首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Epidemiological evaluations of the risk of silicosis in relation to exposure to crystalline silica have raised the question of whether different types of silica dust exposures vary with respect to their ability to cause silicosis. The aim of this study is to compare the risk of silicosis among cohorts of silica dust-exposed Chinese tin miners, tungsten miners, and pottery workers and to assess whether gravimetric measurements of respirable silica dust sufficiently determine the risk of silicosis or whether other factors of exposure may play a significant role. METHODS: Cohorts were selected from 20 Chinese mines and potteries. Inclusion criteria were starting employment after January 1, 1950 and being employed for at least 1 year during 1960-1974 in one of the selected workplaces. Radiological follow-up for silicosis onset was from January 1, 1950 through December 31, 1994. Silicosis was assessed according to the Chinese radiological criteria for diagnosis of pneumoconiosis (as suspect, Stage I, II, or III). Exposure-response relationships were estimated for silicosis of Stage I or higher. Silica dust exposure was estimated in terms of cumulative total dust exposure, calculated from a workplace, job title, and calendar year exposure matrix, and individual occupational histories. Cumulative total dust exposure was converted in two steps into cumulative respirable dust exposure and cumulative respirable silica dust exposure using conversion factors estimated from side-by-side measurements conducted in 1988-89. RESULTS: The male cohorts included 4,028 tin miners, 14,427 tungsten miners, and 4,547 pottery workers who had similar onset of employment and duration of follow-up. For a given exposure level, the risk of silicosis was higher for the tin and tungsten than the pottery workers. CONCLUSION: The observed differences in the risk of silicosis among the three cohorts suggest that silica dust characteristics, in addition to cumulative respirable silica dust exposure, may affect the risk of silicosis.  相似文献   

2.
Collaborative studies of Chinese workers, using over four decades of dust monitoring data, are being conducted by the National Institute for Occupational Safety and Health (NIOSH) and Tongji Medical University in China. The goal of these projects is to establish exposure-response relationships for the development of diseases such as silicosis or lung cancer in cohorts of pottery and mine workers. It is necessary to convert Chinese dust measurements to respirable silica measurements in order to make results from the Chinese data comparable to other results in the literature.This article describes the development of conversion factors and estimates of historical respirable crystalline silica exposure for Chinese workers. Ambient total dust concentrations (n>17000) and crystalline silica concentrations (n=347) in bulk dust were first gathered from historical industrial hygiene records. Analysis of the silica content in historical bulk samples revealed no trend from 1950 up to the present. During 1988-1989, side-by-side airborne dust samples (n=143 pairs) were collected using nylon cyclones and traditional Chinese samplers in 20 metal mines and nine pottery factories in China. These data were used to establish conversion factors between respirable crystalline silica concentrations and Chinese total dust concentrations. Based on the analysis of the available evidence, conversion factors derived from the 1988-1989 sampling campaign are assumed to apply to other time periods in this paper. The conversion factors were estimated to be 0.0143 for iron/copper, 0.0355 for pottery factories, 0.0429 for tin mines, and 0.0861 for tungsten mines. Conversion factors for individual facilities within each industry were also calculated. Analysis of variance revealed that mean conversion factors are significantly different among facilities within the iron/copper industry and within the pottery industry. The relative merits of using facility-specific conversion factors, industry-wide conversion factors, or a weighted average of the two are discussed. The exposure matrix of the historical Chinese total dust concentrations was multiplied by these conversion factors to obtain an exposure matrix of historical respirable crystalline silica concentrations.  相似文献   

3.
Although crystalline silica has been recognized as a health hazard for many years, it is still encountered in many work environments. Numerous studies have revealed an association between exposure to respirable crystalline silica and the development of silicosis and other lung diseases including lung cancer. Alberta Jobs, Skills, Training and Labour conducted a project to evaluate exposure to crystalline silica at a total of 40 work sites across 13 industries. Total airborne respirable dust and respirable crystalline silica concentrations were quite variable, but there was a potential to exceed the Alberta Occupational Exposure Limit (OEL) of 0.025 mg/m3 for respirable crystalline silica at many of the work sites evaluated. The industries with the highest potentials for overexposure occurred in sand and mineral processing (GM 0.090 mg/m3), followed by new commercial building construction (GM 0.055 mg/m3), aggregate mining and crushing (GM 0.048 mg/m3), abrasive blasting (GM 0.027 mg/m3), and demolition (GM 0.027 mg/m3). For worker occupations, geometric mean exposure ranged from 0.105 mg/m3 (brick layer/mason/concrete cutting) to 0.008 mg/m3 (dispatcher/shipping, administration). Potential for GM exposure exceeding the OEL was identified in a number of occupations where it was not expected, such as electricians, carpenters and painters. These exposures were generally related to the specific task the worker was doing, or arose from incidental exposure from other activities at the work site. The results indicate that where there is a potential for activities producing airborne respirable crystalline silica, it is critical that the employer include all worker occupations at the work site in their hazard assessment. There appears to be a relationship between airborne total respirable dust concentration and total respirable dust concentrations, but further study is require to fully characterize this relationship. If this relationship holds true, it may provide a useful hazard assessment tool for employers by which the potential for exposure to airborne respirable silica at the work site can be more easily estimated.  相似文献   

4.
OBJECTIVES—To investigate the risk of silicosis among tin miners and to investigate the relation between silicosis and cumulative exposure to dust (Chinese total dust and respirable crystalline silica dust).
METHODS—A cohort study of 3010 miners exposed to silica dust and employed for at least 1 year during 1960-5 in any of four Chinese tin mines was conducted. Historical total dust data from China were used to create a job exposure matrix for facility, job title, and calendar year. The total dust exposure data from China were converted to estimates of exposure to respirable crystalline silica for comparison with findings from other epidemiological studies of silicosis. Each worker''s work history was abstracted from the complete employment records in mine files. Diagnoses of silicosis were based on 1986 Chinese pneumoconiosis Roentgen diagnostic criteria, which classified silicosis as stages I-III—similar to an International Labour Organisation (ILO) classification of 1/1 or greater.
RESULTS—There were 1015 (33.7%) miners identified with silicosis, who had a mean age of 48.3 years, with a mean of 21.3 years after first exposure (equivalent to 11.0 net years in a dusty job). Among those who had silicosis, 684 miners (67.4%) developed silicosis after exposure ended (a mean of 3.7 years after). The risk of silicosis was strongly related to cumulative exposure to silica dust and was well fitted by the Weibull distribution, with the risk of silicosis less than 0.1% when the Chinese measure of cumulative exposure to total dust (CTD) was under 10 mg/m3-years (or 0.36 mg/m3-years of respirable crystalline silica), increasing to 68.7% when CTD exposure was 150 mg/m3-years (or 5.4 mg/m3-years of respirable crystalline silica). Latency period was not correlated to the risk of silicosis or cumulative dose of exposure. This study predicts about a 36% cumulative risk of silicosis for a 45 year lifetime exposure to these tin mine dusts at the CTD exposure standard of 2 mg/m3, and a 55% risk at 45 years exposure to the current United States Occupational Safety and Health Administration and Mine Safety and Health Administration standards of 0.1 mg/m3 100% respirable crystalline silica dust.
CONCLUSIONS—A clear exposure-response relation was detected for silicosis in Chinese tin miners. The study results were similar to most, but not all, findings from other large scale exposure-response studies.


  相似文献   

5.
Validations of retrospective methods of assessment used in occupational epidemiological studies have rarely been published. This study is an indirect validation of a quantitative retrospective assessment of exposure to silica used in a nested case-control study of lung cancer among workers at 29 metal mines and pottery factories in China. Indices of cumulative total dust and cumulative respirable dust were calculated by merging work histories with the historical exposure profile for each subject. To validate indirectly the methods of exposure assessment used in the study of lung cancer, trends for exposure response relation between the two indices of exposure to silica and risk of silicosis were evaluated with 376 patients with silicosis from the study population as the cases, and 1262 controls without silicosis for comparison. Age adjusted odds ratios (ORs) as a measure of risk of silicosis showed striking trends with both indices of exposure to silica. For cumulative respirable dust, the OR (95% confidence interval) rose from 7.6 (5.1-11.4) for low exposure to 20.0 (13.2-30.6) for medium exposure, and to 51.7 (31.0-86.8) for high exposure. The strength of the association between exposure to silica and risk of silicosis suggests that the retrospective assessment of exposure used in the case-control study of lung cancer would accurately reflect an exposure response relation between silica and lung cancer, if it existed.  相似文献   

6.
An analysis was conducted on a cohort of Chinese pottery workers to estimate the exposure-response relationship between respirable crystalline silica dust exposure and the incidence of radiographically diagnosed silicosis, and to estimate the long-term risk of developing silicosis until the age of 65. The cohort comprised 3,250 employees with a median follow-up duration of around 37 years. Incident cases of silicosis were identified via silicosis registries (Chinese X-ray stage I, similar to International Labor Organisation classification scheme profusion category 1/1). Individual exposure to respirable crystalline silica dust was estimated based on over 100,000 historical dust measurements. The association between dust exposure, incidence and long-time risk of silicosis was quantified by Poisson regression analysis adjusted for age and smoking. The risk of silicosis depended not only on the cumulative respirable crystalline silica dust exposures, but also on the time-dependent respirable crystalline silica dust exposure pattern (long-term average concentration, highest annual concentration ever experienced and time since first exposure). A long-term "excess" risk of silicosis of approximately 1.5/1,000 was estimated among workers with all annual respirable crystalline silica dust concentration estimates less than 0.1 mg/m(3), using the German measurement strategy. This study indicates the importance of proper consideration of exposure information in risk quantification in epidemiological studies.  相似文献   

7.
The objective of this study was to quantify the respirable dust and respirable silica exposures of roofing workers using an electric-powered circular saw with an aftermarket local exhaust ventilation attachment to cut concrete roofing tiles. The study was conducted to determine whether the local exhaust ventilation attachment was able to control respirable dust and respirable silica exposure below occupational exposure limits (OELs). Time-integrated filter samples and direct reading respirable dust concentrations were evaluated. The local exhaust ventilation consisted of a shroud attached to the cutting plane of the saw; the shroud was then connected to a small electric axial fan, which is intended to collect dust at the point of generation. All sampling was conducted with the control in use.

Roofers are defined as those individuals who only lay tiles. Cutters/roofers are defined as those workers who operate the powered saw to cut tiles and also lay tiles. Respirable dust from this evaluation ranged from 0.13 to 6.59 milligrams per cubic meter (mg/m3) with a geometric mean of 0.38 mg/m3 for roofers and from 0.45 to 3.82 mg/m3 with a geometric mean of 1.84 mg/m3 for cutters/roofers. Cutters/roofers usually handle areas close to crevices, edges, or tips of the roof whereas roofers handle areas where complete tiles can be placed. The respirable dust exposures for all cutters/roofers indicated concentrations exceeding the Occupational Safety and Health Administration's (OSHA) permissible exposure limit (PEL) for respirable dust containing silica; it was also exceeded for some of the roofers. The respirable silica concentrations ranged from 0.04 to 0.15 mg/m3 with a geometric mean of 0.09 mg/m3 for roofers, and from 0.13 to 1.21 mg/m3 with a geometric mean of 0.48 mg/m3 for cutters/roofers. As with respirable dust, the respirable silica exposures for cutters/roofers were higher than the exposures for roofers.  相似文献   


8.
To estimate the quantitative relation between exposure to respirable silica dust and risk of an attack of silicosis, 1151 workers exposed to silica dust and employed from 1958 to 1987 in a tungsten mine in China were investigated. The results showed that the ratio of respirable silica dust concentration to total silica dust concentration was 0.529. Then, the total silica dust concentration in historical surveillance and monitoring data was converted to respirable silica dust concentration. The free silica content in respirable dust determined by x ray diffraction averaged 24.7%. Multiple logistic regression was used for the dichotomous dependent variables (presence or absence of silicosis). The independent variables in the multiple logistic regression with presence of silicosis as the dependent variable were age when first exposed, tuberculosis (presence or absence), and cumulative exposure to respirable silica dust. The partial regression coefficient of individual cumulative exposure was estimated as 0.079. It implied a positive association between exposure to respirable silica dust and risk of an attack of silicosis. The exposure limit for respirable silica dust was estimated as 0.24 mg/m3 under given conditions.  相似文献   

9.
Processes associated with occupational exposure to respirable crystalline silica in the British pottery industry were investigated to develop estimates of worker exposures from 1930 to 1995.Information was derived from more than 1300 air samples, published literature and unpublished reports of dust control innovations and process changes. A matrix was developed specifically to support a mortality study of 5115 pottery workers in North Staffordshire, UK.Matrix values range from 1 mg:m2 for pottery support activities performed in the 1990s to 800 mg:m2 for firing activities in the 1930s. Although exposure estimates within decade varied, median concentrations for all process categories displayed an overall trend towards progressive reduction in exposure during the 54 year span[ Potential methods to validate the matrix as well as sources of error are discussed. © 1998 British Occupational Hygiene Society. Published by Elsevier Science Ltd.  相似文献   

10.
目的对接触矽尘的地质勘探工人的接尘水平进行定量评价.方法收集9个省地质矿产勘查局所属队(厂、矿)50年代以来各工种历年的矽尘监测资料30000个,还收集历史的和近期的其他矽尘监测资料,以及1627个研究对象的工作史.利用上述资料按队(厂、矿)、工种和年段建立了矽尘接触水平,并用呼吸性矽尘量、全肺的矽尘量和总粉尘中矽尘含量估算矽尘的接触量.结果呼吸性粉尘接触浓度平均值是3mg/m3;总粉尘浓度平均值是14mg/m3,早年是29mg/m3,近年是3mg/m3;粉尘中游离二氧化硅含量平均值是(28.0±8.2)%.结合每个研究对象的工作史和矽尘接触水平分别计算出不同的矽尘接触指数.结论这种大规模矽尘接触评价方法对历年接触矽尘的估算可为剂量-反应关系评价提供依据.  相似文献   

11.
BACKGROUND: It is hypothesized that surface occlusion by alumino-silicate affects the toxic activity of silica particles in respirable dust. In conjunction with an epidemiological investigation of silicosis disease risk in Chinese tin and tungsten mine and pottery workplaces, we analyzed respirable silica dusts using a multiple-voltage scanning electron microscopy-energy dispersive X-ray spectroscopy (MVSEM-EDS). METHODS: Forty-seven samples of respirable sized dust were collected on filters from 13 worksites and were analyzed by MVSEM-EDS using high (20 keV) and low (5 keV) electron beam accelerating voltages. Changes in the silicon-to-aluminum X-ray line intensity ratio between the two voltages are compared particle-by-particle with the 90th percentile value of the same measurements for a ground glass homogeneous control sample. This provides an index that distinguishes a silica particle that is homogeneously aluminum-contaminated from a clay-coated silica particle. RESULTS: The average sample percentages of respirable-sized silica particles alumino-silicate occlusion were: 45% for potteries, 18% for tin mines, and 13% for tungsten mines. The difference between the pottery and the metal mine worksites accounted for one third of an overall chi-square statistic for differences in change in measured silicon fraction between the samples. CONCLUSION: The companion epidemiological study found lower silicosis risk per unit cumulative respirable silica dust exposure for pottery workers compared to metal miners. Using these surface analysis results resolves differences in risk when exposure is normalized to cumulative respirable surface-available silica dust.  相似文献   

12.
To estimate the quantitative relation between exposure to respirable silica dust and risk of an attack of silicosis, 1151 workers exposed to silica dust and employed from 1958 to 1987 in a tungsten mine in China were investigated. The results showed that the ratio of respirable silica dust concentration to total silica dust concentration was 0.529. Then, the total silica dust concentration in historical surveillance and monitoring data was converted to respirable silica dust concentration. The free silica content in respirable dust determined by x ray diffraction averaged 24.7%. Multiple logistic regression was used for the dichotomous dependent variables (presence or absence of silicosis). The independent variables in the multiple logistic regression with presence of silicosis as the dependent variable were age when first exposed, tuberculosis (presence or absence), and cumulative exposure to respirable silica dust. The partial regression coefficient of individual cumulative exposure was estimated as 0.079. It implied a positive association between exposure to respirable silica dust and risk of an attack of silicosis. The exposure limit for respirable silica dust was estimated as 0.24 mg/m3 under given conditions.  相似文献   

13.
In the aftermath of Hurricane Katrina, which devastated the city of New Orleans in August 2005, restoration workers were at risk for respiratory illness from exposure to airborne particles and microbial agents. In support of an epidemiologic investigation of this risk, an exposure assessment for restoration work activities (demolition, trash & debris management, landscape restoration, sewer/waterline repair, and mold remediation) was performed from 2005 to 2012. For 2005 and 2006, Occupational Safety and Health Administration (OSHA) data (n = 730) for personal and area monitoring of total and respirable dust exposures of restoration workers were accessed and analyzed. The most significant exposures were for demolition work, with average respirable dust exposures in 2005 above the action level of 2.5 mg/m3 and 17.6% of exposures exceeding the permissible exposure limit (PEL) (5 mg/m3). Additional personal and area monitoring for thoracic particulate matter was performed from 2007 to 2012 (n = 774) and samples were assayed for endotoxin and (1→3, 1→6)-β-D-glucan (n = 202). In order to integrate the OSHA data with the later monitoring data, three independent predictive models were developed to convert total and respirable dust measures into the equivalent thoracic dust. The three models were not statistically different and the modeling results were in good agreement with an overall coefficient of variation of 16% for the thoracic dust means across work activities estimated by each of the three models. Overall, thoracic dust exposure levels decreased by about an order of magnitude within the first year after Katrina and then more gradually declined and stabilized through 2012. Estimated average exposures to endotoxin and microbial glucan in 2005 were as high as 256 EU/m3 and 118 μg/m3, respectively, and likewise were seen to decrease dramatically and stabilize after 2005. The results of this exposure assessment support previously published reports of respiratory illness including sinusitis, toxic pneumonitis, and Katrina Cough among restoration workers in the years immediately after the hurricane.  相似文献   

14.
The use of retrospective occupational hygiene data for epidemiologic studies is useful in determining exposure-outcome relationships, but the potential for exposure misclassification is high. Although dust sampling in the South African coal industry has been a legal requirement for several decades, these historical data are not readily adequate for estimating past exposures. This study describes the respirable coal mine dust levels in three South African coal mines over time. Each of the participating mining operations had well-documented dust sampling information that was used to describe historical trends in dust exposure. Investigator-collected personal dust samples were taken using standardized techniques from the face, backbye (underground jobs not at the coal face), and surface from 50 miners at each mine, repeated over three sampling cycles. Job histories and exposure information was obtained from a sample of 684 current miners and 188 ex-miners. Linear models were developed to estimate the exposure levels associated with work in each mine, exposure zone, and over time using a combination of operator-collected historical data and investigator-collected samples. The estimated levels were then combined with work history information to calculate cumulative exposure metrics for the miner cohort. The mean historical and investigator-collected respirable dust levels were within international norms and South African standards. Silica content of the dust samples was also below the 5% regulatory action level. Mean respirable dust concentrations at the face, based on investigator-collected samples, were 0.9 mg/m(3), 1.3 mg/m(3), and 1.9 mg/m(3) at Mines 1, 2, and 3, respectively. The operator-collected samples showed considerable variability across exposure zones, mines, and time, with the annual means at the face ranging from 0.4 mg/m(3) to 2.9 mg/m(3). Statistically significant findings were found between operator- and investigator-collected dust samples. Model-based arithmetic mean dust estimates at the face were 1.2 mg/m(3), 2.0 mg/m(3), and 0.9 mg/m(3) for Mines 1, 2, and 3, respectively. Using these levels, the mean cumulative exposure for the cohort was 56.8 mg-years/m(3). Current miners had a mean cumulative exposure of 66.5 mg-years/m(3), compared with ex-miners of 26.8 mg-years/m(3). Improvements in dust management or the use of different sampling equipment could account for the significant differences seen between operator- and investigator-collected data. Regression modeling for estimating mean dust levels over time using combined historical and investigator-collected data seems a reasonable method and useful in constructing models to describe cumulative exposures in a cohort of current and ex-miners.  相似文献   

15.
The aim of this study is to determine exposure levels as well as compliance status on respirable dust and respirable crystalline silica (RCS)-quartz exposure among crusher operators at Malaysian quarries. The exposure level at each crushing process was compared. Monitoring was performed among 70 crusher operators at nine quarries. Eight hours long-term personal samples were collected according to the National Institute of Occupational Safety and Health (NIOSH) Manual Analytical Method (NMAM) 0600 for respirable dust and NMAM 7500 for respirable crystalline silica (RCS-quartz). A questionnaire on silica dust monitoring and control was also sent to all granite quarries in Malaysia. The results indicated that the mean percentage of RCS-quartz in silica dust was 23.7 %. The mean value for crusher operators’ exposure was 0.426 mg m?3 for respirable dust and 0.091 mg m?3 for RCS-quartz. Around 30.5 % of crusher operators were exposed to RCS-quartz levels above the permissible exposure limit (PEL) based on Malaysian’s Occupational Safety and Health Regulations 2000. Operators in charge of combined secondary and tertiary crusher plants were exposed to 0.116 mg m?3 of RCS-quartz, which was higher compared to those operating individual plants. Results on posted questionnaire indicate that Malaysian quarries are more preferred to perform respirable dust monitoring (37 %) instead of specific RCS-quartz monitoring (22.6 %). Low exposure to respirable dust may conceal the need to justify comprehensive crystalline silica dust monitoring and lead to underestimation of RCS-quartz exposure. A high percentage of non-compliance exposure on personal RCS-quartz exposure should establish the need for quarry management to focus on better implementation of dust control systems.  相似文献   

16.
Small-scale mining in developing countries is generally labour-intensive and carried out with low levels of mechanization. In the Mererani area in the northern part of Tanzania, there are about 15000 underground miners who are constantly subjected to a poor working environment. Gemstones are found at depths down to 500 m. The objectives of this pilot study were to monitor the exposure to dust during work processes, which are typical of small-scale mining in developing countries, and to make a rough estimation of whether there is a risk of chronic pulmonary diseases for the workers. Personal sampling of respirable dust (n = 15) and 'total' dust (n = 5) was carried out during three consecutive days in one mine, which had a total of 50 workers in two shifts. Sampling started immediately before the miners entered the shaft, and lasted until they reappeared at the mine entrance after 5-8 h. The median crystalline silica content and the combustible content of the respirable dust samples were 14.2 and 5.5%, respectively. When drilling, blasting and shovelling were carried out, the exposure measurements showed high median levels of respirable dust (15.5 mg/m(3)), respirable crystalline silica (2.4 mg/m(3)), respirable combustible dust (1.5 mg/m(3)) and 'total' dust (28.4 mg/m(3)). When only shovelling and loading of sacks took place, the median exposures to respirable dust and respirable crystalline silica were 4.3 and 1.1 mg/m(3). This study shows that the exposure to respirable crystalline silica was high during underground small-scale mining. In the absence of personal protective equipment, the miners in the Mererani area are presumably at a high risk of developing chronic silicosis.  相似文献   

17.
陶工尘肺危险度及其防制措施评价   总被引:7,自引:3,他引:4  
8个陶瓷厂矿队列研究(1960.1.1 ̄1974.12.31)13476人,追访至1994年底。其中接尘工10331人,尘肺发病1179例,发病率0.45%。1960年前进厂的接尘工尘肺发病率是0.60%,1959年后进厂者为0.24%,说明50年代末期所推行的防尘措施有一定成效,但由于各厂降尘设备不完善,尘肺发病下降远不如金属钨矿和锡矿工人明显。本研究采用了定量分析,结果表明:①接尘工累积接总粉  相似文献   

18.
BACKGROUND: Dusts containing crystalline silica are generated in mining, construction, glass, granite and concrete production industries. The association between exposure to low levels of concrete dust containing crystalline silica and reduction in lung function, was evaluated in a cross-sectional study. METHODS: The study was carried out among 144 concrete workers, from two factories, with exposure assessment of respirable dust and silica by personal samplers. Results of respiratory questionnaires and standardized measurements of lung function were compared with the results in a control population. Multiple linear regression analysis was used in selecting factors that predict (age and standing height standardized residual) lung function. RESULTS: The average concentration of respirable dust in both factories was 0.8 mg/m(3) and 0.06 mg/m(3) for respirable silica. The average silica content of the dust was 9%. The average cumulative dust exposure was 7.0 mg/m(3) year and cumulative silica exposure was 0.6 mg/m(3) year. Significant associations between exposure to concrete dust and a small lung function (FEV(1)/FVC ratio, MMEF) loss were found, independent of smoking habits and of a history of allergy. CONCLUSIONS: Our results indicate that, concrete workers with chronic obstructive pulmonary symptoms and/or work-related lower respiratory symptoms are at risk of having a reduction in lung function (FEV&(1)/FVC ratio) outside the 5th percentile of the external reference population, and therefore, of mild chronic obstructive pulmonary disease, at respirable concrete dust levels below 1 mg/m(3) with a respirable crystalline silica content of 10% (TWA, 8 hr).  相似文献   

19.
In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of abrasives containing >1% silica, giving rise to abrasive substitutes like copper slag. We present results from a National Institute for Occupational Safety and Health industrial hygiene survey at a copper slag processing facility that consisted of the collection of bulk samples for metals and silica; and full-shift area and personal air samples for dust, metals, and respirable silica.

Carcinogens, suspect carcinogens, and other toxic elements were detected in all bulk samples, and area and personal air samples. Area air samples identified several areas with elevated levels of inhalable and respirable dust, and respirable silica: quality control check area (236 mg/m3 inhalable; 10.3 mg/m3 respirable; 0.430 mg/m3 silica), inside the screen house (109 mg/m3 inhalable; 13.8 mg/m3 respirable; 0.686 mg/m3 silica), under the conveyor belt leading to the screen house (19.8 mg/m3 inhalable), and inside a conveyor access shack (11.4 mg/m3 inhalable; 1.74 mg/m3 respirable; 0.067 mg/m3 silica). Overall, personal dust samples were lower than area dust samples and did not exceed published occupational exposure limits. Silica samples collected from a plant hand and a laborer exceeded the American Conference of Governmental Industrial Hygienist Threshold Limit Value of 0.025 µg/m3. All workers involved in copper slag processing (n = 5) approached or exceeded the Occupational Safety and Health Administration permissible exposure limit of 10 µg/m3 for arsenic (range: 9.12–18.0 µg/m3). Personal total dust levels were moderately correlated with personal arsenic levels (Rs = 0.70) and personal respirable dust levels were strongly correlated with respirable silica levels (Rs = 0.89).

We identified multiple areas with elevated levels of dust, respirable silica, and metals that may have implications for personal exposure at other facilities if preventive measures are not taken. To our knowledge, this is the first attempt to characterize exposures associated with copper slag processing. More in-depth air monitoring and health surveillance is needed to understand occupational exposures and health outcomes in this industry.  相似文献   


20.
Objective The role of silica in the causation of lung cancer is an ongoing debate. In order to explore whether observed association between silica exposure and lung cancer is confounded by exposure to other occupational carcinogens, we updated a previously nested case-control study among a cohort of male workers in 29 Chinese mines and factories on the basis of an extended follow-up. Methods Five hundred and eleven lung cancer cases and 1,879 matched controls were selected. Exposure to respirable silica as well as relevant occupational confounders were quantitatively assessed based on historical industrial hygiene data. The relationship between exposure to silica and lung cancer was analyzed by conditional logistic regression analysis adjusted for exposure to arsenic, polycyclic aromatic hydrocarbons (PAHs), radon, and smoking. Results In a crude analysis adjusted for smoking only, a significant trend of increasing risk of lung cancer with exposure to silica was found for tin, iron/copper miners, and pottery workers. But after adjustment for relevant occupational confounders, no relationship between silica and lung cancer can be observed. Instead, there is a significant association between lung cancer mortality and cumulative exposure to inorganic arsenic (OR = 1.86, 95% CI: 1.14, 3.04 for each mg/m3-year increase) and carcinogenic PAHs (OR = 1.35, 95% CI: 1.08, 1.69 for each 100 μg/m3-year increase). Conclusion This analysis does not provide any evidence to show that exposure to silica causes lung cancer in the absence of confounding factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号