共查询到20条相似文献,搜索用时 10 毫秒
1.
Daniel P. Walsh Ting Fung Ma Hon S. Ip Jun Zhu 《Transboundary and Emerging Diseases》2019,66(6):2537-2545
Influenza A viruses are one of the most significant viral groups globally with substantial impacts on human, domestic animal and wildlife health. Wild birds are the natural reservoirs for these viruses, and active surveillance within wild bird populations provides critical information about viral evolution forming the basis of risk assessments and countermeasure development. Unfortunately, active surveillance programs are often resource‐intensive, and thus, enhancing programs for increased efficiency is paramount. Machine learning, a branch of artificial intelligence applications, provides statistical learning procedures that can be used to gain novel insights into disease surveillance systems. We use a form of machine learning, gradient boosted trees, to estimate the probability of isolating avian influenza viruses (AIV) from wild bird samples collected during surveillance for AIVs from 2006 to 2011 in the United States. We examined several predictive features including age, sex, bird type, geographic location and matrix gene rRT‐PCR results. Our final model had high predictive power and only included geographic location and rRT‐PCR results as important predictors. The highest predicted viral isolation probability was for samples collected from the north‐central states and the south‐eastern region of Alaska. Lower rRT‐PCR Ct‐values are associated with increased likelihood of AIV isolation, and the model estimated 16% probability of isolating AIV from samples declared negative (i.e., ≥35 Ct‐value) using the rRT‐PCR screening test and standard protocols. Our model can be used to prioritize previously collected samples for isolation and rapidly evaluate AIV surveillance designs to maximize the probability of viral isolation given limited resources and laboratory capacity. 相似文献
2.
《Transboundary and Emerging Diseases》2018,65(4):1110-1116
Three subtypes—H1N1, H1N2 and H3N2—of influenza A viruses of swine (IAV s‐S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAV s‐S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria‐Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian‐like H1N2 IAV s‐S that contained avian‐origin H1 and human‐like N2 genes, and were particularly closely related to those of IAV s‐S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAV s‐S are reassortants between European H1N2 IAV s‐S and human A(H1N1)pdm09v. The appearance of European avian‐like H1N2 IAV s‐S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian‐like H1N2 IAV s‐S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAV s‐S. 相似文献
3.
Karren Prost Harold Kloeze Shamir Mukhi Katie Bozek Zvonimir Poljak Samira Mubareka 《Transboundary and Emerging Diseases》2019,66(3):1210-1217
Influenza A virus in swine is of significant importance to human and veterinary public health. Environmental sampling techniques that prove practical would enhance surveillance for influenza viruses in swine. The primary objective of this study was to demonstrate the feasibility of bioaerosol and surface sampling for the detection of influenza virus in swine barns with a secondary objective of piloting a mobile application for data collection. Sampling was conducted at a large swine operation between July 2016 and August 2017. Swine oral fluids and surface swabs were collected from multiple rooms. Room‐level air samples were collected using four bioaerosol samplers: a low volume polytetrafluoroethylene (PTFE) filter sampler, the National Institute for Occupational Safety and Health's low volume cyclone sampler, a 2‐stage Andersen impactor and/or one high volume cyclonic sampler. Samples were analysed using quantitative RT‐PCR. Data and results were reported using a mobile data application. Eighty‐nine composite oral fluid samples, 70 surface swabs and 122 bioaerosol samples were analysed. Detection rates for influenza virus RNA in swine barn samples were 71.1% for oral fluids, 70.8% for surface swabs and 71.1% for the PTFE sampler. Analysis revealed a statistically significant relationship between the results of the PTFE sampler and the surface swabs with oral fluid results (p < 0.001 and p < 0.01 respectively). In addition, both the PTFE sampler (p < 0.01) and surface swabs (p = 0.03) significantly correlated with, and predicted oral fluid results. Bioaerosol sampling using PTFE samplers is an effective hands‐off approach for detecting influenza virus activity among swine. Further study is required for the implementation of this approach for surveillance and risk assessment of circulating influenza viruses of swine origin. In addition, mobile data collection stands to be an invaluable tool in the field by allowing secure, real‐time reporting of sample collection and results. 相似文献
4.
Madeline M. McCuen Maurice E. Pitesky Jeffrey J. Buler Sarai Acosta Alexander H. Wilcox Ronald F. Bond Samuel L. Díaz‐Muoz 《Transboundary and Emerging Diseases》2021,68(1):98-109
Migratory waterfowl, including geese and ducks, are indicated as the primary reservoir of avian influenza viruses (AIv) which can be subsequently spread to commercial poultry. The US Department of Agriculture's (USDA) surveillance efforts of waterfowl for AIv have been largely discontinued in the contiguous United States. Consequently, the use of technologies to identify areas of high waterfowl density and detect the presence of AIv in habitat such as wetlands has become imperative. Here we identified two high waterfowl density areas in California using processed NEXt generation RADar (NEXRAD) and collected water samples to test the efficacy of two tangential flow ultrafiltration methods and two nucleic acid based AIv detection assays. Whole‐segment amplification and long‐read sequencing yielded more positive samples than standard M‐segment qPCR methods (57.6% versus 3.0%, p < .0001). We determined that this difference in positivity was due to mismatches in published primers to our samples and that these mismatches would result in failing to detect in the vast majority of currently sequenced AIv genomes in public databases. The whole segment sequences were subsequently used to provide subtype and potential host information of the AIv environmental reservoir. There was no statistically significant difference in sequencing reads recovered from the RexeedTM filtration compared to the unfiltered surface water. This overall approach combining remote sensing, filtration and sequencing provides a novel and potentially more effective, surveillance approach for AIv. 相似文献
5.
《Transboundary and Emerging Diseases》2018,65(2):465-475
The transportation of poultry and related products for international trade contributes to transboundary pathogen spread and disease outbreaks worldwide. To prevent pathogen incursion through poultry products, many countries have regulations about animal health and poultry product quarantine. However, in Japan, animal products have been illegally introduced into the country in baggage and confiscated at the airport. Lately, the number of illegally imported poultry and the incursion risk of transboundary pathogens through poultry products have been increasing. In this study, we isolated avian influenza viruses (AIV s) from raw poultry products illegally imported to Japan by international passengers. Highly (H5N1 and H5N6) and low (H9N2 and H1N2) pathogenic AIV s were isolated from raw chicken and duck products carried by flight passengers. H5 and H9 isolates were phylogenetically closely related to viruses isolated from poultry in China, and haemagglutinin genes of H5N1 and H5N6 isolates belonged to clades 2.3.2.1c and 2.3.4.4, respectively. Experimental infections of H5 and H9 isolates in chickens and ducks demonstrated pathogenicity and tissue tropism to skeletal muscles. To prevent virus incursion by poultry products, it is important to encourage the phased cleaning based on the disease control and eradication and promote the reduction in contamination risk in animal products. 相似文献
6.
《Transboundary and Emerging Diseases》2018,65(4):1033-1038
Wild dabbling ducks are the main reservoir for avian influenza (AI ) viruses and pose an ongoing threat to commercial poultry flocks. Combining the (i) size of that population, (ii) their flight distances and (iii) their AI prevalence, the density of AI ‐infected dabbling ducks (DID ) was calculated as a risk factor for the introduction of AI viruses into poultry holdings of Emilia‐Romagna region, Northern Italy. Data on 747 poultry holdings and on 39 AI primary outbreaks notified in Emilia‐Romagna between 2000 and 2017 were used to validate that risk factor. A multivariable Bayesian logistic regression was performed to assess whether DID could be associated with the occurrence of AI primary outbreaks. DID value, being an outdoor flock, hobby poultry trading, species reared, length of cycle and flock size were used as explanatory variables. Being an outdoor poultry flock was significantly associated with a higher risk of AI outbreak occurrence. The probability of DID to be a risk factor for AI virus introduction was estimated to be 90%. A DID cut‐off of 0.23 was identified to define high‐risk areas for AI virus introduction. Using this value, the high‐risk area covers 43% of the region. Seventy‐four per cent of the primary AI outbreaks have occurred in that area, containing 39% of the regional poultry holdings. Poultry holdings located in areas with a high DID value should be included in a risk‐based surveillance programme aimed at AI early detection. 相似文献
7.
Jung‐Hoon Kwon Justin Bahl David E. Swayne Yu‐Na Lee Youn‐Jeong Lee Chang‐Seon Song Dong‐Hun Lee 《Transboundary and Emerging Diseases》2020,67(2):844-851
The H5N8 highly pathogenic avian influenza viruses (HPAIVs) belonging to clade 2.3.4.4 spread from Eastern China to Korea in 2014 and caused outbreaks in domestic poultry until 2016. To understand how H5N8 HPAIVs spread at host species level in Korea during 2014–2016, a Bayesian phylogenetic analysis was used for ancestral state reconstruction and estimation of the host transition dynamics between wild waterfowl, domestic ducks and chickens. Our data support that H5N8 HPAIV most likely transmitted from wild waterfowl to domestic ducks, and then maintained in domestic ducks followed by dispersal of HPAIV from domestic ducks to chickens, suggesting domestic duck population plays a central role in the maintenance, amplification and spread of wild HPAIV to terrestrial poultry in Korea. 相似文献
8.
Manuel Saavedra‐Montaez Luis Vaca Humberto Ramírez‐Mendoza Carmen Gaitn‐Peredo Rebeca Bautista‐Martínez Ren Segura‐Velzquez Jacquelynne Cervantes‐Torres Jos Ivan Snchez‐Betancourt 《Transboundary and Emerging Diseases》2019,66(1):186-194
Swine influenza is a worldwide disease, which causes damage to the respiratory system of pigs. The H1N1 and H3N2 subtypes circulate mainly in the swine population of Mexico. There is evidence that new subtypes of influenza virus have evolved genetically and have been rearranged with human viruses and from other species; therefore, the aim of our study was to identify and characterize the genetic changes that have been generated in the different subtypes of the swine influenza virus in Mexican pigs. By sequencing and analyzing phylogenetically the eight segments that form the virus genome, the following subtypes were identified: H1N1, H3N2, H1N2 and H5N2; of which, a H1N1 subtype had a high genetic relationship with the human influenza virus. In addition, a H1N2 subtype related to the porcine H1N2 virus reported in the United States was identified, as well as, two other viruses of avian origin from the H5N2 subtype. Particularly for the H5N2 subtype, this is the first time that its presence has been reported in Mexican pigs. The analysis of these sequences demonstrates that in the swine population of Mexico, circulate viruses that have suffered punctual‐specific mutations and rearrangements of their proteins with different subtypes, which have successfully adapted to the Mexican swine population. 相似文献
9.
Yulei Li Minghui Li Jingman Tian Yaping Zhang Xiaoli Bai Xiaoliang Wang Jianzhong Shi Yumei Wang Long Ma Cen Yang Yanbing Li 《Transboundary and Emerging Diseases》2020,67(4):1677-1687
The first documented avian influenza virus subtype H16N3 was isolated in 1975 and is currently detectable in many countries worldwide. However, the prevalence, biological characteristics and threat to humans of the avian influenza virus H16N3 subtype in China remain poorly understood. We performed avian influenza surveillance in major wild bird gatherings across the country from 2017 to 2019, resulting in the isolation of two H16N3 subtype influenza viruses. Phylogenetic analysis showed these viruses belong to the Eurasian lineage, and both viruses presented the characteristics of inter‐species reassortment. In addition, the two viruses exhibited limited growth capacity in MDCK and A549 cells. Receptor‐binding assays indicated that the two H16N3 viruses presented dual receptor‐binding profiles, being able to bind to both human and avian‐type receptors, where GBHG/NX/2/2018(H16N3) preferentially bound the avian‐type receptor, while GBHG/NX/1/2018(H16N3) showed greater binding to the human‐type receptor, even the mice virulence data showed the negative results. Segments from other species have been introduced into the H16N3 avian influenza virus, which may alter its pathogenicity and host tropism, potentially posing a threat to animal and human health in the future. Consequently, it is necessary to increase monitoring of the emergence and spread of avian influenza subtype H16N3 in wild birds. 相似文献
10.
Jose L. Gonzales Sylvia Pritz‐Verschuren Ruth Bouwstra Jeanine Wiegel Armin R. W. Elbers Nancy Beerens 《Transboundary and Emerging Diseases》2021,68(1):127-136
Poultry can become infected with avian influenza viruses (AIV) via (in) direct contact with infected wild birds. Free‐range chicken farms in the Netherlands were shown to have a higher risk for introduction of low pathogenic avian influenza (LPAI) virus than indoor chicken farms. Therefore, during outbreaks of highly pathogenic avian influenza (HPAI), free‐range layers are confined indoors as a risk mitigation measure. In this study, we characterized the seasonal patterns of AIV introductions into free‐range layer farms, to determine the high‐risk period. Data from the LPAI serological surveillance programme for the period 2013–2016 were used to first estimate the time of virus introduction into affected farms and then assess seasonal patterns in the risk of introduction. Time of introduction was estimated by fitting a mathematical model to seroprevalence data collected longitudinally from infected farms. For the period 2015–2016, longitudinal follow‐up included monthly collections of eggs for serological testing from a cohort of 261 farms. Information on the time of introduction was then used to estimate the monthly incidence and seasonality by fitting harmonic and Poisson regression models. A significant yearly seasonal risk of introduction that lasted around 4 months (November to February) was identified with the highest risk observed in January. The risk for introduction of LPAI viruses in this period was on average four times significantly higher than the period of low risk around the summer months. Although the data for HPAI infections were limited in the period 2014–2018, a similar risk period for introduction of HPAI viruses was observed. The results of this study can be used to optimize risk‐based surveillance and inform decisions on timing and duration of indoor confinement when HPAI viruses are known to circulate in the wild bird population. 相似文献
11.
12.
Alison E. Hillman Richard P. Smith Nicole Batey Kristien L. Verheyen Maria Pittman Ian H. Brown Andrew C. Breed 《Transboundary and Emerging Diseases》2020,67(2):592-603
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk‐based sampling approach in recent years; however, quantitative measures of relative risk associated with risk factors utilized in this approach are necessary for optimization. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the ‘other’ poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying‐hen holdings. Amongst laying‐hen holdings, free‐range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected ‘hotspots’ for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free‐range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk‐based surveillance strategies and prioritizing management strategies in influenza A outbreaks. 相似文献
13.
C. K. Goodell J. Prickett A. Kittawornrat J. Johnson J. Zhang C. Wang J. J. Zimmerman 《Transboundary and Emerging Diseases》2016,63(1):24-35
Increased surveillance of influenza A virus (IAV) infections in human and swine populations is mandated by public health and animal health concerns. Antibody assays have proven useful in previous surveillance programmes because antibodies provide a record of prior exposure and the technology is inexpensive. The objective of this research was to compare the performance of influenza serum antibody assays using samples collected from pigs (vaccinated or unvaccinated) inoculated with either A/Swine/OH/511445/2007 γ H1N1 virus or A/Swine/Illinois/02907/2009 Cluster IV H3N2 virus and followed for 42 days. Weekly serum samples were tested for anti‐IAV antibodies using homologous and heterologous haemagglutination‐inhibition (HI) assays, commercial swine influenza H1N1 and H3N2 indirect ELISAs, and a commercial influenza nucleoprotein (NP)‐blocking ELISA. The homologous HIs showed 100% diagnostic sensitivity, but largely failed to detect infection with the heterologous virus. With diagnostic sensitivities of 1.4% and 4.9%, respectively, the H1N1 and H3N2 indirect ELISAs were ineffective at detecting IAV antibodies in swine infected with the contemporary influenza viruses used in the study. At a cut‐off of S/N ≤ 0.60, the sensitivity and specificity of the NP‐blocking ELISA were estimated at 95.5% and 99.6%, respectively. Statistically significant factors which affected S/N results include vaccination status, inoculum (virus subtype), day post‐inoculation and the interactions between those factors (P < 0.0001). Serum antibodies against NP provide an ideal universal diagnostic screening target and could provide a cost‐effective approach for the detection and surveillance of IAV infections in swine populations. 相似文献
14.
Akinlolu Jegede Qigao Fu Min Lin Ashok Kumar Jiewen Guan 《Transboundary and Emerging Diseases》2019,66(1):435-444
To assess the impact of different routes of inoculation on experimental infection of avian influenza (AI) viruses in chickens, this study compared virus replication and cytokine gene expression in respiratory and gastrointestinal organ tissues of chickens, which were inoculated with four low pathogenic subtypes, H6N1, H10N7, H10N8, and H13N6 AI viruses via the aerosol, intranasal, and oral routes respectively. Aerosol inoculation with the H6N1, H10N7, and H10N8 viruses significantly increased viral titres and upregulated the interferon (IFN)‐γ, interleukin (IL)‐6, and IL‐1β genes in the trachea and lung tissues compared to intranasal or oral inoculation. Furthermore, one or two out of six chickens died following exposure to aerosolized H6N1 or H10N8 virus respectively. The H13N6 virus reached the lung via aerosol inoculation although failed to establish infection. Collectively, chickens were more susceptible to aerosolized AI viruses compared to intranasal or oral inoculation, and virus aerosols might post a significant threat to poultry health. 相似文献
15.
Makoto Ozawa Aya Matsuu Ahmed Magdy Khalil Natsuko Nishi Kaori Tokorozaki Tatsunori Masatani Masayuki Horie Kosuke Okuya Kosei Ueno Masakazu Kuwahara Shigehisa Toda 《Transboundary and Emerging Diseases》2019,66(2):797-806
During the 2016–2017 winter season, we isolated 33 highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype and three low pathogenic avian influenza viruses (LPAIVs) from debilitated or dead wild birds, duck faeces, and environmental water samples collected in the Izumi plain, an overwintering site for migratory birds in Japan. Genetic analyses of the H5N6 HPAIV isolates revealed previously unreported phylogenetic variations in the PB2, PB1, PA, and NS gene segments and allowed us to propose two novel genotypes for the contemporary H5N6 HPAIVs. In addition, analysis of the four gene segments identified close phylogenetic relationships between our three LPAIV isolates and the contemporary H5N6 HPAIV isolates. Our results implied the co‐circulation and co‐evolution of HPAIVs and LPAIVs within the same wild bird populations, thereby highlighting the importance of avian influenza surveillance targeting not only for HPAIVs but also for LPAIVs. 相似文献
16.
Xuyong Li Pengfei Cui Xianying Zeng Yongping Jiang Yubao Li Jiaxin Yang Yudi Pan Xinxin Gao Conghui Zhao Jinhui Wang Kai Wang Guohua Deng Jing Guo 《Transboundary and Emerging Diseases》2019,66(6):2605-2610
Wild and domestic aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). All subtypes of AIVs, including 16 hemagglutinin (HA) and nine neuraminidase (NA), have been isolated from the waterfowls. The H5 viruses in wild birds display distinct biological differences from their highly pathogenic H5 counterparts. Here, we isolated seven H5N3 AIVs including three from wild birds and four from domestic ducks in China from 2015 to 2018. The isolation sites of all the seven viruses were located in the region of the East Asian‐Australasian Migratory Flyway. Phylogenetic analysis indicated that the surface genes of these viruses originated from the wild bird H5 HA subtype and the N3 Eurasian lineage. The internal genes of the seven H5N3 isolates are derived from the five gene donors isolated from the wild birds or ducks in Eastern‐Asia region. They were also divided into five genotypes according to their surface genes and internal gene combinations. Interestingly, two of the seven H5N3 viruses contributed their partial internal gene segments (PB1, M and NS) to the newly emerged H7N4 reassortants, which have caused first human H7N4 infection in China in 2018. Moreover, we found that the H5N3 virus used in this study react with the anti‐serum of the H5 subtype vaccine isolate (Re‐11 and Re‐12) and reacted well with the Re‐12 anti‐serum. Our findings suggest that worldwide intensive surveillance and the H5 vaccination (Re‐11 and Re‐12) in domestic ducks are needed to monitor the emergence of novel H5N3 reassortants in wild birds and domestic ducks and to prevent H5N3 viruses transmission from the apparently healthy wild birds and domestic ducks to chickens. 相似文献
17.
Ye Ge Qiucheng Yao Xianfu Wang Hongliang Chai Guohua Deng Hualan Chen Yuping Hua 《Transboundary and Emerging Diseases》2019,66(3):1142-1157
Human infectious avian influenza virus (AIV) H7N9 emerged in China in 2013. The N9 gene of H7N9, which has the ability to cause death in humans, originated from an H11N9 influenza strain circulating in wild birds. To investigate the frequency and distribution of the N9 gene of the H11N9 and H7N9 influenza virus circulating in wild birds between 2006 and 2015, 35,604 samples were collected and tested. No H7N9 but four strains of the H11N9 subtype AIV were isolated, and phylogenetic analyses showed that the four H11N9 viruses were intra‐subtype and inter‐subtype reassortant viruses. A sequence analysis revealed that all six internal genes of A/wild bird/Anhui/L306/2014 (H11N9) originated from an H9N2 AIV isolated in Korea. The H9N2 strain, which is an inner gene donor reassorted with other subtypes, is a potential threat to poultry and even humans. It is necessary to increase monitoring of the emergence and spread of H11N9 AIV in wild birds. 相似文献
18.
Scott M. Reid Ruth Manvell James M. Seekings Vanessa Ceeraz Helen Errington Chad M. Fuller Wendy M. Shell Steve Essen Anita Puranik Ian H. Brown Richard M. Irvine 《Transboundary and Emerging Diseases》2019,66(2):696-704
A detailed veterinary and laboratory investigation revealed an unusual case of concurrent avian avulavirus type 1 (AAvV‐1, formerly called avian paramyxovirus type 1) and low pathogenicity avian influenza (LPAI) virus infections of chickens during March 2010 in a mixed poultry and livestock farm in Great Britain. Respiratory signs and daily mortality of 5–6 birds in a broiler flock 8‐weeks of age prompted submission of two carcasses to an Animal and Plant Health Agency (APHA) regional laboratory. Infectious bronchitis virus infection was suspected initially and virus isolation in SPF embryonated fowls’ eggs was attempted at APHA‐Weybridge. Avirulent AAvV‐1 was detected in the first sampling. Both in vitro nucleotide sequencing of the fusion gene and in vivo pathotyping by intracerebral pathogenicity index revealed an avirulent AAvV‐1 not definitively ascribed to licensed vaccine. Upon initial detection of the AAvV‐1 virus, statutory restrictions were placed on the farm, an official veterinary visit was performed and further samples were submitted to APHA‐Weybridge for official statutory disease investigation. An H2N3 LPAI virus was subsequently isolated from tissue samples and swabs submitted from the follow‐up statutory investigation. The subtype was confirmed by haemagglutination inhibition test (HAIT) and neuraminidase inhibition (NI) tests on egg‐amplified virus. As neither virus was notifiable according to the internationally recognized EU and OIE standards, and/or definitions of disease, statutory farm restrictions were lifted. Veterinary investigations identified the broiler flock to be free‐range, next to a river and duck pen, reinforcing the suspicion of wild bird origin for both viruses which may have been co‐circulating in ducks. It could not, however, be established as to whether there were separate introductions of the two viruses or whether there had been a single co‐introduction of the viruses. The described case highlights the value of integrated surveillance and laboratory approaches, including veterinary field investigations, international standards and definitions of notifiable avian disease, validated RRT‐PCR assays, and virus isolation in achieving rapid and accurate diagnostic results. 相似文献
19.
Grace Hood Xavier Roche Aurlie Brioudes Sophie von Dobschuetz Folorunso Oludayo Fasina Wantanee Kalpravidh Yilma Makonnen Juan Lubroth Leslie Sims 《Transboundary and Emerging Diseases》2021,68(1):110-126
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost‐effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non‐invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species‐specific or information on the source of virus, and taxonomic‐level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies. 相似文献
20.
《Transboundary and Emerging Diseases》2018,65(5):1217-1226
Circulation of highly pathogenic avian influenza (HPAI ) viruses poses a continuous threat to animal and public health. After the 2005–2006 H5N1 and the 2014–2015 H5N8 epidemics, another H5N8 is currently affecting Europe. Up to August 2017, 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries have been reported, the largest epidemic by a HPAI virus in the continent. Here, the main epidemiological findings are described. While some similarities with previous HPAI virus epidemics were observed, for example in the pattern of emergence, significant differences were also patent, in particular the size and extent of the epidemic. Even though no human infections have been reported to date, the fact that A/H5N8 has affected so far 1,112 domestic holdings, increases the risk of exposure of humans and therefore represents a concern. Understanding the epidemiology of HPAI viruses is essential for the planning future surveillance and control activities. 相似文献