreased substantially in both young and old animals and that of type IIA increased. After T3 treatment, type IIX myosin was observed in both young and old animals, with a slighty higher IIX myosin content in old age, but the age-related different in the contents of types I and IIA was diminished. In EDL, the type IIX MHC content was significantly higher in the old animals, at the significantly by T3 treatment in EDL, either in young or old animals. In conclusion, an age-related motor unit transformation is observed in both the slow-twich soleus and the fast-twitch EDL and the capacity for MHC isoform switching in response to T3 treatment is not impaired in old age.  相似文献   

11.
The effect of adrenaline infusion on glycogen breakdown in different muscle fibres types in resting extensor digitorum longus (EDL) and soleus was investigated with histochemical methods. During adrenaline infusion the glycogen content in type IIB and type IIA fibres in EDL, as measured in PAS-stained sections, decreased 24.5% and 11.5% respectively. The glycogen content in type I fibres in EDL and in type I, type IIA and T-fibres in soleus did not change during adrenaline infusion. The present study shows that adrenaline infusion has different effects on glycogen breakdown in the different fibre types in EDL and a different effect on type IIA fibres in EDL and soleus. So far, the reason for these differences is unknown.  相似文献   

12.
Differentiation of rat skeletal muscle fibres during development and ageing   总被引:1,自引:0,他引:1  
The purpose of the present study was to determine at which point in the period from embryonic day 21 up to postnatal day (PD) 75, the different fibre types and subtypes are detectable in rat extensor digitorum longus, soleus and gastrocnemius muscles using immunohistochemical, enzyme histochemical and cytophotometrical methods. Moreover, fibre type-specific changes in metabolic profile and changes in fibre type population during postnatal development were analysed. Before birth, no clear differentiation of fibre types was found. At PD 1, slow and fast fibres were typed by antibodies against neonatal, slow and fast myosin heavy chains (MHCs). At PD 8, the different ATPase activities of slow and fast MHCs after alkaline preincubation were detected histochemically. At PD 21, differences in acid stability of ATPase activity of fast MHC isoforms revealed the fast subtypes IIA and IIB (including IIX). At this age, also differences in metabolic properties (oxidative and glycolytic enzyme activities) of fibres were detected for the first time by cytophotometry classifying the fibres into SO, FOG I, FOG II and FG. Before the age of 21 days, the fast fibres were metabolically undifferentiated. During further development and ageing, the population of FG fibres with high glycolytic activity increased at the expense of FOG fibres suggesting FOG to FG transformation. Cytophotometrical measurements revealed that the muscle fibres developed their highest contractile, oxidative and glycolytic activity at PD 21, the time of weaning. In this way, muscle fibres may be prepared for the higher demands for posture and mobility after leaving the nest.  相似文献   

13.
Summary Isometric and isotonic contractions of three muscles in the rat hind leg (soleus, extensor digitorum longus (EDL) and peroneus longus (PL)) were recordedin situ at 35° C and with nerve stimulation. Additionally, the histochemical muscle fibre-type composition of the three muscles was determined by the method of Guth and Samaha (1970). The data obtained from soleus and EDL muscles were similar to those reported in previous studies. On the basis of twitch contraction time, rate of rise of tetanic tension and maximum shortening velocity, the contraction speed of EDL was 2–3 times higher than in soleus. In the PL muscle, the twitch contraction time, rate of tension rise and shortening velocity were 17 ms, 30Po/s and 12 muscle fibre lengths/s, respectively; the data showed that the contraction speed of PL muscle was intermediate between that of the soleus and EDL muscles. In the case of soleus, more than 75% of the cross-sectional area was occupied by type 1 (slow) fibres; in both EDL and PL muscles more than 90% of the area was occupied by type 2 (fast fibres). However, the two fast muscles (EDL and PL) had different proportions of type 2B fibres; the area occupied by the type 2B fibre complement was less than 5% in PL, whereas it was around 70% in EDL muscle. The differences in shortening velocity and force—velocity relation among the three muscles could be explained on the basis of their respective muscle fibre-type compositions.  相似文献   

14.
The fast-contracting extensor digitorum longus (EDL) muscle of 1-month-old rats was denervated and reinnervated by the nerve innervating the slow-contracting soleus muscle. After variable periods of time, the myosin isoform content of the EDL was analyzed by sensitive electrophoretic techniques, which allowed to discriminate between the slow-type I and the three, IIA, (IID or IIX) and IIB, fast-type II myosin isoforms. Compared to the control EDL, which contains predominantly the IIB isoform, the operated muscles contained variable proportions of all the isoforms. Analysis of the results leads us to conclude that reinnervation of EDL induces a sequential transition of myosin isoforms: IIB----(IID or IIX)----IIA----I.  相似文献   

15.
We investigated whether hypophysectomy could modify the change in muscle fibre types caused by compensatory overload. Male Wistar strain rats were assigned to groups of either normal control (NC), hypophysectomized control (HC), normal compensatory overloaded (NO), or hypophysectomized compensatory overloaded (HO). Compensatory overload was induced by the bilateral removal of the gastrocnemius muscle. Five weeks later, there were losses in the soleus and plantaris muscle weights as a result of hypophysectomy. Compensatory overload increased muscle weights independently of the hypophysectomy. Growth hormone and 3,5,3′-triiodothyronine levels were significantly decreased following hypophysectomy. In the soleus, hypophysectomy increased the percentage of type I fibres at the expense of type IIA fibres. Compensatory overload decreased type IIA fibres under the hypophysectomized condition. In the plantris, the percentage of type IIC fibres was increased at the expense of both type IIA and IIB fibres following hypophysectomy. The decrease in type IIB fibres cause by compensatory overload was induced irrespective of hypophysectomy. The changes in muscle fibre types in the HO group were equal to the sum of the changes in the HC and NO groups. These results suggest that after a period of 5 weeks hypophysectomy may induced decreases in type IIA and IIB fibres in association with the lack of pituitary and thyroid hormones, and that the hypophysectomy could not modify the change in muscle fibre types caused by compensatory overload.  相似文献   

16.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

17.
The effects of 4 weeks of thyroid hormone (3,5,3′-triiodothyronine, T3) treatment on the expression of myosin heavy chain (MyHC) isoforms were examined in young (3–6 months) and old (20–24 months) female rats, and compared with those in age-matched male rats (Larsson et al. 1995). In control rats, ageing was associated with a type IIA to I MyHC isoform switching in the slow-twitch soleus and a type IIB to IIX MyHC isoform switching in the fast-twitch extensor digitorum longus muscle (EDL). Gender- and muscle-specific differences were observed in the regulation of MyHC isoforms by T3. In the soleus, dramatic downregulation of the type I and upregulation of the type IIA MyHC isoform were observed in both females and males, but upregulation of the IIX MyHC isoform was observed only in male rats. In EDL, T3 treatment had no significant influence on the MyHC isoform composition in the males irrespective of the age of the animal. In the females, on the other hand, T3 treatment resulted in a significant MyHC transformation from IIA to IIB, probably via IIX myosin, in spite of the fact that type IIA mRNA has been reported to be downregulated in both females and males. It is concluded that the regulation of MyHC isoforms by thyroid hormone differs between females and males, presumably as a result of a gender-related difference in the translational or post-translational regulation of MyHC synthesis.  相似文献   

18.
To determine which myosin heavy chain (MHC) isoforms are expressed in canine skeletal muscles, different muscle samples of five mixed-breed dogs were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The separated MHC isoforms were identified by immunoblotting technique using a set of specific monoclonal antibodies. To compare the results of the electrophoretic and immunoblotting study, the pattern of MHC isoform expression and histochemical profiles of canine fibres were additionally demonstrated on serial muscle sections by immunohistochemistry and myofibrillar adenosine triphosphatase (mATPase) histochemistry. Not more than three MHC isoforms were demonstrated by SDS-PAGE in the analysed canine muscles. By the immunoblotting technique, the fastest migrating MHC band was identified as slow or MHC-I, the intermediate one as MHC-IIx and the slowest migrating band as MHC-IIa isoform. Since none of the three MHC bands and none of the analysed fibres were recognized by the antibody specific to MHC-IIb of rats, we concluded that MHC-IIb is not expressed in large skeletal muscles of dogs. Similarly, only three major fibre types, i.e. I, IIA and IIX, were revealed according to the pattern of MHC immunohistochemistry and mATPase reaction. Type IIA fibres were more alkali- and acid-stable than type IIX fibres after mATPase histochemistry; hence, the latter corresponded to type IIDog fibres. However, beside the three major fibre types, scarce hybrid fibres co-expressing two MHC isoforms (I/IIA and IIA/IIX) were demonstrated by immunohistochemistry.  相似文献   

19.
The objective of the present study was to examine the response of fast-twitch muscle to endurance training long after the muscle had regenerated from toxin injury. Seventeen male Wistar rats were randomly assigned to a sedentary (S, n = 10) or a trained group (T, n = 7). Endurance training by treadmill running (5 days week(-1), 30 m min(-1), 7% grade, 2 h day(-1) for 5 weeks) was initiated 5 weeks after myofibre degeneration was induced in the right extensor digitorum longus muscle (EDL) by two injections of 0.2 mL of the unfractionated venom from Naja nigricollis snake. Gel electrophoresis analyses showed that training alone resulted in a 140% increase in type IIX myosin heavy chain (MHC) (P < 0.01) and a slight decrease in type IIB MHC (-14% P < 0.05). Regeneration alone induced an increase in both type IIA and IIX MHC expression (103%, P < 0.05, and 131%, P < 0.01, respectively), and a concomitant decrease in the percentage of type IIB MHC (P < 0.05). The shift from type IIB toward type IIA MHC composition observed in regenerated muscles of T rats resulted not only from an additive, but from a cumulative effect of training and regeneration. Immunohistochemical analysis of MHC content in individual fibres showed similar changes. These data suggest that the impact of endurance training on fast-type MHCs was more marked in mature regenerated muscles than in regenerating ones, and provide evidence of the heightened plasticity of fully regenerated muscles to repeated exercise.  相似文献   

20.
Myosin heavy chain isoform distribution in single fibres of bodybuilders   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the long-term effects of high intensity resistance training on myosin heavy chain (MHC) isoform composition of single fibres. Muscle biopsies were obtained from the right vastus lateralis of eight bodybuilders (BB) and seven physical education students (PES). Histochemical analyses were used to determine the fibre type distribution and the fibre cross-sectional area. MHC isoform composition of single fibres was determined with protein electrophoresis. The percentage of fibres expressing MHC IIA and MHC I/IIA was larger in BB (P < 0.05), while MHC IIX was completely absent (P < 0.05). In contrast, myofibrilar ATPase histochemistry only revealed a significantly lower percentage of type IIX fibres in BB (P < 0.05). The muscle fibre profile in the vastus lateralis muscle of BB may represent an adaptation based on the mechanical and biochemical demands of the long-term resistance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号