共查询到18条相似文献,搜索用时 78 毫秒
1.
薛慧 《中国医学物理学杂志》2011,28(2):2541-2545
目的:小波与小波包分析在医学CT图像噪声抑制方面的应用价值研究。方法:采用MATLAB6.5对512×512的CT图像进行实验。提出了小波局部阈值软硬函数折中消噪方法。并将此方法与小波强制消噪、全局阈值硬函数消噪、全局阈值软函数消噪、及小波包消噪的方法进行了对比。结果:从实验中可以得出小波包消噪效果最好,能够有效的滤除图像中的噪声且边缘效果保持良好,本文提出的小波局部阈值软硬函数折中消噪法也能能够有效的滤除图像中的噪声,效果较小波强制消噪、全局阈值硬函数消噪、全局阈值软函数消噪要好,但是边缘效果及噪声滤除的程度都不及小波包。结论:实验结果表明本文提出的小波局部阈值软硬函数折中消噪方法在小波消噪方面具有一定的价值。 相似文献
2.
目的:为了更好的去除DR医学图像噪声.方法:通过分析其噪声来源,在小波去噪的基础上进行改进.引入方差不变性变换来调整原始图像的噪声模型为高斯噪声模型.图像分解为不同频率的不同子带的小波系数,分别进行不同阈值的滤波.结果:与普通的全局小波去噪方法相比,该方法不但可以保留图像的边缘信息,而且能提高去噪后图像的峰值信噪比.结论:用此方法处理DR图像在噪声去除、细节质量及骨骼锐化等方面比传统的高斯滤波及小波全局阈值滤波等方法效果要好. 相似文献
3.
基于小波层间相关性的中医诊断图像去噪方法的研究 总被引:1,自引:0,他引:1
中医四诊即望、闻、问、切,是中医用于诊断疾病的四个基本方法,它们是中医正确辨证和有效治疗的前提。对中医诊断图像进行去噪可以提高医学图像的信息利用率,小波变换是目前最新的时频分析工具,是中医诊断图像去噪的强有力处理工具。本文提出了一种基于小波层间相关性的中医诊断图像去噪方法,实验证明,该去噪方法能有效去除中医诊断图像中的噪声。 相似文献
4.
基于小波统计模型的医学超声图像去噪方法研究 总被引:1,自引:1,他引:1
超声图像中固有的斑点噪声严重降低图像的可解译程度,影响了后续的图像分析和诊断.因此,抑制相干斑噪声一直是医学超声图像预处理中一个关键性问题.本研究通过对含斑图像做对数变换和冗余小波分解,提出了一种基于Bayesian估计的小波域局部自适应性去斑算法.将斑点噪声和有用信号的小波系数分别建模为瑞利分布和拉普拉斯分布,利用最大后验概率(MAP)准则得到了一种解析的Bayesian估计表达式;进一步通过邻域窗口估计模型参数,使算法具有局部自适应性.实验仿真表明,该算法简单有效,在滤除超声图像斑点噪声的同时,较好地保持了图像的细节特征,其性能优于空间域滤波和传统的小波去噪算法. 相似文献
5.
在小波变换域中去除图像中的噪声是近年来的研究热点之一。目前在小波域中对加性噪声的去除已经有了许多研究结果,比如Donoho等的处理方法都得到了很好的应用。但是由于超声图像噪声情况的复杂性,其对去噪的方法提出了更高的要求。为了在去除噪声的同时能够更好的保护边缘及有用的细节信息,本研究结合Birg-éMassart等提出的非参数自适应估计理论,提出一种在平稳小波变换域中对超声图像去噪的方法。实验证明,这种基于非参数自适应估计理论的超声图像去噪方法,与Donoho阈值去噪方法相比,去噪效果有所提高。 相似文献
6.
基于小波分析的红外乳腺图像去噪与增强的实验研究 总被引:1,自引:0,他引:1
将小波的多分辨率分析技术运用到红外乳腺图像的降噪增强处理以改善图像质量.运用不同的阈值量化策略实现图像降噪.再引入增益因子,采用基于小波变换的增强算法突出肿块阴影.通过实验将直接增强和去噪后再增强的图像进行对比可以得到清晰度更高的图像.经处理后的乳腺图像,为临床提供了更细致明确的信息,有助于提高诊断水平. 相似文献
7.
基于Contourlet变换和非线性扩散的IVUS图像去噪 总被引:1,自引:0,他引:1
血管内超声(IVUS)图像的分割对于动脉粥样硬化疾病的研究和介入治疗具有重要的意义,但由于其自身存在斑点噪声,从而严重影响图像自动分割的准确性和速度.提出一种基于Contourlet变换和非线性扩散的斑点去除算法(CTND);利用自适应的对比度因子,在Contourlet域直接对IVUS图像各方向子带进行非线性扩散滤波,而不需要同态处理.实验结果表明,这种算法在保持IVUS图像强、弱边缘的同时,能有效地去除斑点噪声,并为图像外膜的提取奠定良好的基础. 相似文献
8.
9.
基于小波包变换的医学图像融合方法 总被引:6,自引:0,他引:6
为满足医学图像临床辅助诊断和治疗的需要,将小波包变换和自适应算子相结合,提出一种新的医学图像融合算法.算法首先对已配准的医学图像进行小波包分解,并采用自适应算子对小波系数及分解子图像进行处理,通过小波包重建,获得高质量的医学融合图像.该方法克服了小波变换不能兼顾图像高频成分的缺陷,并且可以根据不同的医学图像自动调整融合规则的权重系数,有效避免了设置固定权重系数造成的融合误差.实例融合仿真验证了算法的有效性和先进性. 相似文献
10.
医学图像序列压缩是远程医疗系统中的重要技术,而运动估计在视频序列压缩中起着关键作用。我们提出了一种改进的正方形-菱形搜索算法来实现医学图像序列的运动估计。这种改进的正方形-菱形算法减少了搜索点数。我们将其应用于小波域的医学图像序列的运动估计,并对数字减影血管造影图像序列(DSA)进行实验。结果表明,改进后的小波域正方形-菱形算法较其他算法精度高。 相似文献
11.
采用二进小波变换与斜率和幅度相结合的方法,对小鼠QRS复合波进行检测。根据小鼠QRS复合波的特点,采用Daubechics小波为母函烽,按照ECG的频谱特点选用尺度因子,对有噪声污染和形态变异的QRS复合波进行了检测。结果表明:小波变换对小鼠QRS复合波的检测是一种有效的方法。 相似文献
12.
小波变换在医学图像增强的应用 总被引:4,自引:1,他引:4
利用小波变换对MRI医学图像进行增强处理,使原图像中较模糊、对比度差的细节得到增强,其纹理清晰,处理结果优于传统的直方图均衡和Laplace锐化等图像增强方法。 相似文献
13.
目的 数字化X线摄影(digital radiography,DR)图像中的高斯噪声对图像质量影响大,消除此类噪声有利于提高图像质量以辅助医生做出正确的诊断.方法 为抑制DR图像的高斯噪声,首先采用递归循环平移与Contourlet变换结合的(recursive cycle spinning Contourlet transform,RCSCT)方法变换分解DR图像,接着采用连续的二元软阈值函数处理变换系数防止系数被过度扼杀,然后基于CUDA(compute unified device architecture,计算统一设备架构)平台对去噪方法加速.结果 该方法提高了去噪后的图像峰值信噪比,有效抑制了伪吉布斯现象,保留了更多的图像细节信息,并且加速处理后运算耗时较短.结论 本文方法比小波变换和Contourlet变换在保留视觉细节信息方面效果更优,算法耗时少,实用性好. 相似文献
14.
脑电棘波识别和噪声消除的小波变换方法 总被引:1,自引:1,他引:1
研究了利用二进小波变的的模极大值识别脑电信号奇异点如棘波和消除噪声的方法,该方法在较好保留原脑电信号奇异信息的同时能有效地消除噪声,进一步讨论了信号与白噪声的奇异性指数的区别,以及小波变换模极大值沿各变换尺度传递的不同特性,并利用该特性区分信号中的奇异点和噪声,能准确识别奇异点的位置,这种奇异性识别技术在信号的特征提取和消除噪声方面有广阔的应用前景。 相似文献
15.
EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms 下载免费PDF全文
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography (EEG) is an oversensitive operation and prone to errors, which has motivated the researchers to develop effective automated seizure detection methods. This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases. The proposed method consists of three steps: (i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis (MSPCA), (ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition (EMD), discrete wavelet transform (DWT), and dual-tree complex wavelet transform (DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals, and (iii) allocate the feature vector to the relevant class (i.e., seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA). The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process. The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods. 相似文献
16.
基于各向异性扩散的B超图像去噪 总被引:1,自引:0,他引:1
提出了一种基于各向异性扩散方程的B超图像斑点噪声抑制的算法.斑点噪声是由超声成像机制引起的固有噪声形态,它对B超图像的特征提取、识别和分析带来极大困难.特别是对于边缘提取,斑点噪声使得传统的提取算法几乎都无法取得理想的效果.各向异性扩散方程是一种能有效抑制斑点噪声的算法,本文针对原始算法中扩散系数过饱和的问题以及斑点尺度系数选择的不足,提出了改进的方法,从而在抑制斑点噪声的同时保留甚至增强B超图像中的边缘细节信息,为下一步的边缘提取提供了有效保障. 相似文献
17.
针对超声医学图像中存在特有的斑点噪声,利用树状小波分解比传统小波分解精度高的特点,将超声医学图像进行树状小波分解,然后分别采用硬阈值、软阈值和半软阈值函数三种方法进行降噪处理.结果表明半软阈值函数方法是较优阈值函数方法,可以有效地降低原图像的斑点噪声并保留图像细节. 相似文献
18.
This paper proposes some modifications to the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) image coder based on statistical analysis of the wavelet coefficients across various subbands and scales, in a medical ultrasound (US) image. The original SPIHT algorithm codes all the subbands with same precision irrespective of their significance, whereas the modified algorithm processes significant subbands with more precision and ignores the least significant subbands. The statistical analysis shows that most of the image energy in ultrasound images lies in the coefficients of vertical detail subbands while diagonal subbands contribute negligibly towards total image energy. Based on these statistical observations, this work presents a new modified SPIHT algorithm, which codes the vertical subbands with more precision while neglecting the diagonal subbands. This modification speeds up the coding/decoding process as well as improving the quality of the reconstructed medical image at low bit rates. The experimental results show that the proposed method outperforms the original SPIHT on average by 1.4 dB at the matching bit rates when tested on a series of medical ultrasound images. Further, the proposed algorithm needs 33% less memory as compared to the original SPIHT algorithm. 相似文献