首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacterial strains (nonpathogenic Mycobacterium terrae, potentially pathogenic Mycobacterium avium-complex and Mycobacterium scrofulaceum), isolated from a moldy building, were studied with respect to their ability to stimulate macrophages (RAW264.7) to produce inflammatory mediators, and to cause cytotoxicity. Reactive oxygen species (ROS) were measured by chemiluminescence, cytokines (TNF-, IL-6, IL-1, IL-10) immunochemically, nitric oxide (NO) by Griess-method, expression of inducible NO-synthase (iNOS) with Western Blot analysis and cytotoxicity with MTT-test. All the strains induced dose- and time-dependent production of NO, IL-6 and TNF- in macrophages, whereas IL-1 or IL-10 production was not detected. The production of ROS and cytotoxicity was increased with the highest doses. Interestingly, different strains had significant differences in their ability to induce these responses, M. terrae being the most potent and M. avium-complex the weakest one. These results indicate that both non- and potentially pathogenic strains of mycobacteria present in moldy buildings are capable of activating inflammatory mechanisms in macrophages.  相似文献   

2.
Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production.The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively.Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation.  相似文献   

3.
Urethane, which is used as an anesthetic for animal experiments, causes inflammation and cancer in the lung. BALB/c mice received 1 mg/g of urethane once a week for four consecutive weeks via intraperitoneal injections developed interstitial infiltration of inflammatory cells and tumors in the lung. However, the intracellular signaling events which urethane causes inflammation and cancer are largely unknown. Here we show that urethane caused overproduction of reactive oxygen species (ROS) in RAW 264.7 macrophages and A549 lung epithelial cells. Pretreatment of these cells with the antioxidant N-acetylcysteine attenuated the urethane-induced ROS production. Urethane increased heme oxygenase-1 expression to protect these cells from cytotoxicity caused by overproduced ROS. In addition, urethane activated extracellular signal-regulated kinase (ERK) in both cell types. Overall, our data imply that urethane stimulates ROS production and ERK activation in macrophages and lung epithelial cells, and the overproduced ROS and activated ERK may promote tumor formation in the lung.  相似文献   

4.
STUDY OBJECTIVE: To determine whether tissue plasminogen activator (tPA) alters macrophage reactive oxygen species (ROS) production. INTERVENTION: Cultured macrophages were exposed to either phorbol myristate acetate (PMA) or zymosan (ZMA) after a 1-hour incubation with either tPA 100 microg/ml or L-arginine 3.5 mg/ml, an excipient used in the formulation of tPA. MEASUREMENTS AND MAIN RESULTS: Production of ROS was measured using chemiluminescence (CL). Tissue plasminogen activator reduced the mean peak CL of macrophages exposed to PMA or ZMA by 20% and 36%, respectively (p=0.0008 and p=0.028, analysis of variance). L-arginine had no effect on either PMA- or ZMA-induced macrophage CL. CONCLUSION: Our results suggest that tPA has broad inhibitory effects on inflammatory cell ROS production. In diseases such as atherosclerosis and acute respiratory distress syndrome, these data suggest the possible utility of exogenous tPA as an antiinflammatory agent and a physiologic role for endogenous tPA that goes beyond maintenance of homeostasis.  相似文献   

5.
Recent research has shown that platinum nanoparticles (nano-Pt) efficiently quench reactive oxygen species (ROS) as a reducing catalyst. ROS have been suggested to regulate receptor activator of NF-κB ligand (RANKL)-stimulated osteoclast differentiation. In the present study, we examined the direct effects of platinum nano-Pt on RANKL-induced osteoclast differentiation of murine pre-osteoclastic RAW 264.7 cells. The effect of the nano-Pt on the number of osteoclasts was measured and their effect on the mRNA expression for osteoclast differentiation was assayed using real-time PCR. Nano-Pt appeared to have a ROS-scavenging activity. Nano-Pt decreased the number of osteoclasts (2+ nuclei) and large osteoclasts (8+ nuclei) in a dose-dependent manner without affecting cell viability. In addition, this agent significantly blocked RANKL-induced mRNA expression of osteoclastic differentiation genes such as c-fms, NFATc1, NFATc2, and DC-STAMP as well as that of osteoclast-specific marker genes including MMP-9, Cath-K, CLC7, ATP6i, CTR, and TRAP. Although nano-Pt attenuated expression of the ROS-producing NOX-family oxidases, Nox1 and Nox4, they up-regulated expression of Nox2, the major Nox enzyme in macrophages. These findings suggest that the nano-Pt inhibit RANKL-stimulated osteoclast differentiation via their ROS scavenging property. The use of nano-Pt as scavengers of ROS that is generated by RANKL may be a novel and innovative therapy for bone diseases.  相似文献   

6.
目的:探讨水合氯醛处理对RAW264.7巨噬细胞凋亡的影响及其机制。方法:以不同浓度的水合氯醛对RAW264.7巨噬细胞处理不同时间,采用形态学观察、AnnexinV-FITC/PI双染细胞凋亡检测试剂、Hochest33258染色和DNA1adder试剂检测RAW264.7巨噬细胞的凋亡情况,并检测Fas/FasL表达情况。结果:水合氯醛处理后RAW264.7巨噬细胞形态由梭形变圆直至脱落悬浮;AnnexinVFITC/PI双染检测显示水合氯醛处理可诱导RAW264.7巨噬细胞从早期向晚期凋亡,Hochest33258染色和DNA1ad-der检测均显示诱导凋亡;同时高表达Fas,但不表达FasL。结论:水合氯醛可通过Fas/FasL途径诱导RAW264.7巨噬细胞细胞凋亡。  相似文献   

7.
We have investigated the inhibition of lipopolysaccharide stimulated nitric oxide production in RAW264.7 macrophages by the cannabinoids and the putative cannabinoid CB(2)-like receptor ligand, palmitoylethanolamide. (R)-(+)-[2, 3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1, 4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate ((+)-WIN55212) and, to a lesser extent (-)-cis-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexan++ +-1-ol (CP55940), significantly inhibited lipopolysaccharide stimulated nitric oxide production. The level of inhibition was found to be dependent on the concentration of lipopolysaccharide used to induce nitric oxide production. Palmitoylethanolamide significantly inhibited nitric oxide production induced by lipopolysaccharide. The inhibition of nitric oxide production by (+)-WIN55212 but not palmitoylethanolamide was significantly attenuated in the presence of the cannabinoid CB(2) receptor antagonist, N-[(1S)-endo-1,3, 3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazo le- 3-carboxamide (SR144528). (+)-WIN55212 produced a pertussis toxin-sensitive parallel rightward shift in the log concentration-response curve for lipopolysaccharide, causing a fivefold increase in the EC(50) value for lipopolysaccharide with no change in the E(max) value. (-)-WIN55212 had no effect on the log concentration-response curve for lipopolysaccharide. Palmitoylethanolamide did not produce a rightward shift in the lipopolysaccharide concentration-response curve. However, it did produce a pertussis toxin-insensitive reduction in the E(max) value. The results suggest that the inhibition of lipopolysaccharide mediated nitric oxide release by (+)-WIN55212 in murine macrophages is mediated by cannabinoid CB(2) receptors. In contrast, the inhibition by palmitoylethanolamide does not appear to be mediated by cannabinoid receptors.  相似文献   

8.
Woo HG  Lee CH  Noh MS  Lee JJ  Jung YS  Baik EJ  Moon CH  Lee SH 《Planta medica》2001,67(6):505-509
In order to delineate the mechanism involved in the anti-inflammatory activity of rutaecarpine, its effects on the production of prostaglandin (PG) and therein involved enzymes were examined. Rutaecarpine reduced the production of PGE(2) in RAW264.7 cells treated with lipopolysaccharide (LPS) in a dose dependent manner when added to the culture media at the time of stimulation. However, the inhibition of total cellular cyclooxygenase (COX) activity under the same experimental condition was observed only at high concentrations of rutaecarpine. Rutaecarpine did not affected the levels of COX-2 mRNA and protein in macrophages stimulated with LPS. Calcium ionophore A23187 induced-PG production and [(3)H]-arachidonic acid release were significantly decreased by the pretreatment of rutaecarpine for 30 minutes. With the same treatment schedule, however, rutaecarpine failed to alter the activities of cellular COX-1 and COX-2. Collectively, our data suggest that anti-inflammatory effect of rutaecarpine is, at least in part, ascribed to the diminution of PG production through inhibition of arachidonic acid release albeit the nature of its effects on PLA(2) activity remains to be elaborated.  相似文献   

9.
Qin JJ  Zhu JX  Zeng Q  Cheng XR  Zhang SD  Jin HZ  Zhang WD 《Planta medica》2012,78(10):1002-1009
Phytochemical investigation of the aerial parts of Inula hupehensis Ling. led to the isolation and identification of 27 sesquiterpene lactones (1-27), including three new eudesmanolides (3-5), three new germacranolides (9-11), one new xanthanolide (16), two new carabrone derivatives (25-26), and 18 known sesquiterpene lactones. The structures were elucidated by extensive spectroscopic methods and comparison to previously reported spectroscopic data. All compounds were evaluated for their inhibitory effects against LPS-induced nitric oxide production in RAW264.7 macrophages, and compound 5 showed the strongest activity with the IC?? value of 3.2 ± 0.4 μM.  相似文献   

10.
Adverse health outcomes associated with moisture-damaged buildings originate from an exposure consisting of complex interactions between various microbial species and other indoor pollutants. The concentrations and proportions of microbial components in such environments can vary greatly with the growth conditions. In this study, we aimed to evaluate the effects of simultaneous exposure with modified proportions of actinobacteria Streptomyces californicus and fungi Stachybotrys chartarum on inflammatory responses (cytokines macrophage inflammatory protein 2 [MIP2], interleukin 6 [IL-6] and tumor necrosis factor a [TNFa]; nitric oxide) and cytotoxicity (MTT-test and DNA content analysis) in mouse RAW264.7 macrophage cell line. Five different proportions of microbial spores were studied (Str. californicus: S. chartarum 10:1; 5:1; 1:1; 1:5; 1:10). RAW264.7 cells were coexposed to the total dose of 3x10(5) spores/ml for 24 h and also both of these microbial spores on their own at the respective doses. At least the 1.5-fold synergistic increase in cytokine production of RAW264.7 macrophages was detected when coexposure contained an equal amount or more fungal spores (S. chartarum) than bacterial spores (Str. californicus) compared to the sum response caused by these microbial spores separately. On the contrary, NO production after coexposure was nearly 40% less than the sum response induced by the microbial spores separately, when coexposure contains 5 times more bacterial than fungal spores. In addition, coexposure slightly changed the cytotoxic potency of the spores. The present results revealed that mutual proportions of fungal and bacterial spores in simultaneous exposure affect the nature of their interactions leading to increased or suppressed production of inflammatory mediators in RAW264.7 macrophages.  相似文献   

11.
Recent studies support a participation of fine airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 microm in the effects of air pollutants on health. Particulate matter was collected in an urban area of L'Aquila during the winter 2004. Fine particulate samples were analyzed by X-ray photoelectron spectroscopy (XPS) to determine the chemical inventory of the aerosol particle surfaces and to evaluate the weight of characteristic functional groups of the most frequent carbon-containing organic pollutant compounds (C-C/C-H, C-O/C-N, C=O, COOH). The most important contributor to the mass of fine particulate matter was carbon. The overall purpose of this work was to determine the in vitro toxicity and genotoxicity of fine PM in cultured macrophages (RAW 264.7 cells) since the biological target of inhaled PM are the pulmonary epithelium and resident macrophages. In parallel in vitro toxicity assays were used including cell viability and apoptosis. Genotoxicity was evaluated by the micronucleus (MN) assay. The viability of macrophages was assessed by the MTT method; apoptosis by an ELISA test for programmed cell death (PCD) was determined after RAW 264.7 cells treatment. Concentration of 1, 3 and 10 microg/cm2 of fine particles induced micronuclei in a dose-dependent manner. We also compared the effects of fine PM with those of fine carbon black particles (CB) in similar doses. Fine carbon black particles were consistently less genotoxic than the fine atmospheric particles, suggesting that the contaminants adsorbed on them (i.e. carbon-containing organic compounds in addition to metal oxides and metal salts) are involved in genotoxicity. Fine PM reduced cellular proliferation. Overall, the results presented here demonstrate the utility of in vitro tests in mouse cells for testing genotoxicity of urban air particulate matter.  相似文献   

12.
1. Previous studies have shown that bovine pulmonary artery endothelium (CPAE) has P2Y and P2U purinoceptors, rat C6 glioma cells have P2U purinoceptors and mouse RAW 264.7 cells have pyrimidinoceptors, all of which are coupled to phosphoinositide-specific phospholipase C (PI-PLC). The dual actions of PPADS, suramin and reactive blue as antagonists of receptor subtypes and ecto-ATPase inhibitors were studied in these three cell types. 2. In CPAE, suramin, at 3-100 microM, competitively inhibited the PI responses induced by 2MeSATP and UTP, with pA2 values of 5.5 +/- 0.3 and 4.4 +/- 0.4, respectively. Reactive blue, at 1-3 microM, produced shifts to the right of the 2MeSATP and UTP curves, but no further right shift at 10 microM. PPADS, at 10 microM, caused a 3 fold right shift of the 2MeSATP curve, but no further shift at concentrations up to 100 microM. In contrast, a dose-dependent shift to the left of the UTP curve and a weak inhibition of the ATP response were seen with PPADS. 3. In RAW 264.7 cells, suramin and reactive blue, but not PPADS, competitively inhibited the UTP response, with pA2 values of 4.8 +/- 0.5 and 5.8 +/- 0.7, respectively. 4. In C6 glioma cells, although suramin and reactive blue inhibited the ATP response, a potentiation effect on ATP and UTP responses was seen with PPADS. 5. The ecto-ATPase inhibitory activity of these three receptor antagonists were determined. All three inhibited ecto-ATPase present in CPAE, C6 and RAW 264.7 cells, with IC50 values of 4, 4.8 and 4.7 for PPADS, 4, 4.4 and > > 4 for suramin, and 4.5, 4.7 and 4.7 for reactive blue. 6. This study indicates that PPADS, suramin and reactive blue ar ecto-ATPase inhibitors. This property, combined with their antagonistic selectivity for receptor subtypes, can result in inhibition of, potentiation of, or lack of effect on agonist-mediated PI responses. Reactive blue is a more potent antagonist than suramin on P2Y, P2U and pyrimidinoceptors, and PPADS is a weak antagonist for P2Y receptors.  相似文献   

13.
Extracellular polysaccharides (EPSs) are high-molecular weight sugar-based polymers that are synthesized and secreted by many microorganisms. Recently, EPSs have attracted particular attention due to their multiple biological functions including anti-inflammation. However, studies rarely reported the molecular mechanisms underlying their functions. We previously purified an EPS from an oligotrophic bacteria (Bacillus sp. LBP32) found in Lop Nur Desert, which possesses a potent antioxidant activity, while the anti-inflammatory effects of EPS and signaling mechanisms underlying its action have not been clarified. In this study, we demonstrated that EPS significantly inhibited the LPS-induced release of pro-inflammatory mediators, such as nitric oxide (NO), IL-6 and TNF-α, without any significant cytotoxicity. EPS also downregulated the expression of nitric oxide synthase (iNOS) induced by LPS. Furthermore, activation of nuclear factor κB (NF-κB) was abrogated by EPS through inhibited the phosphorylation of IκB kinase (IKK). Activations of Mitogen-activated protein kinases (MAPKs), including p38 MAPK and c-Jun N-terminal kinase (JNK), were also found to be inhibited by EPS. In addition, the level of intracellular reactive oxygen species (ROS) was also significantly decreased with the treatment of EPS. In vivo experiments were conducted and showed that EPS could greatly improve the outcome of mice with LPS-induced endotoxic shock. Taken together, our data indicate that EPS prevents LPS-induced inflammatory response by inhibiting NF-κB and MAPKs activation and ROS production.  相似文献   

14.
Our recent studies have revealed that the co-cultivation of environmental microbes, Streptomyces californicus and Stachybotrys chartarum, potentiates the immunotoxic properties of the spores. In the present study, the spore-induced genotoxic potential of these microbes was investigated. Dose related differences in genotoxic and cytotoxic effects and in p53 level in mouse RAW264.7 macrophages were studied after 24h exposure to the spores of separately cultivated Streptomyces californicus or Stachybotrys chartarum alone, a simple spore-mixture of these microbes as well as to the spores of co-cultivated microbes. The genotoxic effect of the exposures was determined by the Comet assay and p53 level was analyzed by immunoblotting. Cytotoxicity was assessed by using flow cytometric analysis and also by the MTT test. The results revealed that the spores of co-cultivated microbes evoked DNA damage, p53 accumulation and cytotoxicity at a lower dose than the other exposures, and at the highest dose there was a 2.5-fold increase in DNA damage compared to control. In addition, the spores of Streptomyces californicus alone induced a 1.5-fold increase in DNA damage compared to control, dose dependent p53 accumulation and also extensive cytotoxicity. In contrast, the mixture of separately cultivated spores or the spores of Stachybotrys chartarum alone did not induce DNA damage with any tested dose although they triggered significant cytotoxicity and a slightly increased p53 level. Our results suggest that the detected genotoxic responses are the result of DNA damage in RAW264.7 cells by some genotoxically active metabolite(s) and the production of this compound was stimulated in Streptomyces californicus when it was co-cultivated with Stachybotrys chartarum.  相似文献   

15.
Exposure to complex mixtures of bacteria and fungi in moisture-damaged buildings is a potential cause of inflammatory related symptoms among occupants. The present study assessed interactions between two characteristic moldy house microbes Streptomyces californicus and Stachybotrys chartarum. Differences in cytotoxic and inflammatory responses in mouse (RAW264.7) macrophages were studied after exposure to the spores of co-cultivated microbes, the mixture of separately cultivated spores, and the spores of either of these microbes cultivated alone. The RAW264.7 cells were exposed to six doses (1 x 10(4) to 3 x 10(6) spores/ml) for 24 h, and the time course of the induced responses was evaluated after 4, 8, 16, and 24 h of exposure (1 x 10(6) spores/ml). The cytotoxic potential of the spores was characterized by the MTT test, DNA content analysis, and enzyme assay for caspase-3 activity. The production of cytokines (IL-1beta, IL-6, IL-10, TNFalpha, and MIP2) was measured immunochemically and nitric oxide by the Griess method. Co-cultivation increased the ability of the spores to cause apoptosis by more than 4-fold and the proportion of RAW264.7 cells at the G2/M stage increased nearly 2-fold when compared to the response induced by the mixture of spores. In contrast, co-cultivation decreased significantly the ability of the spores to trigger the production of NO and IL-6 in RAW264.7 cells. In conclusion, these data suggest that co-culture of S. californicus and S. chartarum can result in microbial interactions that significantly potentiate the ability of the spores to cause apoptosis and cell cycle arrest in mammalian cells.  相似文献   

16.
The effects of adrenergic agonists (epinephrine, norepinephrine, isoprenaline, salbutamol, phenylephrine, clonidine) and antagonists (propranolol, sotalol, oxprenolol, methoprolol, atenolol) on the production of reactive oxygen (RO) by macrophages (MFs) were studied in vitro using chemiluminescence techniques. It was established that beta-adrenomimetics suppressed, whereas alpha-adrenomimetics enhanced or did not change the RO, production by MFs. Possible mechanisms and the biological significance of the adrenergic modulation NADPH-dependent RO, generation are discussed.  相似文献   

17.
We examined the effect of trimidox (3,4,5-trihydroxybenzamidoxime) on the production of nitric oxide (NO) by lipopolysaccharide (LPS) in mouse RAW 264.7 macrophages. Trimidox (50 - 300 microM) concentration-dependently inhibited NO production by LPS (0.01, 0.1, or 1 microg/ml) after incubation for 24 h. LPS-induced expression of inducible NO synthase (iNOS) and degradation of IkappaBalpha were prevented by trimidox. The protective effect against NO production by LPS was not only observed in prior incubation but also later incubation with trimidox until iNOS was activated by LPS. These results suggest that trimidox has a predominantly protective effect against LPS-induced production of NO via iNOS expression.  相似文献   

18.
19.
Current hazard characterisation of nanoparticles (NP) is predominantly based on in vitro test systems, being established for small molecules of drugs and chemicals. However, specific physicochemical properties of NP may result in interference with assay components, biomarkers, or detection systems. In the present study, six types of (nano)particles were screened in RAW 264.7 macrophages by common cytotoxicity methods (WST-1, LDH). Our specific focus was on the investigation of apoptosis (analysis of hypodiploid DNA, phosphatidylserine exposure, caspase 3/7 activation, and Cell Death Detection ELISA). Assays were validated by the well-known apoptosis inducer staurosporine. Our results show that ZnO, DQ12 quartz and amorphous silica are cytotoxic with strong indications for apoptotic effects in RAW 264.7 macrophages, whereas toxicity was absent for MgO. For fine as well as ultrafine TiO(2), no apoptotic effects could be detected except for induction of DNA fragmentation. The results of our study demonstrate the necessity to control on a case-by-case basis for assay interference to avoid misinterpretation of specific in vitro test findings. To obtain valid statements on the potential induction of apoptosis by specific NP the measurement of multiple endpoints is a prerequisite.  相似文献   

20.
Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号