首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The H5N8 highly pathogenic avian influenza viruses (HPAIVs) belonging to clade 2.3.4.4 spread from Eastern China to Korea in 2014 and caused outbreaks in domestic poultry until 2016. To understand how H5N8 HPAIVs spread at host species level in Korea during 2014–2016, a Bayesian phylogenetic analysis was used for ancestral state reconstruction and estimation of the host transition dynamics between wild waterfowl, domestic ducks and chickens. Our data support that H5N8 HPAIV most likely transmitted from wild waterfowl to domestic ducks, and then maintained in domestic ducks followed by dispersal of HPAIV from domestic ducks to chickens, suggesting domestic duck population plays a central role in the maintenance, amplification and spread of wild HPAIV to terrestrial poultry in Korea.  相似文献   

2.
Outbreaks of highly pathogenic avian influenza (HPAI ) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI . Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata ). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross‐challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8‐infected ducks than in H5N6‐infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds.  相似文献   

3.
4.
Avian influenza H7N9 viruses have caused five epidemic waves of human infections since the first human cases were reported in 2013. In 2016, the initial low pathogenic avian influenza (LPAI) H7N9 viruses became highly pathogenic, acquiring multi‐basic amino acids at the haemagglutinin cleavage site. These highly pathogenic avian influenza (HPAI) H7N9 viruses have been detected in poultry and humans in China, causing concerns of a serious threat to global public health. In Japan, both HPAI and LPAI H7N9 viruses were isolated from duck meat products carried illegally and relinquished voluntarily at the border by passengers on flights from China to Japan between 2016 and 2017. Some of the LPAI and HPAI H7N9 viruses detected at the border in Japan were characterized previously in chickens and ducks; however, their pathogenicity and replicative ability in mammals remain unknown. In this study, we assessed the biological features of two HPAI H7N9 virus isolates [A/duck/Japan/AQ‐HE29‐22/2017 (HE29‐22) and A/duck/Japan/AQ‐HE29‐52/2017 (HE29‐52); both of these viruses were isolated from duck meat at the border)] and an LPAI H7N9 virus isolate [A/duck/Japan/AQ‐HE28‐3/2016 (HE28‐3)] in mice and ferrets. In mice, HE29‐52 was more pathogenic than HE29‐22 and HE28‐3. In ferrets, the two HPAI virus isolates replicated more efficiently in the lower respiratory tract of the animals than did the LPAI virus isolate. Our results indicate that HPAI H7N9 viruses with the potential to cause severe diseases in mammals have been illegally introduced to Japan.  相似文献   

5.
In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg‐producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.  相似文献   

6.
In July 2016, an avian influenza outbreak in duck farms in Yogyakarta province was reported to Disease Investigation Center (DIC), Wates, Indonesia, with approximately 1,000 ducks died or culled. In this study, two avian influenza (AI) virus subtypes, A/duck/Bantul/04161291‐OR/2016 (H5N1) and A/duck/Bantul/04161291‐OP/2016 (H9N2) isolated from ducks in the same farm during an AI outbreak in Bantul district, Yogyakarta province, were sequenced and characterized. Our results showed that H5N1 virus was closely related to the highly pathogenic AI (HPAI) H5N1 of clade 2.3.2.1c, while the H9N2 virus was clustered with LPAI viruses from China, Vietnam and Indonesia H9N2 (CVI lineage). Genetic analysis revealed virulence characteristics for both in avian and in mammalian species. In summary, co‐circulation of HPAI‐H5N1 of clade 2.3.2.1c and LPAI‐H9N2 was identified in a duck farm during an AI outbreak in Yogyakarta province, Indonesia. Our findings raise a concern of the potential risk of the viruses, which could increase viral transmission and/or threat to human health. Routine surveillance of avian influenza viruses should be continuously conducted to understand the dynamic and diversity of the viruses for influenza prevention and control in Indonesia and SEA region.  相似文献   

7.
Since 2014, H5 highly pathogenic avian influenza viruses (HPAIVs) from clade 2.3.4.4 have been persistently circulating in Southern China. This has caused huge losses in the poultry industry. In this study, we analysed the genetic characteristics of seven H5N6 HPAIVs of clade 2.3.4.4 that infected birds in Southern China in 2016. Phylogenetic analysis grouped the HA, PB2, PA, M and NS genes as MIX‐like, and the NA genes grouped into the Eurasian lineage. The PB1 genes of the GS24, GS25, CK46 and GS74 strains belonged to the VN 2014‐like group and the others were grouped as MIX‐like. The NP genes of GS24 and GS25 strains belonged to the ZJ‐like group, but the others were MIX‐like. Thus, these viruses came from different genotypes, and the GS24, GS25, CK46 and GS74 strains displayed genotype recombination. Additionally, our results showed that the mean death time of all chickens inoculated with 105 EID50 of CK46 or GS74 viruses was 3 and 3.38 days, respectively. The viruses replicated at high titers in all tested tissues of the inoculated chickens. They also replicated in all tested tissues of naive contact chickens, but their replication titers in some tissues were significantly different (p < 0.05). Thus, the viruses displayed high pathogenicity and variable transmission in chickens. Therefore, it is necessary to focus on the pathogenic variation and molecular evolution of H5N6 HPAIVs in order to prevent and control avian influenza in China.  相似文献   

8.
The wide geographic spread of Eurasian Goose/Guangdong lineage highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses by wild birds is of great concern. In December 2014, an H5N8 HPAI clade 2.3.4.4 Group A (2.3.4.4A) virus was introduced to North America. Long‐distance migratory wild aquatic birds between East Asia and North America, such as Northern Pintail (Anas acuta ), were strongly suspected of being a source of intercontinental transmission. In this study, we evaluated the pathogenicity, infectivity and transmissibility of an H5N8 HPAI clade 2.3.4.4A virus in Northern Pintails and compared the results to that of an H5N1 HPAI clade 2.3.2.1 virus. All of Northern Pintails infected with either H5N1 or H5N8 virus lacked clinical signs and mortality, but the H5N8 clade 2.3.4.4 virus was more efficient at replicating within and transmitting between Northern Pintails than the H5N1 clade 2.3.2.1 virus. The H5N8‐infected birds shed high titre of viruses from oropharynx and cloaca, which in the field supported virus transmission and spread. This study highlights the role of wild waterfowl in the intercontinental spread of some HPAI viruses. Migratory aquatic birds should be carefully monitored for the early detection of H5 clade 2.3.4.4 and other HPAI viruses.  相似文献   

9.
Since 2013, H5N6 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for outbreaks in poultry and wild birds around Asia. H5N6 HPAIV is also a public concern due to sporadic human infections being reported in China. In the current study, we isolated an H5N6 HPAIV strain (A/Muscovy duck/Long An/AI470/2018; AI470) from an outbreak at a Muscovy duck farm in Long An Province in Southern Vietnam in July 2018 and genetically characterized it. Basic Local Alignment Search Tool (BLAST) analysis revealed that the eight genomic segments of AI470 were most closely related (99.6%–99.9%) to A/common gull/Saratov/1676/2018 (H5N6), which was isolated in October 2018 in Russia. Furthermore, AI470 also shared 99.4%–99.9% homology with A/Guangxi/32797/2018, an H5N6 HPAIV strain that infected humans in China in 2018. Phylogenetic analyses of the entire genome showed that AI470 was directly derived from H5N6 HPAIVs that were in South China from 2015 to 2018 and clustered with four H5N6 HPAIV strains of human origin in South China from 2017 to 2018. This indicated that AI470 was introduced into Vietnam from China. In addition, molecular characteristics related to mammalian adaptation among the recent human H5N6 HPAIV viruses, except PB2 E627K, were shared by AI470. These findings are cause for concern since H5N6 HPAIV strains that possess a risk of human infection have crossed the Chinese border.  相似文献   

10.
The transportation of poultry and related products for international trade contributes to transboundary pathogen spread and disease outbreaks worldwide. To prevent pathogen incursion through poultry products, many countries have regulations about animal health and poultry product quarantine. However, in Japan, animal products have been illegally introduced into the country in baggage and confiscated at the airport. Lately, the number of illegally imported poultry and the incursion risk of transboundary pathogens through poultry products have been increasing. In this study, we isolated avian influenza viruses (AIV s) from raw poultry products illegally imported to Japan by international passengers. Highly (H5N1 and H5N6) and low (H9N2 and H1N2) pathogenic AIV s were isolated from raw chicken and duck products carried by flight passengers. H5 and H9 isolates were phylogenetically closely related to viruses isolated from poultry in China, and haemagglutinin genes of H5N1 and H5N6 isolates belonged to clades 2.3.2.1c and 2.3.4.4, respectively. Experimental infections of H5 and H9 isolates in chickens and ducks demonstrated pathogenicity and tissue tropism to skeletal muscles. To prevent virus incursion by poultry products, it is important to encourage the phased cleaning based on the disease control and eradication and promote the reduction in contamination risk in animal products.  相似文献   

11.
In the Netherlands, three commercial poultry farms and two hobby holdings were infected with highly pathogenic avian influenza (HPAI) H5N6 virus in the winter of 2017–2018. This H5N6 virus is a reassortant of HPAI H5N8 clade 2.3.4.4 group B viruses detected in Eurasia in 2016. H5N6 viruses were also detected in several dead wild birds during the winter. However, wild bird mortality was limited compared to the caused by the H5N8 group B virus in 2016–2017. H5N6 virus was not detected in wild birds after March, but in late summer infected wild birds were found again. In this study, the complete genome sequences of poultry and wild bird viruses were determined to study their genetic relationship. Genetic analysis showed that the outbreaks in poultry were not the result of farm‐to‐farm transmissions, but rather resulted from separate introductions from wild birds. Wild birds infected with viruses related to the first outbreak in poultry were found at short distances from the farm, within a short time frame. However, no wild bird viruses related to outbreaks 2 and 3 were detected. The H5N6 virus isolated in summer shares a common ancestor with the virus detected in outbreak 1. This suggests long‐term circulation of H5N6 virus in the local wild bird population. In addition, the pathogenicity of H5N6 virus in ducks was determined, and compared to that of H5N8 viruses detected in 2014 and 2016. A similar high pathogenicity was measured for H5N6 and H5N8 group B viruses, suggesting that biological or ecological factors in the wild bird population may have affected the mortality rates during the H5N6 epidemic. These observations suggest different infection dynamics for the H5N6 and H5N8 group B viruses in the wild bird population.  相似文献   

12.
In winter 2016, a fatal disease outbreak suspected to be duck virus enteritis (DVE) stroke over a million ducklings in 10 white Pekin and Muscovy ducks flocks in Dakahlia and Gharbia Governorates, Egypt, causing heavy economic losses. The disease quickly killed 20%–60% of affected farms. The clinical signs were inappetence, ataxia, crowding in corners, partially closed eye lids and blue beaks. Post mortem examination revealed white necrotic foci in liver, mottled spleen and sometimes cecal core. A total of 10 intestines, livers and spleens samples were collected from diseased flocks. Each sample was pooled randomly from eight to ten ducklings. Polymerase chain reaction (PCR) and histopathological examination were utilized for DEV identification in collected samples. Nucleotides sequences of the amplified DNA polymerase gene were compared with the other DEVs available on GeneBank. Also, existence of co‐infection with Salmonella spp. was verified via PCR. DEV nucleic acid was detected by PCR in 8 of 10 collected samples (80%) with positive amplification of polymerase gene. Histopathological examination revealed eosinophilic and basophilic intranuclear inclusion bodies in enterocytes. In some infected enterocytes, intranuclear and intracytoplasmic inclusions were observed in the same cell. Respectively, eosinophilic intranuclear inclusion bodies found in hepatocytes and reticular cells of liver and spleen of diseased ducklings. Four of the 10 collected samples showed positive results for Salmonella spp. infection that may be involved in enhancing infection with DEV. The identified DEVs revealed close genetic relationship with DEVs detected previously in India and China indicating potential transmission of the virus from there that crucially needs further work for better understanding of virus origin. In conclusion, our study revealed infection of duckling farms with DEV and Salmonella that necessitate the implementation of restricted early preventive and control measures for both diseases to decrease the expected economic losses.  相似文献   

13.
During the 2016–2017 winter season, we isolated 33 highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype and three low pathogenic avian influenza viruses (LPAIVs) from debilitated or dead wild birds, duck faeces, and environmental water samples collected in the Izumi plain, an overwintering site for migratory birds in Japan. Genetic analyses of the H5N6 HPAIV isolates revealed previously unreported phylogenetic variations in the PB2, PB1, PA, and NS gene segments and allowed us to propose two novel genotypes for the contemporary H5N6 HPAIVs. In addition, analysis of the four gene segments identified close phylogenetic relationships between our three LPAIV isolates and the contemporary H5N6 HPAIV isolates. Our results implied the co‐circulation and co‐evolution of HPAIVs and LPAIVs within the same wild bird populations, thereby highlighting the importance of avian influenza surveillance targeting not only for HPAIVs but also for LPAIVs.  相似文献   

14.
The first human case of zoonotic H7N9 avian influenza virus (AIV) infection was reported in March 2013 in China. This virus continues to circulate in poultry in China while mutating to highly pathogenic AIVs (HPAIVs). Through monitoring at airports in Japan, a novel H7N3 reassortant of the zoonotic H7N9 HPAIVs, A/duck/Japan/AQ‐HE30‐1/2018 (HE30‐1), was detected in a poultry meat product illegally brought by a passenger from China into Japan. We analysed the genetic, pathogenic and antigenic characteristics of HE30‐1 by comparing it with previous zoonotic H7N9 AIVs and their reassortants. Phylogenetic analysis of the entire HE30‐1 genomic sequence revealed that it comprised at least three different sources; the HA (H7), PB1, PA, NP, M and NS segments of HE30‐1 were directly derived from H7N9 AIVs, whereas the NA (N3) and PB2 segments of HE30‐1 were unrelated to zoonotic H7N9. Experimental infection revealed that HE30‐1 was lethal in chickens but not in domestic or mallard ducks. HE30‐1 was shed from and replicated in domestic and mallard ducks and chickens, whereas previous zoonotic H7N9 AIVs have not adapted well to ducks. This finding suggests the possibility that HE30‐1 may disseminate to remote area by wild bird migration once it establishes in wild bird population. A haemagglutination‐inhibition assay indicated that antigenic drift has occurred among the reassortants of zoonotic H7N9 AIVs; HE30‐1 showed similar antigenicity to some of those H7N9 AIVs, suggesting it might be prevented by the H5/H7 inactivated vaccine that was introduced in China in 2017. Our study reports the emergence of a new reassortant of zoonotic H7N9 AIVs with novel viral characteristics and warns of the challenge we still face to control the zoonotic H7N9 AIVs and their reassortants.  相似文献   

15.
Since 2004, there have been multiple outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses in Laos. Here, we isolated H5N1 HPAI viruses from poultry outbreaks in Laos during 2015–2018 and investigated their genetic characteristics and pathogenicity in chickens. Phylogenetic analysis revealed that the isolates belonged to clade 2.3.2.1c and that they differed from previous Laos viruses with respect to genetic composition. In particular, the isolates were divided into two genotypes, each of which had a different NS segments. The results of possible migration analysis suggested a high likelihood that the Laos isolates were introduced from neighbouring countries, particularly Vietnam. The recent Laos isolate, A/Duck/Laos/NL‐1504599/2018, had an intravenous pathogenicity index score of 3.0 and showed a 50% chicken lethal dose of 102.5 EID50/0.1 ml, indicating high pathogenicity. The isolated viruses exhibited no critical substitution in the markers associated with mammalian adaptation, but possess markers related to neuraminidase inhibitor resistance. These results emphasize the need for ongoing surveillance of circulating influenza virus in South‐East Asia, including Laos, to better prepare for and mitigate global spread of H5 HPAI.  相似文献   

16.
Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north‐eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza‐like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real‐time RT‐PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small‐scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza‐like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate diagnostic testing and detect novel influenza strains.  相似文献   

17.
Avian pathogenic Escherichia coli (APEC) causes high mortality in poultry flocks and often is complicated with viral infections, leading to large economic losses; however, little information is available on the epidemiological characteristics of this pathogen in ducks. Therefore, a systemic epidemiological investigation was performed on 325 duck farms from 13 provinces in China during the period of 1 April 2016 until 31 March 2018, covering 2 years. A total of 26 APEC strains were isolated from different farms in this study, and analysis showed that all of those isolates carried multiple virulence‐associated genes and drug‐resistance genes, which led to high pathogenicity (15/26), strong or moderate biofilm formation (24/26) and multidrug‐resistant abilities (26/26). On the other hand, coinfection with APEC, H9 avian influenza virus (AIV) and Tembusu virus (TMUV) was very common on those farms (11/26), with APEC and TMUV sharing a similar morbidity peak (from May to September) and susceptibility (60% infections occurred in ducklings); thus, we speculated that the emerging TMUV infection escalated the APEC incidence in ducks. Finally, the data presented in this report enhance the current understanding of the epidemiology of APEC and different viral infections in ducks and provide additional insight into the critical factors that determine their pathogenicity. Meanwhile, the emergence of multidrug‐resistant APEC strains and their coinfection with different viruses emphasize that preventive measures against such infections on poultry farms should be implemented immediately.  相似文献   

18.
Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007–2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.  相似文献   

19.
In 2015, novel duck‐origin goose parvovirus‐related parvovirus (N‐GPV) infection progressively appeared in commercial Cherry Valley duck flocks in North China. Diseased ducks were observed to have beak atrophy and dwarfism syndrome (BADS). A previous study showed that a high seropositive rate for N‐GPV indicated a latent infection in most breeder duck flocks. To investigate this possibility in hatching eggs collected from N‐GPV‐infected breeder ducks, 120 eggs were collected at various stages of embryonic development for viral DNA detection and an N‐GPV‐specific antibody test. N‐GPV DNA was present in nine hatching eggs, eleven duck embryo and eight newly hatched ducklings. Of the newly hatched ducklings, 58.33% (21/36) were seropositive. Further, two isolates were obtained from a 12‐day‐old duck embryo and a newly hatched duckling. N‐GPV infection did not reduce the fertilization rate and hatchability. These results indicate possible vertical transmission of N‐GPV and suggest that it may be transmitted from breeder ducks to ducklings in ovo.  相似文献   

20.
Since June 2015, a highly pathogenic disease occurred in duck flocks in China, causing pericardial effusion, enlarged discoloured liver, renal enlargement and haemorrhagic lung with a mortality ranging from 5% to 20%. Previous study confirmed that Fowl adenovirus group C (FAdV‐C) and some field FAdVs isolates had been identified as causative agents of hydropericardium hepatitis syndrome (HHS) in chickens and geese world widely. In this study, we firstly report the isolation of FAdV‐C from ducks with HHS. The two isolates, designated as SDSX and SDJX, were separated from liver samples using 9‐day‐old SPF chicken embryos and could cause severe cytopathic effects in duck and chicken embryonic kidney cells. The entire ORF sequences of hexon gene of the two isolates were amplified, sequenced and analysed by restriction fragment length polymorphism. Phylogenetic analysis of loop 1 sequences of hexon gene of FAdVs revealed that the two isolates were closely related to FAdV‐C isolates, which could cause HHS in chickens. Experimental infection indicated that the isolate was high pathogenicity to 20‐day‐old ducks. Our study shows that the recently emerged HHS in ducks was caused by FAdV‐C and may possess a potential risk to other poultry flocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号