首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helminth infections induce Th2-type biased immune responses. Although the mechanisms involved in this phenomenon are not yet clearly defined, antigen-presenting cells (APC) could play an important role in this process. Here, we have used peritoneal macrophages (F4/80+) recruited at different times after challenge with Taenia crassiceps as APC and tested their ability to regulate Th1/Th2 differentiation. Macrophages from acute infections produced high levels of interleukin-12 (IL-12) and nitric oxide (NO), paralleled with low levels of IL-6 and prostaglandin E(2) (PGE(2)) and with the ability to induce strong antigen-specific CD4+ T-cell proliferation in response to nonrelated antigens. In contrast, macrophages from chronic infections produced higher levels of IL-6 and PGE(2) and had suppressed production of IL-12 and NO, associated with a poor ability to induce antigen-specific proliferation in CD4+ T cells. Failure to induce proliferation was not due to a deficient expression of accessory molecules, since major histocompatibility complex class II, CD40, and B7-2 were up-regulated, together with CD23 and CCR5 as infection progressed. These macrophages from chronic infections were able to bias CD4+ T cells to produce IL-4 but not gamma interferon (IFN-gamma), contrary to macrophages from acute infections. Blockade of B7-2 and IL-6 and inhibition of PGE(2) failed to restore the proliferative response in CD4+ T cells. Furthermore, studies using STAT6(-/-) mice revealed that STAT6-mediated signaling was essential for the expansion of these alternatively activated macrophages. These data demonstrate that helminth infections can induce different macrophage populations that have Th2-biasing properties.  相似文献   

2.
Polarized human T helper (Th) cells play a key role in the network of the specific immune system compartments. Cell-mediated immune response depends on activation of Th1-type cells, typically producing and releasing interferon-gamma and interleukin-2, whereas activation of Th2-type cells and production of cytokines such as interleukin-4, -5, and -10 are involved in humoral immune response and the production of immunoglobulins. Increased amounts of neopterin are produced during the Th1-type immune response by human monocytes/macrophages upon stimulation with the Th1-derived cytokine interferon-gamma, and thus the determination of neopterin concentrations allows us to monitor Th1-type immune response. We compared serum concentrations of neopterin with immunoglobulin E (IgE), a typical product of the Th2-type immune response, in order to examine the relationship between Th1-type and Th2-type immune system stimulation in 709 healthy outpatients, who visited the physician's office for a medical health checkup. Eleven percent presented with serum neopterin concentrations >8.7 nmol/L; 26% had increased serum concentrations of IgE (>100 kIU/L). There existed an inverse correlation between serum neopterin and IgE concentrations (Spearman's rank correlation coefficient: r(s) = -0.100; P < 0.01) which was stronger when excluding data < or = 8.7 nmol/L neopterin and < or = 100 kIU/L IgE (n = 246; r(s) = -0.519; P < 0.0001). Data indicate that increased serum neopterin concentrations are associated with low serum IgE and increased serum IgE with low serum neopterin concentrations. This finding fully agrees with the current understanding that in humans the activation of Th1 and Th2 cell-mediated immune responses are down-regulating each other.  相似文献   

3.
Activated macrophages were used as antigen presenting cells (APCs) to determine the extent to which these APCs could influence an adaptive immune response. We show that activated macrophages induced a strong polarized Th1-like T cell response that was predominated by IFN-gamma. However, when antigen was targeted to Fcgamma receptors on these macrophages, their phenotype changed, and they now induced a T cell response that was predominated by IL-4. The initial biasing by activated macrophages toward a Th1-like response was a result of activation of the innate immune response, as macrophages from MyD88(-/-) mice failed to produce Th1-inducing cytokines. The reversal of the Th1 biasing was a result of FcgammaR ligation, as macrophages lacking the FcR common gamma chain failed to reverse this biasing. To show that this biasing could occur in vivo, mice were injected with activated macrophages or activated macrophages whose FcgammaR had been ligated with an irrelevant immune complex. Mice injected with FcgammaR-ligated macrophages made more antibody than those receiving conventionally activated macrophages, and the antibody was predominantly of the IgG1 isotype. These studies demonstrate that FcgammaR ligation on activated macrophages can change the phenotype of these APCs to cells that preferentially drive a Th2-like response. We have termed these cells type 2 activated macrophages.  相似文献   

4.
Th1-type cellular immune responses play a critical role in protection against infection with Leishmania parasites, whereas activation of Th2-type cells results in progressive disease. Cutaneous leishmaniasis caused by Leishmania major is often a self-healing disease; however, persistent nonhealing forms are also known. In the present study, we have described cell-mediated immune responses in nonhealing patients by measuring T-cell proliferation, cytokine production, and phenotypic characterization of these cells. The responses were compared with those of patients with active lesions, patients who had recovered from infection, and healthy controls. Peripheral blood mononuclear cells from patients with active lesions and recovered donors proliferated vigorously and produced Th1-type cytokine when stimulated with L. major antigens, whereas in nonhealing patients the proliferative responses were significantly lower and showed a Th2-type response to Leishmania antigens. Interleukin-10 (IL-10) production was not a feature of L. major stimulation. Flow cytometric analysis revealed that L. major antigen induced proliferation of the CD4-positive population and that these cells were the major source of gamma interferon and IL-4. These results show a distinct dichotomy in the cytokine response to L. major infection.  相似文献   

5.
Primary neonatal immune responses to infection or vaccines are weak when compared with those of adults. In addition, memory responses of neonatally primed animals may be absent, weak or T helper type 2 (Th2)-biased. Respiratory syncytial virus (RSV) is an important pathogen of human infants and infection during the neonatal period has been linked to the development of asthma in later life. Here we report that acute intranasal infection of neonatal mice with RSV induces significant RSV-specific antibody and CD8 T cell responses. These responses were boosted after RSV rechallenge during adulthood, demonstrating the establishment of memory after neonatal priming. Primary infection during neonatal life was associated, following rechallenge, with limited viral replication in the lung. Recall responses of both spleen and lymph node cells from neonatally primed and adult-primed mice were associated with interferon-gamma secretion, indicative of a Th1-type response. However, interleukin (IL)-4 and IL-5 secretion were enhanced only in spleen and lymph node cells from neonatally primed mice. Rechallenge of neonatally primed mice was also associated with increased concentrations of chemokines monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and regulated upon activation normal T cell expressed and secreted in the lung. These may play a role in the enhanced inflammatory cell recruitment and immunopathology induced following RSV reinfection. Our results demonstrate therefore that immunity to RSV can be established during neonatal life and, importantly, that the quality of the subsequent response is dependent upon the age of first infection.  相似文献   

6.
A key feature of nematode infection is a bias towards a type 2 immune response. To investigate the role that antigen-presenting cells (APC) may play in promoting this bias, we used adherent peritoneal exudate cells (PEC) recruited in response to the filarial nematode Brugia malayi, to stimulate na?ve T cells from pigeon cytochrome c (PCC)-specific TCR transgenic (PCC-tg) mice. Although the proliferation of PCC-tg T cells was inhibited by parasite- induced PEC during primary stimulation, they proliferated normally upon secondary stimulation and were not rendered anergic. However, PCC-tg T cells primed by suppressive APC differentiated into IL-4-producing Th2 cells upon secondary stimulation instead of IFN-gamma-producing Th1 cells, as has been previously described. Studies with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled cells indicated that Th2 differentiation was associated with the inhibition of (or failure to stimulate) IFN-gamma production during primary stimulation. Interestingly, blocking antibodies against TGF-beta (but not IL-10) restored the differentiation of IFN-gamma-producing Th1 cells. Identical results with CFSE-labeled cells were obtained using purified IL-4-dependent F4/80(+) macrophages. These data indicate that T cells exposed to parasite-induced alternatively activated macrophages are driven towards Th2 differentiation. This may be an important factor in the Th2 bias that accompanies nematode infection.  相似文献   

7.
Immune challenges can elicit polarized responses skewed towards the development of T helper type 1 (Th1) or Th2 T cell subsets. To determine if distinct antigen-presenting cells (APC) populations might selectively influence Th subset development, we studied the role of two key APC populations, B cells and macrophages, in the differentiation of effector Th populations from naive precursor Th in vitro. Antigen (Ag)-specific, naive CD4+ T cells were enriched from a mouse strain, AND, bearing a transgenic α/β T cell receptor (TCR) encoding reactivity with pigeon cytochrome c peptide 88-104. Peptide Ag was used throughout these studies so that differences in the uptake and processing by the two APC populations would not influence the results. Both APC populations, activated B cells and bone marrow-derived macrophages, supported the development of effector Th having the capacity to secrete high levels of cytokines when restimulated. Regardless of APC population present during effector development, exogenous interferon-γ (IFN-γ) and interleukin-4 (IL-4) had dominant effects on Th subset development. Thus, with both APC populations, effector Th generated in the presence of IFN-γ acquired a Th1-type cytokine profile, Th generated with IL-4 acquired a Th2-type cytokine profile, and Th generated without IFN-γ or IL-4 acquired a Th0-type cytokine profile. B cells and macrophages also had equivalent APC function in the restimulation of Th1 and Th2-like effectors, since only minor differences in cytokine production were noted for these effector populations when restimulated with the two APC populations. However, in 8 of 19 experiments, the Th0-like effector population generated in the presence of IL-2 differentially responded to restimulation with B cells and macrophages, secreting significantly more IFN-γ when restimulated with B cells, and significantly more IL-4 when restimulated with macrophages. We also found that Th effector populations recultured in IFN-γ or IL-4 assumed a more Th1 or Th2-like phenotype, respectively, regardless of their initial cytokine profile. We conclude that through a subtle capacity to skew cytokine production by a Th0 subset, different APC may selectively influence Th subset development under conditions of prolonged or chronic stimulation in an autocrine fashion.  相似文献   

8.
The metastatic potential of some tumor cells is associated with the expression of the neolactoseries antigens sialyl-Lewis x (sLex) and sialyl-Lewis a (sLea) as they are ligands for selectins. We have recently shown that peptide mimetics of these antigens can potentiate IgG2a antibodies, which are associated with a Th1-type cellular response. As L-selectin is preferentially expressed on CD4+ Th1 and CD8+ T cell populations, specific induction of these phenotypes could augment a response to L-selectin ligand-expressing tumor cells. Here we demonstrate that immunization with a multiple antigen peptide (MAP) mimetic of sugar constituents of neolactoseries antigens induces a MHC-dependent peptide-specific cellular response that triggers IFN-gamma production upon peptide stimulation, correlating with IgG2a induction. Surprisingly, T lymphocytes from peptide-immunized animals were activated in vitro by sLex, also triggering IFN-gamma production in a MHC-dependent manner. Stimulation by peptide or carbohydrate resulted in loss of L-selectin on CD4+ T cells confirming a Th1 phenotype. We also observed an enhancement in cytotoxic T lymphocyte (CTL) activity in vitro against sLex-expressing Meth A cells using effector cells from Meth A-primed/peptide-boosted animals. CTL activity was inhibited by both anti-MHC class I and anti-L-selectin antibodies. These results further support a role for L-selectin in tumor rejection along with the engagement by the TCR for most likely processed tumor-associated glycopeptides, focusing on peptide mimetics as a means to induce carbohydrate reactive cellular responses.  相似文献   

9.
《Journal of autoimmunity》2010,34(3-4):222-230
Macrophages are innate immune cells that play an important role in activation of the immune response and wound healing. Pathogens that require T helper-type 2 (Th2) responses for effective clearance, such as parasitic worms, are strong inducers of alternatively activated or M2 macrophages. However, infections such as bacteria and viruses that require Th1-type responses may induce M2 as a strategy to evade the immune system. M2 are particularly efficient at scavenging self tissues following injury through receptors like the mannose receptor and scavenger receptor-A. Thus, M2 may increase autoimmune disease by presenting self tissue to T cells. M2 may also exacerbate immune complex (IC)-mediated pathology and fibrosis, a hallmark of autoimmune disease in women, due to the release of profibrotic factors such as interleukin-1β, transforming growth factor-β, fibronectin and matrix metalloproteinases. We have found that M2 comprise anywhere from 30% to 70% of the infiltrate during acute viral or experimental autoimmune myocarditis, and shifts in M2 populations correlate with increased IC deposition, fibrosis and chronic autoimmune pathology. Thus, women may be at an increased risk of M2-mediated autoimmunity due to estrogen's ability to increase Th2 responses.  相似文献   

10.
11.
Epidemiological studies suggest that inflammatory bowel disease (IBD) is common in developed countries and rare in countries where intestinal nematode infections are common. T cells are critical in many immune responses, including those associated with IBD and nematode infection. Among the distinct T helper (Th) cell subsets, Th1-type immune response is predominantly associated with Crohn's disease, while many nematode infections generate a strong Th2 response. The reciprocal cross regulation between Th1 and Th2 cells suggests that generation of a Th2 response by nematodes could prevent or reduce the effects of Th1-mediated diseases. In the present study, we investigated the effect of polarizing the immune response toward the Th2 type, using intestinal nematode infection, on subsequent experimental colitis. Mice were infected with the intestinal nematode Trichinella spiralis and allowed to recover before colitis was induced with dinitrobenzene sulfonic acid. The mice were sacrificed postcolitis to assess colonic damage macroscopically, histologically, and by myeloperoxidase (MPO) activity and Th cytokines. Prior nematode infection reduced the severity of colitis both macroscopically and histologically together with a decreased mortality and was correlated with a down-regulation of MPO activity, Th1-type cytokine expression in colonic tissue, and emergence of a Th2-type immune response. These results indicate a protective role of nematode infection in Th1 cell-driven inflammation and prompt consideration of a novel therapeutic strategy in IBD based on immunological distraction.  相似文献   

12.
Evidence has been accumulated to suggest that allergen-reactive Th2 cells play a triggering role in the activation and/or recruitment of IgE antibody-producing B cells, mast cells and eosinophils, the cellular triad involved in allergic inflammation. Recently, chemokines and chemokine receptors involved in such Th2-type response have been also defined. Th2 cells represent the polarized arm of the effector-specific responses that contribute to the protection against gastrointestinal nematodes and act as regulatory cells for chronic and/or excessive Th1-mediated responses. Th2 cells are generated from precursor naive Th cells when they encounter the specific antigen in an IL-4-containing microenvironment. The question of how these Th2 cells are selected in atopic patients is also unclear. Both the nature of the T cell receptor signalling provided by the allergen peptide ligand and a disregulation of IL-4 production likely concur to determine the Th2 profile of allergen-specific Th cells, but the genetic unbalanced IL-4 production is certainly overwhelming. Some gene products selectively expressed in Th2 cells or selectively controlling the expression of IL-4 have recently been described. These findings allow to suggest that the upregulation of genes controlling IL-4 expression and/or abnormalities of regulatory mechanisms of Th2 development and/or function may be responsible for Th2 responses against allergens in atopic people. The increasing prevalence of allergy in developed countries suggests that environmental factors acting either before or after birth also contribute to regulate the development of Th2 cells and/or their function. The reduction of infectious diseases in early life due to increasing vaccinations, antimicrobial treatments as well as changed lifestyle are certainly important in influencing the individual outcome in the Th response to ubiquitous allergens. Moreover, the recent evidence that bacterial DNA or oligodeoxynucleotides containing unmethylated 'CpG motifs' promote the development of Th1 cells via the production of immunomodulatory cytokines (namely IL-12, IL-18 and IFNs) by professional antigen-presenting cells confirms previous epidemiological data. The new insight into the pathophysiology of T cell responses in atopic diseases provides exciting opportunities for the development of novel immunotherapeutic strategies.  相似文献   

13.
Helminth infections are among the most potent stimulators of Th2-type immune responses and have been widely demonstrated to modify responsiveness to both nonparasite antigens and other infectious agents in a nonspecific manner in infected animals. We investigated the immunomodulatory properties of pseudocoelomic body fluid from adult Ascaris suum gastrointestinal helminths (ABF) and its defined allergen (ABA-1) by examining their effects on the immune response to a heterologous antigen, ovalbumin. Our results indicate that ABF has potent immunomodulatory activity and that the effects observed are consistent with skewing towards a Th2-type response rather than induction of anergy. Our findings show that the immunomodulatory activities of ABF are associated with components other than the major constituent and putative allergen, ABA-1. Furthermore, the allergic responses to ABA-1 are not a result of an intrinsic allergenicity of the protein but are more a reflection of the wider induction of a Th2 response by the infection. Importantly, the induction of interleukin-10 by ABF also suggests that T regulatory cells may play a role in immunomodulation of immune responses by parasitic helminths.  相似文献   

14.
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) released within lymphoid organs from nerve terminals and/or immune cells play a significant, anti-inflammatory role by inhibiting macrophage-induced inflammatory reactions and promoting T helper cell type 2 (Th2) responses. However, dendritic cells (DC) and not macrophages often are the major antigen-presenting cells and link between innate and adaptive immunity. The role of VIP/PACAP in DC development and function is mostly unknown. Here, we report that bone marrow-derived DC express VIP/PACAP receptors and that VIP and PACAP exert a differential effect on immature DC (iDC) and lipopolysaccharide (LPS)-treated DC. In iDC, VIP/PACAP up-regulates CD86 expression and enables them to stimulate T cell proliferation and differentiation into Th2 effectors in vivo and in vitro. In contrast, VIP/PACAP down-regulates CD80/CD86 expression in LPS-stimulated DC and strongly reduces their capacity to stimulate T cell proliferation and secretion of Th1 and Th2 cytokines. The VIP/PACAP effects on iDC and LPS-stimulated DC are mediated primarily through the VIP receptor 1. These results indicate that neuropeptides such as VIP and PACAP can differentially affect the function of iDC and mature DC. In the absence of an ongoing immune response, VIP/PACAP contributes to the initiation of Th2-type immunity, whereas in the presence of a full-blown, inflammatory reaction, VIP/PACAP act as anti-inflammatory agents.  相似文献   

15.
Exploiting worm and allergy models to understand Th2 cytokine biology   总被引:5,自引:0,他引:5  
PURPOSE OF REVIEW: Helminthic parasites and many allergens trigger highly polarized Th2-type immune responses. In most helminth infections, the Th2 response often leads to parasite expulsion or sequestration. During murine Schistosoma mansoni infection, however, the parasites persist and the chronic Th2 response induces severe pathological changes in the gut and liver. Thus, the study of schistosome infections in mice has become a popular model to study the pathogenesis of Th2 cytokine-mediated disease. This review will discuss recent findings from the schistosomiasis model that may be relevant to the understanding of allergic inflammation, asthma and Th2 cytokine biology in general. RECENT FINDINGS: Evidence is accumulating that the Th2 pathway is not a 'default pathway' but one that is actively instructed by mechanisms that are only beginning to be understood. Other areas of intensive investigation include studies on alternatively activated macrophages, the role of dendritic cells in Th2 response development, the inhibitory function of IL-10, regulatory T-cells and decoy receptors on chronic Th2-mediated inflammation, and the role of chitinases in mediating Th2 disease. Finally, the development of novel eosinophil-deficient mice has also accelerated our understanding of the contribution of this important cell type to Th2 immunity. SUMMARY: Many findings from the schistosomiasis model have been subsequently demonstrated in models of allergic disease, illustrating the utility of this model to dissect basic mechanisms of Th2-mediated inflammation. Further study of helminth-induced Th2 responses may expedite the discovery of new therapeutics for a wide range of Th2-associated diseases.  相似文献   

16.
Factors responsible for the predictable generation of Th1 or Th2 immune responses to microorganisms in vivo are not well characterized, although the ability of antigen presenting cells (APC) to provide co-stimulation, the kinetics of MHC-peptide ligand generation as well as the cytokine environment are all considered important factors for the differential Th1/Th2 priming of T cells. Our earlier findings of an IFN-gamma-dominant, Th1-type response to live Salmonella typhimurium (Stm) and a Th2-type response to killed Stm suggested that persistence of viable bacteria might be an important factor in the generation of IFN-gamma-dominant responses. Using genetically susceptible and resistant strains of mice to limit bacterial replication and persistence in vivo, we show that mice of the lty(r) genotype, capable of a 10-fold better clearance of Stm, mount an IFN-gamma-dominant immune response following immunization with live Stm similar to that in the lty(s) strain. Further, metabolically defective mutants of Stm, aroA and purA, when used in the live form, also elicit IFN-gamma-dominant immune responses similar to the wild-type Stm strain despite their inability to proliferate in vivo. While a laboratory strain of Escherichia coli, which is antigenically cross-reactive but non-invasive, elicits hardly any IFN-gamma in immune responses, an invasive strain of E. coil induces an IFN-gamma-dominant response. These data together indicate that, while entry of bacteria into macrophages is likely to be critical for the generation of IFN-gamma-dominant immune responses, their persistence is not.  相似文献   

17.
The cytokine microenvironment is thought to play an important role in the generation of immunoregulatory cells. Nematode infections are commonly associated with Th2 cytokines and hyporesponsive T cells. Here we show that IL-4-dependent macrophages recruited in vivo by the nematode parasite Brugia malayi actively suppress the proliferation of lymphocytes on co-culture in vitro. These alternatively activated macrophages block proliferation by cell-to-cell contact, implicating a receptor-mediated mechanism. Further, the proliferative block is reversible and is not a result of apoptosis. Suppressed cells accumulate in the G1 and G2/M phase of the cell cycle. Interestingly, the G1 and G2/M block correlates with increased levels of Ki-67 protein, suggesting a mechanism that affects degradation of cell cycle proteins. We also show that, in addition to lymphocyte cell lines of murine origin, these suppressive cells can inhibit proliferation of a wide range of transformed human carcinoma lines. Our data reveal a novel mechanism of proliferative suppression induced by a parasitic nematode that acts via IL-4-dependent macrophages. These macrophages may function as important immune regulatory cells in both infectious and noninfectious disease contexts.  相似文献   

18.
Mucosal immunoglobulin A (IgA) responses are often associated with Th2-type cells and derived cytokines, and interleukin-4 (IL-4) knockout (IL-4-/-) mice with impaired Th2 cells respond poorly to oral antigens. However, we have noted that IL-4-/- mice have normal mucosal IgA levels, which led us to query whether different oral delivery systems could elicit mucosal immunity. Two oral regimens were used: (i) a live recombinant Salmonella strain which expresses fragment C (ToxC) of tetanus toxin, and (ii) soluble tetanus toxoid (TT) with cholera toxin (CT) as an adjuvant. Oral immunization of IL-4-/- mice with recombinant Salmonella vaccine expressing ToxC induced brisk mucosal IgA and serum IgG (mainly IgG2a) anti-TT antibody responses. TT-specific CD4+ T cells from spleen or Peyer's patches produced gamma interferon, indicative of Th1 responses; however, IL-6 and IL-10 were also seen. Oral immunization of IL-4-/- mice with TT and CT induced weak mucosal IgA to TT; however, brisk IgA anti-CT-B responses and CT-B-specific CD4+ T cells producing IL-6 and IL-10 were also noted. These results show that although IL-4-dependent antibody responses are impaired, mucosal IgA responses are induced in IL-4-/- mice. These result suggest that certain cytokines, i.e., IL-6 and IL-10 from Th2-type cells, play an important compensatory role in the induction and regulation of mucosal IgA responses.  相似文献   

19.
Osteopontin is an RGD-containing bone matrix protein with cytokine-like functions that is associated with early stages of Th1-mediated diseases. Although the function of osteopontin in these responses is unknown, it is expressed by activated T cells and macrophages and can costimulate T cell proliferation. Studies have demonstrated that early IL-12 and IFN-gamma expression is required to induce a protective response to many intracellular pathogens. Herein, we demonstrate that osteopontin stimulation augments the ability of anti-CD3 monoclonal antibody to induce CD40 ligand (CD40L) and IFN-gamma expression on human T cells, resulting in CD40L- and IFN-gamma-dependent IL-12 production in vitro. These findings suggest a functional role for osteopontin in early Th1 responses, namely regulation of T cell-dependent IL-12 production. Further, osteopontin up-regulation of CD40L provides mechanistic support for the association of osteopontin with polyclonal B cell proliferation and humoral autoimmune disease.  相似文献   

20.
Similar T helper (Th)2-type immune responses are generated against different helminth parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号