首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parvalbumin (PV) is a calcium-binding protein present in GABAergic cells in the cerebral cortex and in thalamic relay neurons. In the present study, parvalbumin immunocytochemistry (PVi) and stereological methods were used to obtain estimates of cortical volume, total neuron number, laminar density, and the percentage of PV-immunoreactive neurons in auditory neocortex. PVi clearly delineated the primary auditory cortex (AI), which was characterized by two PV+ bands: dense terminal-like labeling within lamina III/IV and PV+ somata in lamina VIa. Stereological analysis of Nissl-stained sections revealed that the total number of neurons in rabbit AI was 1.48 × 106 with a mean neuronal density of 55 × 103/mm3. Based on a mean cortical thickness of 1.92 mm, there are approximately 106,000 neurons in a 1 mm2 column of auditory cortex. PVi yields an extraordinary Golgi-like staining of nonpyramidal cells in all cortical layers. PV+ nonpyramidal cells constitute approximately 7.0% of the neurons in AI. There were significant differences in the morphology and density of PV+ neurons across layers. Although only 5% of cells in lamina I were PV+, three nonpyramidal cell types were present. Lamina II had the highest numerical density within AI but the lowest percentage of PV+ neurons (3.3%). Lamina II, however, contained the greatest diversity of PV+ nonpyramidal cell types, which included small multipolar cells, bipolar cells, and, less frequently, large cells of the bitufted, bipolar, and stellate varieties. Lamina IV had one of the highest numerical densities (67.6 × 103 neurons/mm3) and contributed nearly 27% of the total neuron number in AI. The numerical density of PV+ nonpyramidal cells was also greatest within lamina IV (7.1 × 103 /mm3) where they formed 10.4% of the neuronal population. PV+ nonpyramidal cells in lamina IV and lamina III were predominantly large basket-type cells with bitufted dendritic domains and tangentially oriented local axonal plexuses. The terminal-like label within lamina III/IV derived in part from the basket-cell axons, which formed pericellular arrays around unstained somata. Cell-sparse lamina V contained the largest PV+ nonpyramidal cells in AI. These cells, which formed 11% of the neuron population in lamina V, were notable for their tangentially oriented dendritic fields and local axonal arbors. PVi partitioned lamina VI into VIa and VIb. Large multipolar nonpyramidal cells were distributed throughout lamina VI and made up approximately 6% of the total population. Lamina VIa contained a band of lightly labeled PV+ pyramidal neurons that formed 15% of the neuronal population. Double-labeling experiments revealed that some PV+ pyramidal neurons within VIa also project to the ventral subdivision of the medial geniculate body (MGB). PVi demarcated the three major subdivisions of the MGB: the ventral (vMGB), dorsal (dMGB), and internal (iMGB) nuclei. The vMGB was strongly PV immunoreactive due to dense labeling of the neuropil and moderately labeled somata. The dMGB was characterized by scattered large PV+ cells and coarse PV+ axons. Relative to the vMGB, the neuropil of the dMGB contained only light terminal-like labeling. The internal MGB contained few, if any, PV+ somata and had the least terminal-like labeling of all MGB subdivisions. Because calcium-binding proteins delineate functionally distinct, parallel pathways to sensory neocortex, they will be useful chemoarchitectonic tools for guiding future connectional studies of the MGB with the auditory neocortex and brainstem. © 1994 Wiley-Liss, Inc.  相似文献   

2.
To assess the position of interneurons in the hippocampal network, fast spiking cells were recorded intracellularly in vitro and filled with biocytin. Sixteen non-principal cells were selected on the basis of 1) cell bodies located in the pyramidal layer and in the middle of the slice, 2) extensive labeling of their axons, and 3) a branching pattern of the axon indicating that they were not axo-axonic cells. Examination of their efferent synapses (n = 400) demonstrated that the cells made synapses on cell bodies, dendritic shafts, spines, and axon initial segments (AIS). Statistical analysis of the distribution of different postsynaptic elements, together with published data (n = 288) for 12 similar cells, showed that the interneurons were heterogeneous with regard to the frequency of synapses given to different parts of pyramidal cells. When the cells were grouped according to whether they had less or more than 40% somatic synaptic targets, each population appeared homogeneous. The population (n = 19) innervating a high proportion of somata (53 ± 10%, SD) corresponds to basket cells. They also form synapses with proximal dendrites (44 ± 12%) and rarely with AISs and spines. One well-filled basket cell had 8,859 boutons within the slice, covering an area of 0.331 mm2 of pyramidal layer tangentially and containing 7,150 pyramidal cells, 933 (13%) of which were calculated to be innervated, assuming that each pyramidal cell received nine to ten synapses. It was extrapolated that the intact axon probably had about 10,800 boutons innervating 1,140 pyramids. The proportion of innervated pyramidal cells decreased from 28% in the middle to 4% at the edge of the axonal field. The other group of neurons, the bistratified cells (n = 9), showed a preference for dendritic shafts (79 ± 8%) and spines (17 ± 8%) as synaptic targets, rarely terminating on somata (4 ± 8%). Their axonal field was significantly larger (1,250 ± 180 μm) in the medio-lateral direction than that of basket cells (760 ± 130 μm). The axon terminals of bistratified cells were smaller than those of basket cells. Furthermore, in contrast to bistratified cells, basket cells had a significant proportion of dendrites in stratum lacunosum-moleculare suggesting a direct entorhinal input. The results define two distinct types of GABAergic neuron innervating pyramidal cells in a spatially segregated manner and predict different functions for the two inputs. The perisomatic termination of basket cells is suited for the synchronization of a subset of pyramidal cells that they select from the population within their axonal field, whereas the termination of bistratified cells in conjunction with Schaffer collateral/commissural terminals may govern the timing of CA3 input and/or voltage-dependent conductances in the dendrites. © 1996 Wiley-Liss, Inc.  相似文献   

3.
An interlaminar, ascending, and GABAergic projection is demonstrated in the striate cortex of the cat. We have examined a basket cell, with soma and smooth dendrites in layers V and VI, that was injected intracellularly with HRP in the kitten. Three-dimensional reconstruction of its axon revealed a horizontal plexus in layer V and upper VI, extending about 1.8 mm anteroposteriorly and 0.8 mm mediolaterally; a dense termination in the vicinity of the soma in layers V and VI; and an ascending tuft terminating in layers II and III in register above the soma and about 250 microns in diameter. Many boutons of this cell contacted neuronal somata and apical dendrites of pyramidal cells and subsequent electron microscopy showed that these boutons formed type II synaptic contacts with these structures. A random sample of postsynaptic targets (n = 199) in layers III, V, and VI showed that somata (20.1%), dendritic shafts (38.2%), and dendritic spines (41.2%) were contacted. The fine structural characteristics of postsynaptic elements indicated that the majority originated from pyramidal cells. Direct identification of postsynaptic neurons was achieved by Golgi impregnation of four large pyramidal cells in layer V, which were contacted on their somata and apical dendrites by between three and 34 boutons of the HRP-filled basket cell. Layer IV neurons were not contacted. Golgi-impregnated neurons similar to the HRP-filled basket cell were also found in the deep layers. The axonal boutons of one of them were studied; it also formed type II synapses with somata and apical dendrites of pyramidal cells. Boutons of the HRP-filled neuron were shown to be GABA-immunoreactive by the immunogold method. This is direct evidence in favour of the GABAergic nature of deep layer basket cells with ascending projections. The existence of an ascending GABAergic pathway was also demonstrated by injecting [3H]GABA into layers II and III. The labelled amino acid was transported retrogradely by a subpopulation of GABA-immunoreactive cells in layers V and VI, in addition to cells around the injection site. The axonal pattern and mode of termination of deep basket cells make them a candidate for producing or enhancing directional selectivity, a characteristic of layer V cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. Two classes of GABAergic inhibitory interneurons, chandelier and basket cells, are known regulators of pyramidal neurons. Parvalbumin (PV) a calcium binding protein, has been shown to be a marker for axon terminals of subpopulations of these interneurons. 2. Immunohistochemical methods were used in this study to examine changes in the distribution of PV-immunoreactive (IR) chandelier and basket axon terminals during postnatal development of monkey neocortex. 3. Our results indicate a differential effect of postnatal development on PV-IR axon terminals of chandelier and basket neurons that is region-specific. 4. The differential regional, laminar and developmental pattern of PV-IR axon terminals of chandelier and basket cells may provide insight into the functional role of these classes of inhibitory neurons in primate neocortex.  相似文献   

5.
Cytochrome oxidase (C.O.) was histochemically localized in the cat striate cortex at the light and electron microscopic levels. The results indicate that the oxidative metabolic activity within the cat striate cortex may vary between (1) different laminae, (2) neurons and glia, (3) different neuron types, (4) dendrite and soma of the same cell, (5) different types of dendrites, (6) different segments of the same dendrite, and (7) different classes of symmetric and asymmetric axon terminals. Maximal laminar C.O. staining was localized within geniculoreceptive layer IV. Darkly reactive neurons include the large (presumed corticotectal) pyramids of layer V, and various classes of large and medium-sized presumed GABAergic nonpyramidal cells sparsely distributed throughout layers II-VI. The small and medium-sized pyramids of layers II, III, V, and VI, as well as many of the smaller presumed GABAergic neurons, were only lightly or moderately reactive. The darkly reactive neurons tended to be those that received convergent or proximally localized asymmetric axosomatic synapses, implying that they are strongly driven by excitatory synaptic input. The darkly reactive nonpyramids resembled those that form GAD+, symmetric axosomatic synapses with pyramidal cells. The dark reactivity of the symmetric synaptic terminals indicates that they mediate strong inhibition of neuronal discharge. The dark reactivity of a class of large asymmetric terminals in layer IV is likely to represent highly active geniculocortical terminals. The predominant distribution of elevated C.O. reactivity in dendrites is correlated with reported sites of (1) convergent excitatory synaptic input, (2) maximal field potentials, (3) highly active ion transport, and (4) Na+, K+-ATPase.  相似文献   

6.
Five green monkeys were examined with light and electron microscopic preparations to explore the regional differences in the distribution of parvalbumin (PV)-positive neurons and axon terminals in the primate hippocampus. PV-positive neurons were mainly found in the hilus of the dentate gyrus and the strata oriens and pyramidale of Ammon's horn. In electron microscopic preparations, the PV-positive cells displayed nuclear infoldings, intranuclear rods, a large rim of perikaryal cytoplasm with numerous organelles and both asymmetric and symmetric axosomatic synapses. One prominent PV-positive cell type in CA1 was a large multipolar neuron that resembled the large basket cells of the neocortex. Although most PV-positive dendrites were aspiny and postsynaptic to numerous axon terminals, some PV-positive dendrites in the molecular layer of the dentate gyrus displayed filipodia-like appendages with no synapses or spines that were postsynaptic to multiple axon terminals. The PV-positive dendrites in the hilus and stratum oriens were apposed at specialized junctions that resembled gap junctions. PV-positive axons were concentrated in the principal cell layers, and formed axosomatic, axodendritic, and axon initial segment synapses. In cases where these axons were observed to appose the surface of granule cells for a long length, only one axosomatic symmetric synapse per cell was found. In the hilus, PV-positive axon terminals formed synapses onto thorny excrescences of spiny cells. Both semithin sections and electron microscopic preparations indicated that more PV-positive axon terminals formed symmetric axosomatic synapses with pyramidal cells in CA2 than in CA1 and CA3. Also, CA2 displayed a unique plexus of PV-positive axon terminals in stratum lacunosum moleculare. These results indicate that the PV-positive hippocampal cells form a subset of GABAergic local circuit neurons, including the basket and chandelier cells. The ubiquitous finding of PV-positive dendrites linked by gap junctions throughout the dentate gyrus and Ammon's horn adds further data to indicate that this subset of GABAergic neurons is linked electrotonically. The synaptic organization of PV-positive neurons in the hippocampus suggests their participation in both feedback and feedforward inhibition. The PV-positive neurons in the hippocampus are only a proportion of the basket and chandelier cells, whereas virtually all of these cells in neocortex are PV-positive. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The axon initial segment (AIS) of cerebellar Purkinje cells (PCs) is embraced by ramified axons of GABAergic basket cells (BCs) called the pinceau formation. This unique structure has been assumed to be a device for the modulation of PC outputs through electrical and/or GABAergic inhibition. Electrical inhibition is supported by enriched potassium channels, absence of sodium channels, and developed septate-like junctions between BC axons. The neurochemical basis for GABAergic inhibition, however, has not been well investigated. Here we addressed this issue using C56BL/6 mice. First, we confirmed previous observations that typical synaptic contacts were rare and confined to proximal axonal portions, with the remaining portions being mostly covered by astrocytic processes. Then we examined the expression of molecules involved in GABAergic signaling, including GABA synthetic enzyme glutamic acid decarboxylase (GAD), vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT), cytomatrix active zone protein bassoon, GABA receptor GABA(A)Rα1, and cell adhesion molecule neuroligin-2. These molecules were recruited to form a functional assembly at perisomatic BC-PC synapses and along the AIS of hippocampal and neocortical pyramidal cells. GAD and VIAAT immunogold labeling was five times lower in the pinceau formation compared with perisomatic BC terminals and showed no accumulation toward the AIS. Moreover, bassoon, neuroligin-2, and GABA(A)Rα1 formed no detectable clusters along the ankyrin-G-positive AIS proper. These findings indicate that GABAergic signaling machinery is organized loosely and even incompletely in the pinceau formation. Together, BCs do not appear to exert GABAergic synaptic inhibition on the AIS, although the mode of action of the pinceau formation remains to be explored.  相似文献   

8.
Seizure-sensitive (SS) and seizure-resistant (SR) Mongolian gerbils were used for three experiments. In the first experiment, GABAergic neurons and terminals in the dentate gyrus were localized with GAD immunocytochemistry. GAD-positive puncta adjacent to cell bodies of GABAergic pyramidal basket cells were counted in light microscopic preparations. The pyramidal basket cells of SS gerbils displayed a significant threefold increase in the number of GAD-positive puncta associated with their cell bodies as compared to those from SR gerbils. These data indicate that the number of GABAergic synapses with pyramidal basket cell bodies in the dentate gyrus was greater in SS gerbils. An electron microscopic (EM) analysis of GAD immunocytochemical preparations showed GAD-positive axon terminals forming symmetric synapses with GAD-positive basket cell bodies. However, numerous terminals forming symmetric axosomatic synapses with basket cells were not immunopositive, and other synapses formed by terminals were not classified because reaction product in the cell bodies obscured postsynaptic densities. Therefore, routine EM preparations were analyzed for symmetric and asymmetric axosomatic synapses on pyramidal basket cells and granule cells of SS and SR gerbils. The data obtained from these preparations showed that the pyramidal basket cells of SS gerbils had a selective increase in the number of symmetric synapses per 10 microns of soma as compared to those of the SR gerbils. In contrast, the granule cells did not show any significant difference in the number of either symmetric or asymmetric axosomatic synapses between SS and SR gerbils. These results indicate that pyramidal basket cell bodies of SS gerbils have more inhibitory synapses than do those of SR gerbils. The third experiment used SS gerbils with lesions of the perforant pathway that stopped seizure activity (Ribak, C. E., and S. U. Khan (1987) The effects of knife cuts of hippocampal pathways on epileptic activity in the seizure-sensitive gerbil. Brain Res. 418:251-260). The percentage of axon terminal area occupied by synaptic vesicles and their packing density was determined in CA3 mossy fiber boutons and compared for lesioned and nonlesioned SS gerbils. The mossy fibers of nonlesioned SS gerbils showed a depletion of synaptic vesicles consistent with the previous results of Peterson et al. (Peterson, G. M., C. E. Ribak, and W. H. Oertel (1985) A regional increase in the number of hippocampal GABAergic neurons and terminals in the seizure-sensitive gerbil. Brain Res. 340:384-389).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Electron microscopy and immunocytochemistry with a monoclonal antibody against parvalbumin (PV) were combined to analyze the distribution and morphology of PV-immunoreactive (PV-IR) neurons and the synaptology of PV-IR processes in the principal sulcus of the macaque prefrontal cortex. Parvalbumin-IR neurons are present in layers II-VI of the macaque principal sulcus (Walker's area 46) and are concentrated in a band centered around layer IV. PV-IR cells are exclusively non-pyramidal in shape and are morphologically heterogeneous with soma sizes ranging from less than 10 microns to greater than 20 microns. Well-labeled neurons that could be classified on the basis of soma size and dendritic configuration resembled large basket and chandelier cells. A novel finding is that supragranular PV-IR neurons exhibit dendritic patterns with predominantly vertical orientations, whereas infragranular cells exhibit mostly horizontal or oblique dendritic orientations. PV-IR cells within layer IV exhibit a mixture of dendritic arrangements. Vertical rows of PV-IR puncta, 15-30 microns in length, resembling the "cartridges" of chandelier cell axons were most dense in layers II, superficial III, and the granular layer IV but were not observed in the infragranular layers. Cartridges were often present beneath unlabeled, presumed pyramidal cells. PV-IR puncta also formed pericellular nests around pyramidal cell somata and proximal dendrites, suggestive of basket cell innervation. PV-IR axons were occasionally observed in the white matter underlying the principal sulcus. Electron microscopic analysis revealed that PV-IR somata and dendrites are densely innervated by nonimmunoreactive terminals forming asymmetric (Gray type I) synapses as well as by fewer terminals forming symmetric (Gray type II) synapses. The majority of terminals forming symmetric synapses with PV-IR post-synaptic structures were not immunolabeled; however, some of these boutons did contain PV-immunoreactivity. PV-IR boutons exclusively form symmetric synapses and heavily innervate layer II/III pyramidal cells. PV-IR axon cartridges formed numerous axo-axonic synapses with the axon initial segments of pyramidal cells 15-20 microns beneath the axon hillock and also terminated on large axonal spines of the initial segment. Furthermore, we failed to observe a mixture of PV-immunoreactive and non-immunoreactive boutons composing a single axon cartridge. Pyramidal cell somata and proximal dendrites were also heavily innervated by PV-IR boutons forming symmetric synapses, again, consistent with basket cell innervation. In addition, PV-IR axon terminals frequently formed symmetric synapses with dendritic shafts and spines of unidentified neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.  相似文献   

11.
Summary. The GABAergic input on cortical pyramidal cells has an important influence on the firing activity of the cortex and thus in regulating the behavioural outcome. The aim of the current study was to investigate the long-term neuroplastic adaptation of the GABAergic innervation pattern after an early severe systemic impact. Therefore 40 Mongolian gerbils (Meriones unguiculatus) were either reared under impoverished (IR) or enriched rearing conditions (ER) and received a single early (+)-methamphetamine (MA) challenge (50 mg/kg i.p.) or saline on postnatal day 14. The density of perisomatic immunoreactive GABAergic terminals surrounding layers III and V pyramidal neurons was quantified as well as the overall GABAergic fibre density in layers I/II and V of the medial prefrontal cortex (mPFC) of young adult animals (90 days). We found that IR in combination with an early MA administration led to a significant decrease in GABAergic bouton densities while the overall GABAergic fibre density increased in all investigated layers. The results indicate a shift in inhibition from somatic to dendritic innervation of pyramidal neurons in this potential animal model of psychosis. We conclude that IR combined with early MA trigger changes in the postnatal maturation of the prefrontal cortical GABAergic triggers innervation, which may interfere with proper signal processing within the prefrontal neural network.  相似文献   

12.
We have examined the ontogeny of parvalbumin (PV) and calbindin D-28k (CB) immunoreactivities in the canine anterior cingulate cortex (ACC) from the day of birth (P0) through P180. At P7, PV immunoreactivity first appeared in layer VI multipolar cells. The PV immunoreactivity in GABAergic nonpyramidal cells appeared to follow an inside-out gradient of radial emergence. Although immunoreaction was limited mainly to the developing nonpyramidal cells, pyramid-like PV immunoreactive cells were transitorily observed in layer V from P14 to P90. The developmental pattern of CB immunoreactivity differed from that of PV immunoreactivity. CB immunoreactivity first developed in layer V pyramidal cells from P0, which continued through P90. CB immunoreactive nonpyramidal cells were located in the infragranular layers and white matter at P0 and maturated in both the supragranular and infragranular layers without clear inside-out gradient.This developmental study revealed the comparable belated expression of PV immunoreactivity and the transient expression of both calcium-binding proteins in layer V pyramidal cells. These results suggest that the transient expression of calcium-binding proteins in layer V pyramidal cells might be related to the critical period of early postnatal development.  相似文献   

13.
In order to learn more about the anatomical substrate for gamma-aminobutyric acid (GABA)-mediated inhibition in cortical structures, the intrinsic neuronal organization of turtle dorsal cortex was studied by using Golgi impregnation, immunohistochemical localization of GABA and its synthetic enzyme glutamic acid decarboxylase (GAD), and histochemical localization of the presynaptic GABA-degrading enzyme GABA-transaminase (GABA-T). GABAergic markers are found in neurons identical in morphology and distribution to Golgi-impregnated aspiny and sparsely spiny nonpyramidal neurons with locally arborizing axons and appear to label most if not all of the nonpyramidal neurons. In addition, the GABAergic markers are found in punctate structures in a distribution characteristic of presumed inhibitory terminals. The spine-laden pyramidal neurons, the principal projecting cell type in the dorsal cortex, are devoid of labelling for GABAergic markers but are surrounded by presumed GABAergic terminals. The data complement previous physiological and ultrastructural studies that implicate aspiny and sparsely spiny nonpyramidal neurons as mediators of intrinsic inhibition of pyramidal neurons in turtle cortex. The results also suggest similarities in the functional organization of intrinsic inhibitory elements in turtle and mammalian cortex.  相似文献   

14.
The functional organization of long-horizontal inhibitory connections was studied in cat visual cortical area 17, using a combination of electrophysiological recording and anatomical tracing in the same tissue. Orientation maps were obtained by recording multiunit activity from layer III at regular intervals (100–300μm) in a region of -1.3 mm2 of cortex at a depth corresponding to the location of the basket cell axons reconstructed later. Before the physiological mapping, the neuronal tracer biocytin had been iontophoretically injected at one functionally characterized site. On the basis of light microscopic features a total of five biocytin-labelled large basket axons, BC1 - BC5, were reconstructed from series of horizontal sections of two cats. The parent somata and dendritic fields of three axons (BC1, BC4 and BC5) could also be reconstructed. The axonal field of basket cell BC1 had an overall lateral spread of 1.8 mm. The axons of basket cells BC4 and BC5 spanned a distance of 3.05 and 2.85 mm, respectively. The distribution pattern of histologically reconstructed recording sites and of five labelled basket cell axons were directly compared in the same sections. The results show that a single large basket cell provides input to regions representing the whole range of orientations, i.e. iso-orientation (±30°), oblique orientation (±[30–60]°) and cross-orientation (±[60–90]°) to that at the basket cell's soma. Furthermore, the differential effect mediated by the same large basket cell at sites of different orientation preference was numerically estimated for two basket cells (BC4 and BC5) whose preferred orientations could be determined on the basis of recording sites adjacent to their parent somata. We counted the number of axonal terminals of these basket cells at iso-, oblique- and cross-orientation sites and found no significant difference in the average density of terminals at sites of either orientation preference. The functional topography of large basket cell axons indicates that the same basket cell can mediate iso-, oblique- and cross-orientation inhibition at different sites. Hence, we assume that large basket cells serve a complex physiological role depending on the location of target cells in the orientation map.  相似文献   

15.
Chandelier cell axons were studied in the sensory-motor cortex of adult monkeys. The axonal fields of Golgi-impregnated chandelier cells in layer II in motor cortex are flattened sagittally. The vertical terminal portions of the axons varied both in length and in the numbers converging to form terminations of greater or lesser complexity. Golgi-impregnated plexuses were embedded in plastic and resectioned serially at 2.5-3.0 micrograms. A single axonal field could have as many as 400 terminal rows. All lie 3-13 micrograms beneath pyramidal cell somata. These terminations are not randomly distributed but instead, form clusters. Further resectioning the plastic sections for electron microscopy revealed that all the terminations are on the initial axon segments of pyramidal cells and all form symmetric synaptic contacts. In immunocytochemical material stained for glutamic acid decarboxylase (GAD), the enzyme involved in the synthesis of GABA, GAD-positive boutons were found to form symmetric synaptic contacts with a variety of postsynaptic elements including the axon hillocks and axon initial segments of pyramidal cells. Serial reconstructions from electron micrographs revealed GAD-positive terminals synapsing with the axon initial segment of pyramidal cells joined by cytoplasmic bridges and forming vertically oriented rows identical to those of chandelier cell terminals identified positively in the resectioned Golgi material. The GAD-positive terminals forming initial segment synapses were never continuous with GAD-positive terminals forming axo hillock synapses. The latter probably arise from basket cell axons. Initial segments of pyramidal cell axons in layers II and III were contacted by more GAD-positive terminals than the initial segments of pyramidal cell axons in layer V. The largest pyramidal cells in layer III received the most synapses. Many larger pyramidal cells, identified as callosally projecting cells by the retrograde transport of horseradish peroxidase (HRP), were shown in serial electron micrographs to possess large numbers of initial segment synapses, comparable to those seen in the immunocytochemical material. Serial reconstructions of pyramidal cell axons from axon hillock to the first myelin internode in resectioned Golgi, immunocytochemical and HRP material showed that the number of synapses varied from 2 to 52 for layers II and III and from 2 to 26 for layer V. The number of synapses on the axon hillocks varied from zero to 12. The variability in these terminations may be an important factor in the shaping of the functional properties of the pyramidal cells.  相似文献   

16.
Phosphate-activated glutaminase (PAG), which catalyses conversion of glutamine to glutamate, is a potential marker for glutamatergic, and possibly GABA, neurons in the central nervous system. A polyclonal antibody, raised in rabbits against rat brain PAG, was applied to postmortem human brain tissue to reveal the distribution of PAG in the cerebral cortex. PAG immunoreactivity was observed in pyramidal and non-pyramidal neurons but not in glial cells. In the neocortex, large to medium-sized pyramidal neurons in layers III and V were stained most intensely, while the majority of smaller pyramidal cells were labeled either lightly or moderately. Such modified pyramids as the giant Betz cells, the large pyramidal cells of Meynert, and the solitary cells of Ramón y Cajal were also stained intensely. Fusiform cells in layer VI showed moderate to intense labeling. A number of cortical non-pyramidal neurons of various sizes stained moderately to intensely. These included large basket cells which were identified by their characteristic morphology and size in primary cortical areas. Pyramidal cells in the hippocampal formation as well as basket cells of the stratum oriens stained moderately to intensely. Since pyramidal cells are believed to be glutamatergic and large basket cells GABAergic, these results suggest that PAG plays a role in generating not only transmitter glutamate, but also GABA precursor glutamate.  相似文献   

17.
The form, density, and neuronal targets of presumptive axon terminals (puncta) that were immunoreactive for gamma-aminobutyric acid (GABA) or its synthesizing enzyme, glutamic acid decarboxylase (GAD), were studied in cat primary auditory cortex (AI) in the light microscope. High-resolution, plastic-embedded material and frozen sections were used. The chief results were: (1) There was a three-tiered numerical distribution of puncta, with the highest density in layer Ia, an intermediate number in layers Ib–IVb, and the lowest concentration in layers V and VI, respectively. (2) Each layer had a particular arrangement: layer I puncta were fine and granular (less than 1 μm), and layer V and VI puncta were mixed in size and predominantly small. (3) The form and density of puncta in every layer were distinctive. (4) Immunonegative neurons received, in general, many more axosomatic puncta than immunopositive cells, with the exception of the large multipolar (presumptive basket) cells, which invariably had many puncta in layers II–VI. (5) The number of puncta on the perikarya of GABAergic neurons was sometines related to the number of puncta in the layer, and in other instances it was independent of the layer. Thus, while layer V had a proportion of GABAergic neurons similar to layer IV, it had only a fraction of the number of puncta: perhaps the intrinsic projections of supragranular GABAergic cells are directed toward layer IV, as those of infragranular GABAergic neurons may be. Since puncta are believed to be the light microscopic correlate of synaptic terminals, they can suggest how inhibitory circuits are organized. Even within an area, the laminar puncta patterns may reflect different inhibitory arrangements. Thus, in layer I the fine, granular endings could contact preferentially the distal dendrites of pyramidal cells in deeper layers. The remoteness of such terminals from the spike initation zone contrasts with the many puncta on all pyramidal cell perikarya and the large globular endings on basket cell somata. Basket cells might receive feed-forward disinhibition, pyramidal cells feed-forward inhibition, and GABAergic non-basket cells would be the target of only sparse inhibitory axosomatic input. Such arrangements imply that the actions of GABA on AI neurons are neither singular nor simple and that the architectonic locus, laminar position, and morphological identity of a particular neuron must be integrated for a more refined view of it role in cortical circuitry. © 1994 Wiley-Liss, Inc.  相似文献   

18.
The generation of emotional responses by the basolateral amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons, the pyramidal cells. The activity of these neurons is tightly controlled by gamma-aminobutyric acid (GABA)-ergic interneurons, especially a parvalbumin-positive (PV(+)) subpopulation that constitutes almost half of all interneurons in the basolateral amygdala. In the present semiquantitative investigation, we studied the incidence of synaptic inputs of PV(+) axon terminals onto pyramidal neurons in the rat basolateral nucleus (BLa). Pyramidal cells were identified by using calcium/calmodulin-dependent protein kinase II (CaMK) immunoreactivity as a marker. To appreciate the relative abundance of PV(+) inputs compared with excitatory inputs and other non-PV(+) inhibitory inputs, we also analyzed the proportions of asymmetrical (presumed excitatory) synapses and symmetrical (presumed inhibitory) synapses formed by unlabeled axon terminals targeting pyramidal neurons. The results indicate that the perisomatic region of pyramidal cells is innervated almost entirely by symmetrical synapses, whereas the density of asymmetrical synapses increases as one proceeds from thicker proximal dendritic shafts to thinner distal dendritic shafts. The great majority of synapses with dendritic spines are asymmetrical. PV(+) axon terminals form mainly symmetrical synapses. These PV(+) synapses constitute slightly more than half of the symmetrical synapses formed with each postsynaptic compartment of BLa pyramidal cells. These data indicate that the synaptology of basolateral amygdalar pyramidal cells is remarkably similar to that of cortical pyramidal cells and that PV(+) interneurons provide a robust inhibition of both the perisomatic and the distal dendritic domains of these principal neurons.  相似文献   

19.
Neural activity guides the patterning of neuron synaptic territory in the developing nervous system. Evidence supporting this hypothesis comes from numerous studies on projection neurons in neuromuscular and visual systems. It is unknown whether the innervation field of GABAergic interneurons, which forms local dense innervations, follows similar rules. Cortical basket cells innervate hundreds of pyramidal cell somata and proximal dendrites. Thanks to this connectivity pattern, they can tightly control neural excitability and synchronization. Here we show that reducing excitation, and thus neurotransmitter release, in mouse cortical single basket cells in slice cultures decreases the number of innervated cells without changing the pattern of perisomatic innervation, both at the peak and after the proliferation phase of perisomatic synapse formation. Conversely, suppressing neurotransmitter release in single basket cells can have completely opposite effects depending on the developmental stage. Our results reveal a remarkably specific and age-dependent role of neural activity and neurotransmission levels in the establishment of the synaptic territory of cortical GABAergic cells.  相似文献   

20.
Calcium binding proteins calbindin D28k (CaBP) and parvalbumin (PV) are known to form distinct subpopulations of gamma-aminobutyric acid (GABA)ergic neurons in the rodent hippocampal formation. Light and electron microscopic morphology and connections of these protein-containing neurons are only partly known in the primate hippocampus. In this study, CaBP and PV were localized in neurons of the human hippocampal formation including the subicular complex (prosubiculum, subiculum, and presubiculum) in order to explore to what extent these subpopulations of hippocampal neurons differ in phylogenetically distant species. CaBP immunoreactivity was present in virtually all granule cells of the dentate gyrus and in a proportion of pyramidal neurons in the CA1 and CA2 regions. A distinct population of CaBP-positive local circuit neurons was found in all layers of the dentate gyrus and Ammon's horn. Most frequently they were located in the molecular layer of the dentate gyrus and the pyramidal layer of Ammon's horn. In the subicular complex pyramidal neurons were not immunoreactive for CaBP. In the prosubiculum and subiculum immunoreactive nonpyramidal neurons were equally distributed in all layers, whereas in the presubiculum they occurred mainly in the superficial layers. Electron microscopy showed typical somatic and dendritic features of the granule, pyramidal, and local circuit neurons. CaBP-positive mossy fiber terminals in the hilus of the dentate gyrus and terminals of presumed pyramidal neurons of Ammon's horn formed asymmetric synapses with dendrites and spines. CaBP-positive terminals of nonprincipal neurons formed symmetric synapses with dendrites and dendritic spines, but never with somata or axon initial segments. PV was exclusively present in local circuit neurons in both the hippocampal formation and subicular complex. Most of the PV-positive cell bodies were located among or close to the principal cell layers. However, large numbers of immunoreactive neurons were also found in the molecular layer of the dentate gyrus and in strata oriens of Ammon's horn. PV-positive cells were equally distributed in all layers of the subicular complex. Electron microscopy showed the characteristic somatic and dendritic features of local circuit neurons. PV-positive axon terminals formed exclusively symmetric synapses with somata, axon initial segments and dendritic shafts, and in a few cases with dendritic spines. The CaBP- and PV-containing neurons formed similar subpopulations in rodents, monkeys, and humans, although the human hippocampus displayed the largest variability of these immunoreactive neurons in their morphology and location. Calcium binding protein-containing neurons frequently occurred in the molecular layer of the human dentate gyrus and in the stratum lacunosum-moleculare of Ammon's horn. The corresponding areas of the rat or monkey hippocampus were devoid of such neurons. In both rodents and primates similar populations of principal neurons contained CaBP. In addition, CaBP and PV were localized in distinct and nonoverlapping populations of nonprincipal cells. Their target selectivity did not change during phylogeny (e.g., PV-positive cells mainly innervate the perisomatic region and CaBP-positive cells the distal dendritic region of principal cells). © 1993 Wiley-Liss,Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号