首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 6 毫秒
1.
2.
HSP27 expression was investigated in cultured neurons and glial cells isolated from fetal human brains using immunoblotting and immunocytochemistry. Under unstressed conditions, HSP27 was identified at a high level in astrocytes (>99%), at a low level in neurons (7%), and at a minimally detectable level in microglia (<1%), whereas it was undetectable in oligodendrocytes. Under these conditions, HSP27 was located in the cytoplasm, fractionated into the Triton X-100-soluble phase, and composed chiefly of the basic isoform (HSP27a). After exposure to heat stress (43°C90 min), the level of HSP27 exproion ryas not altered in astrocytes but was elevated significantly in neurons (11–21%) and microglia (4–7%) during 8–48 hr postrecovery periods, while it remained undetectable in oligodendrocytes. In addition, various human neural cell lines exhibited differential patterns of HSP27 expression under unstressed and heat-stressed conditions. Following heat shock treatment (45°C/30 min), granular aggregates of HSP27 were identified in the cytoplasm of astrocytes. Under heat-stressed conditions, HSP27 was distributed within the Triton X-100-insoluble fraction associated with an increase in two more acidic isoforms (HSP27b and HSP27c). HSP27 and αβ-crystallin were coexpressed in astrocytes under unstressed and heat-stressed conditions. When astrocytes were exposed to known HSP27 inducers, hydrogen peroxide and cysteamine reduced the synthesis of HSP27, while estradiol showed no effects. The differential patterns of constitutive and heat-induced expression of HSP27 in cultured human neurons and glial cells suggest that the cellular mechanisms by which HSP27 expression is regulated are different among various cell types in the human central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Although cleaved caspase-3 is known to be involved in apoptotic cell death mechanisms in neurons, it can also be involved in a nonapoptotic role in astrocytes after postnatal excitotoxic injury. Here we evaluate participation of upstream pathways activating caspase-3 in neurons and glial cells, by studying the intrinsic pathway via caspase-9, the extrinsic pathway via caspase-8, and activation of the p53-dependent pathway. N-methyl-D-aspartate (NMDA) was injected intracortically in 9-day-old postnatal rats, which were sacrificed at several survival times between 4 hr postlesion (pl) and 7 days pl. We analyzed temporal and spatial expression of caspase-8, caspase-9, and p53 and correlation with neuronal and glial markers and caspase-3 activation. Caspase-9 was significantly activated at 10 hpl, strongly correlating with caspase-3. It was present mainly in damaged cortical and hippocampal neurons but was also seen in astrocytes and oligodendrocytes in layer VI and corpus callosum (cc). Caspase-8 showed a diminished correlation with caspase-3. It was present in cortical neurons at 10-72 hpl, showing layer specificity, and also in astroglial and microglial nuclei, mainly in layer VI and cc. p53 Expression increased at 10-72 hpl but did not correlate with caspase-3. p53 Was seen in neurons of the degenerating cortex and in some astrocytes and microglial cells of layer VI and cc. In conclusion, after neonatal excitotoxicity, mainly the mitochondrial intrinsic pathway mediates neuronal caspase-3 and cell death. In astrocytes, caspase-3 is not widely correlated with caspase-8, caspase-9, or p53, except in layer VI-cc astrocytes, where activation of upstream cascades occurs.  相似文献   

4.
Heat shock proteins (HSPs) are induced in response to oxidative stress, hypoxia-ischemia, and neuronal injury and play a protective role. Malonate and 3-nitropropionic acid (3-NP) are well-characterized animal models of Huntington's Disease (HD). They inhibit succinate dehydrogenase, inducing mitochondrial dysfunction, which triggers the generation of superoxide radicals, secondary excitotoxicity, and apoptosis. In this study, we examined whether the 70-kDa heat shock protein (HSP-70) is protective against neurotoxicity induced by malonate and 3-NP. Homozygous and heterozygous HSP-70 overexpressing mice (HSP-70+/+, HSP-70+/-) and wild-type controls received 3-NP or malonate and striatal lesion sizes were evaluated by stereology. Compared to HSP-70+/+ and HSP-70+/-, wild-type controls showed significantly larger striatal lesions following 3-NP or malonate injections. These findings support the idea that HSP-70 has a neuroprotective role that may be useful in the treatment of neurodegenerative diseases.  相似文献   

5.
We have previously investigated the expression of hsp70 genes in the hyperthermic rabbit brain at the mRNA level by Northern blot and in situ hybridization procedures. Our studies have now been extended to the protein level utilizing Western blot and immunocytochemistry. Using an antibody which is specific to inducible hsp70, a prominent induction of hsp70 protein in glial cells of hyperthermic animals was noted. In particular, Bergmann glial cells in the cerebellum are strongly immunoreactive while adjacent Purkinje neurons are immunonegative. Extension of our in situ hybridization studies to a time course analysis revealed that the initial glial induction events were followed by a delayed accumulation of inducible hsp70 mRNA in Purkinje neurons at 10 hr post-heat shock. In control animals, high levels of constitutively expressed hsc70 mRNA and protein were observed in Purkinje neurons. Similar hsc70 and hsp70 mRNA observations were also made in neurons of the deep cerebellar nuclei and in motor neurons of the spinal cord. Our results suggest that these neuronal cell types accmulate hsp70 mRNA in response to hyperthermic treatment; however, the response is delayed when compared to the rapid response seen in glial cells. The high constitutive levels of hsc70 in certain neuronal cell types may play a role in the initial dampening of the hsp70 induction response in these cells. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The hypotheses that cerebral embolic events lead to repetitive episodes of cortical spreading depression (CSD) and that these propagating waves trigger the expression of c-fos, brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and heat shock protein 70 (HSP70) mRNA were tested. Wistar rats underwent photochemically induced right common carotid artery thrombosis (CCAT) (n = 18) or sham (n = 8) procedures. In a subgroup of rats (n = 5), laser-Doppler flowmetry probes were placed overlying the right parietal cortex to record CSD-like changes in cortical blood flow during the initial 2-hour postinjury period. Rats were killed by decapitation at 2 or 24 hours after CCAT, and brains were processed for in situ localization of the gene expression. Two to five intermittent transient hyperemic episodes lasting 1 to 2 minutes were recorded ipsilaterally after CCAT. At 2 hours after CCAT, the widespread expression of c-fos and BDNF mRNAs was observed throughout the ipsilateral cerebral cortex. Pretreatment with the N-methyl-D-aspartate receptor blocker MK-801 (2 mg/kg) 1 hour before CCAT reduced the expression of BDNF mRNA expression at 2 hours. At 24 hours after CCAT, increased expression of GFAP mRNA was present in cortical and subcortical regions. In contrast, multifocal regions of HSP70 expression scattered throughout the thrombosed hemisphere were apparent at both 2 and 24 hours after injury. These data indicate that thromboembolic events lead to episodes of CSD and time-dependent alterations in gene expression. The ability of embolic processes to induce widespread molecular responses in neurons and glia may be important in the pathogenesis of transient ischemic attacks and may influence the susceptibility of the postembolic brain to subsequent insults including stroke.  相似文献   

7.
Kainic acid-induced seizures in rats represent an established animal model for human temporal lobe epilepsy. However, it is well-known that behavioral responses to the systemic administration of kainic acid are inconsistent between animals. In this study, we examined the relationship between expression of genes, neuropathological damage, and behavioral changes (seizure intensity and body temperature) in rats after systemic administration of kainic acid. The considerable differences in the response to kainic acid-induced seizures were observed in rats after a single administration of kainic acid (12 mg/kg i.p.). There was no detection of the expression of heat shock protein hsp-70 mRNA and HSP-70 protein in brain of vehicle-treated controls and in animals exhibiting weak behavioral changes (stage 1–2). A moderate expression of hsp-70 mRNA was detected throughout all regions (the pyramidal cell layers of CA1–3 and dentate gyrus) of the hippocampus, the basolateral, lateral, central and medial amygdala, the piriform cortex, and the central medial thalamic nucleus of rats that developed moderate seizures (stage 3–4). Marked expression of hsp-70 mRNA was detected in the all regions (cingulate, parietal, somatosensory, insular, entorhinal, piriform cortices) of cerebral cortex and all regions of hippocampus, and the central medial thalamic nucleus of the rats that developed severe seizures (stage 4–5). In addition, marked HSP-70 immunoreactivity was detected in the pyramidal cell layers of CA1 and CA3 regions of hippocampus, all regions (cingulate, parietal, somatosensory, insular, piriform cortices) of cerebral cortex, and the striatum of rats that developed severe seizures (stage 4–5). Furthermore, a marked expression of cyclooxygenase-2 (COX-2) mRNA and brain-derived neurotrophic factor (BDNF) mRNA levels by kainic acid-induced behavioral seizures (stage 3–4 or stage 4–5) was detected in all hippocampal pyramidal cell layers, granule layers of dentate gyrus, piriform cortex, neocortex, and amygdala. The present study suggest that the behavioral changes (seizure intensity and body temperature) and neuropathological damage after systemic administration of kainic acid are inconsistent between animals, and that these behavioral changes (severity of kainic acid-induced limbic seizures) might be correlated with gene expression of hsp-70 mRNA, COX-2 mRNA, and BDNF mRNA in rat brain.  相似文献   

8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号