首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The anticipated growth in the aging population will drastically increase medical needs of society; of which, one of the largest components will undoubtedly be from orthopedic-related pathologies. There are several proposed solutions being investigated to cost-effectively prepare for the future--pharmaceuticals, implant devices, cell and gene therapies, or some combination thereof. Gene therapy is one of the more promising possibilities because it seeks to correct the root of the problem, thereby minimizing treatment duration and cost. Currently, viral vectors have shown the highest efficacies, but immunological concerns remain. Nonviral methods show reduced immune responses but are regarded as less efficient. The nonviral paradigms consist of mechanical and chemical approaches. While organic-based materials have been used more frequently in particle-based methods, inorganic materials capable of delivery have distinct advantages, especially advantageous in orthopedic applications. The inorganic gene therapy field is highly interdisciplinary in nature, and requires assimilation of knowledge across the broad fields of cell biology, biochemistry, molecular genetics, materials science, and clinical medicine. This review provides an overview of the role each area plays in orthopedic gene therapy as well as possible future directions for the field.  相似文献   

2.
Skeletal muscle is a target tissue of choice for the gene therapy of both muscle and non-muscle disorders. Investigations of gene transfer into muscle have progressed considerably from the expression of plasmid reporter genes to the production of therapeutic proteins such as trophic factors, hormones, antigens, ion channels or cytoskeletal proteins. Viral vectors are intrinsically the most efficient vehicles to deliver genes into skeletal muscles. But, because viruses are associated with a variety of problems (such as immune and inflammatory responses, toxicity, limited large scale production yields, limitations in the size of the carried therapeutic genes), nonviral vectors remain a viable alternative. In addition, as nonviral vectors allow to transfer genetic structures of various sizes (including large plasmid DNA carrying full-length coding sequences of the gene of interest), they can be used in various gene therapy approaches. However, given the lack of efficiency of nonviral vectors in experimental studies and in the clinical settings, the overall outcome clearly indicates that improved synthetic vectors and/or delivery techniques are required for successful clinical gene therapy. Today, most of the potential muscle-targeted clinical applications seem geared toward peripheral ischemia (mainly through local injections) and cancer and infectious vaccines, and one locoregional administration of naked DNA in Duchenne muscular dystrophy. This review updates the developments in clinical applications of the various plasmid-based non-viral methods under investigation for the delivery of genes to muscles.  相似文献   

3.
Electrotransfer as a non viral method of gene delivery   总被引:2,自引:0,他引:2  
Over the last few decades, various vectors have been developed in the field of gene therapy. There still exist a number of important unresolved problems associated with the use of viral as well as non viral vectors. These techniques can suffer from secondary toxicity or low gene transfer efficiency. Therefore an efficient and safe method of DNA delivery still needs to be found for medical applications. DNA electrotransfer is a physical method that consists of the local application of electric pulses after the introduction of DNA into the extra cellular medium. As electrotransfer has proven to be one of the most efficient and simple non viral methods of delivery, it may provide an important alternative technique in the field of gene therapy. The present review focuses on questions related to the mechanism of DNA electrotransfer, i.e. the basic physical processes responsible for the electropermeabilisation of lipid membranes. It also addresses the current limitations of the method as applied to DNA transfer, in particular its efficiency in achieving in vitro gene expression in cells and also its potential use for in vivo gene delivery.  相似文献   

4.
Sonoporation: Mechanical DNA Delivery by Ultrasonic Cavitation   总被引:23,自引:0,他引:23  
Development of nonviral gene transfer methods would be a valuable addition to the gene-therapy armamentarium, particularly for localized targeting of specific tissue volumes. Ultrasound can produce a variety of nonthermal bioeffects via acoustic cavitation including DNA delivery. Cavitation bubbles may induce cell death or transient membrane permeabilization (sonoporation) on a single cell level, as well as microvascular hemorrhage and disruption of tissue structure. Application of sonoporation for gene delivery to cells requires control of cavitation activity. Many studies have been performed using in vitro exposure systems, for which cavitation is virtually ubiquitous. In vivo, cavitation initiation and control is more difficult, but can be enhanced by cavitation nucleation agents, such as an ultrasound contrast agent. Sonoporation and ultrasonically enhanced gene delivery has been reported for a wide range of conditions including low frequency sonication (kilohertz frequencies), lithotripter shockwaves, HIFU, and evendiagnostic ultrasound (megahertz frequencies). In vitro, a variety of cell lines has been successfully transfected, with concomitant cell killing. In vivo, initial applications have been to cancer gene therapy, for which cell killing can be a useful simultaneous treatment, and to cardiovascular disease. The use of ultrasound for nonviral gene delivery has been demonstrated for a robust array of in vitro and mammalian systems, which provides a fundamental basis and strong promise for development of new gene therapy methods for clinical medicine.  相似文献   

5.
Receptor-mediated interleukin-2 gene transfer into human hepatoma cells.   总被引:2,自引:0,他引:2  
Receptor-mediated gene delivery is an attractive method for gene transfer in vitro and shows promise for in vivo gene therapy applications. In the current study, we have selected the cytokine interleukin-2 (IL-2) gene to explore the feasibility of receptor-mediated gene transfer into human hepatocellular carcinoma HepG2 cells, using Epstein-Barr virus (EBV)-based vectors. We have developed a targeted DNA delivery system for the treatment of liver cancer by gene therapy. This system utilizes the hepatocyte-specific asialoglycoprotein receptor, which is uniquely expressed on liver cell membranes but not present on other cell types. Galactosylated histone, a ligand to the asialoglycoprotein receptors, was synthesized, and a new EBV-based expression vector bearing the human IL-2 cDNA was constructed and conjugated to the ligand through ionic interactions. The ligand/IL-2 DNA complex was able to bind specifically to cell-surface receptors on the target cell and, when incubated with HepG2 cells, resulted in elevated levels of IL-2 gene expression. These results indicate that therapeutic genes like IL-2 in ligand/DNA complex can be transferred into hepatoma cells via the hepatocyte receptor. This study constitutes an encouraging first step in the assessment of receptor-mediated gene transfer as a technique for gene therapy in liver cancer.  相似文献   

6.
The transient delivery of gene products (RNA or proteins) is not a biotechnological invention but rather an evolutionarily conserved process underlying and regulating a variety of biological functions. On the basis of insights into the underlying mechanisms, several viral and cell-based approaches have been developed for the delivery of RNA or proteins. Prominent applications include the induction of major biological or therapeutic effects on the basis of "hit-and-run" mechanisms, such as vaccination, cell fate modification (reprogramming, differentiation), control of cell trafficking, enhancement of cell regeneration, and genome engineering using sequence-specific recombinases or nucleases. Ideally, procedures for delivery of RNA or proteins should be targeted to specific cells, overcome biophysical hurdles without harming cellular integrity, circumvent the various alarm signals of the innate immune system, allow dose-controlled delivery of functional biomacromolecules, and avoid the induction of an adaptive immune response. Here we review the current state of approaches for the delivery of mRNA and proteins with a focus on RNA viruses, virus-like particles including retrovirus particle-mediated transfer of mRNA or proteins, extracellular vesicles, and cell-penetrating peptides. The basic concepts and recent advances are put into perspective in the context of potential limitations of the technologies and strategies to overcome cellular barriers and defense mechanisms.  相似文献   

7.
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection?. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.  相似文献   

8.
Replication-deficient adenoviruses are considered as gene delivery vectors for the genetic treatment of a variety of diseases. The ability of such vectors to mediate efficient expression of therapeutic genes in a broad spectrum of dividing and non-dividing cell types constitutes an advantage over alternative gene transfer vectors. However, this broad tissue tropism may also turn disadvantageous when genes encoding potentially harmful proteins (e.g. cytokines, toxic proteins) are expressed in surrounding normal tissues. Therefore, specific restrictions of the viral tropism would represent a significant technological advance towards safer and more efficient gene delivery vectors, in particular for cancer gene therapy applications. In this review, we summarize various strategies used to selectively modify the natural tropism of recombinant adenoviruses. The advantages, limitations and potential impact on gene therapy operations of such modified vectors are discussed.  相似文献   

9.
The use of bone grafts for orthopedic applications have increased steadily over the past decade. With improvements in surgical technique, combined with an increasing aged population requiring orthopedic treatment, the need for bone grafts substitutes have also increased. To be useful clinically, the bone graft substitute must be biocompatible, bioabsorbable, and have convenient handling properties. In addition, it must possess a microarchitecture that allows cellular ingrowth and remodeling while simultaneously providing mechanical strength. Poly(propylene fumarate) (PPF) has been investigated as an injectable, biodegradable scaffold for orthopedic applications. Various methods to create a porous, interconnected polymer scaffold are available. The foaming technique is a convenient method to accomplish this task. Reactions between bicarbonate salts and weak acids generate CO(2) gas, causing a bubbling reaction during the polymerization process. This technique allows the porosity of the scaffold to be modulated. Image analysis and mechanical testing of porous PPF fabricated using the foaming technique shows that a highly porous, interconnected scaffold can be produced. At approximately 50% porosity, the scaffold has excellent handling properties, contains pore sizes ranging from 50 to 500 mum with an elastic modulus ranging from 20 to 40 MPa. The foaming technique provides an additional method by which clinically useful polymers can be fabricated for use in various bone tissue engineering applications.  相似文献   

10.
Ultrasound-guided in utero injections into the brain of murine embryos has been shown to facilitate gene delivery. We investigated whether these methods would allow gene transfer into ocular structures. Gene transfer using retroviral vectors or electroporation was found to be quite effective. We determined the window of time, as well as compared several strains of mice, that yield a high degree of survival and successful gene transfer. Several retroviral constructs were tested for expression and coexpresssion of two genes in retinal cell types. In addition, a retroviral vector was engineered to give cone photoreceptor-enriched expression, and a retroviral vector was demonstrated to provide RNAi-mediated loss-of-function. These methods enable access to early ocular structures and provide a more rapid method of assessment of gene and promoter function than possible using genetically engineered mice.  相似文献   

11.
Heme oxygenase-1 (HO-1) is regarded as a sensitive and reliable indicator of cellular oxidative stress. Studies on carbon monoxide (CO) and bilirubin, two of the three (iron is the third) end products of heme degradation have improved the understanding of the protective role of HO against oxidative injury. CO is a vasoactive molecule and bilirubin is an antioxidant, and an increase in their production through an increase in HO activity assists other antioxidant systems in attenuating the overall production of reactive oxygen species (ROS), thus facilitating cellular resistance to oxidative injury. Gene transfer is used to insert specific genes into cells that are either otherwise deficient in or that underexpress the gene. Successful HO gene transfer requires two essential elements to produce functional HO activity. Firstly, the HO gene must be delivered in a safe vector, e.g., adenoviral, retroviral or leptosome based vectors, currently being used in clinical trials. Secondly, with the exception of HO gene delivery to either ocular or cardiovascular tissue via catheter-based delivery systems, HO delivery must be site and organ specific. This has been achieved in rabbit ocular tissues, rat liver, kidney and vasculature, SHR kidney, and endothelial cells [Abraham et al., 1995a; Abraham et al., 1995b; Abraham et al., 2002c; Quan et al., 2004; Sabaawy et al., 2000; Sabaawy et al., 2001; Yang et al., 2004]. In this review, we discuss the functional significance of the HO system in various pathophysiological conditions and the beneficial therapeutic applications of human HO gene transfer and gene therapy in a variety of clinical circumstances.  相似文献   

12.
13.
The need for bone tissue engineering has increased as the world population ages. The objectives of this study were to (1) develop a novel human umbilical cord mesenchymal stem cell (hUCMSC)-encapsulating, fiber-reinforced injectable calcium phosphate cement (CPCF) scaffold, and (2) investigate the effects of osteogenic media delivery, preosteodifferentiation, and bone morphogenetic protein-2 (BMP-2) delivery on hUCMSC osteodifferentiation inside CPCF for the first time. CPCF was developed using calcium phosphate powders, chitosan, and absorbable fibers. Four types of hUCMSC-encapsulating constructs were fabricated: control media in alginate hydrogel microbeads in CPCF; osteogenic media in microbeads; preosteodifferentiation; and recombinant human BMP-2 (rhBMP-2) in microbeads. The hUCMSCs inside CPCF maintained good viability, successfully differentiated into the osteogenic lineage, and synthesized bone minerals. The preosteodifferentiation method yielded high gene expressions of alkaline phosphatase, osteocalcin, collagen, and osterix, as well as alkaline phosphatase protein synthesis. The mineralization for the preosteodifferentiation constructs exceeded those of the rhBMP-2 group at 1-7 days, and was slightly lower than the rhBMP-2 group at 21 days. Mineralization of the rhBMP-2 group was 12-fold that of the control constructs at 21 days. In conclusion, although the BMP-2 delivery promoted osteodifferentiation, the preosteodifferentiation method and the ostegenic media method with hUCMSCs in CPCF were also promising for bone regeneration. hUCMSCs may be an effective alternative to the gold-standard bone marrow MSCs, which require an invasive procedure to harvest. The novel injectable stem cell-CPCF construct may be useful in minimally invasive and other orthopedic surgeries.  相似文献   

14.
Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that are used in gene therapy are based on viral or non-viral gene delivery systems. There are several non-viral systems that can be used to transfer foreign genetic material into the human body. In order to do so, the DNA to be transferred must escape the processes that affect the disposition of macromolecules. These processes include the interaction with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is also a potential obstacle for functional delivery to the target cell. Cationic polymers have a great potential for DNA complexation and may be useful as non-viral vectors for gene therapy applications. The objective of this review was to address the state of the art in gene therapy using synthetic and natural polycations and the latest strategies to improve the efficiency of gene transfer into the cell.  相似文献   

15.
In recent years, the first attempts have been made to apply gene transfer technology to protect neurons from death following neurological insults. There has been sufficient progress in this area that it becomes plausible to consider similar gene therapy approaches meant to delay aspects of aging of the nervous system. In this review, we briefly consider such progress and how it might be applied to the realm of the aging brain. Specifically, we consider: (a) the means of delivery of such therapeutic genes; (b) the choice of such genes; and (c) technical elaborations in gene delivery systems which can more tightly regulate the magnitude and duration of transgene protection.  相似文献   

16.
基因治疗已被视为人类最有希望彻底征服遗传性疾病和肿瘤等重大疾病的手段之一,发展非病毒基因转运系统对基因治疗的临床应用具有十分重要的推进作用。目前已发展了缓释系统介导的DNA体内转移,物理方法介导的基因转移及基于流体力学的基因转运系统。  相似文献   

17.
超声可控释药体系是一种新兴的靶向给药及基因转运方法。以超声敏感材料作为药物或基因转送的载体,当超声辐照于靶组织或靶器官时, 靶体内载体可定向释放出包裹或附着的基因或药物, 实现对负载药物的定时定量定点释放和提高药物输送效率或基因转染率的目的。文中对超声可控释药体系的作用机制、超声敏感载体材料及生物医学应用等方面进行综述,最后对该领域目前存在的问题和今后的发展方向提出了一些看法。  相似文献   

18.
Transposon technology is a particularly attractive non-viral gene delivery paradigm that allows for efficient genomic integration into a variety of different cell types. In particular, transposon-mediated gene transfer is a promising tool for stem cell research, by virtue of its ability to efficiently and stably transfer genes into adult and induced pluripotent stem (iPS) cells. Moreover, transposons open up new perspectives for non-viral-mediated stem cell-based gene therapy. Several transposon systems, especially the Sleeping Beauty (SB), the piggyBac (PB) and Tol2, have been optimized for gene transfer into mammalian cells. In particular, SB resulted in stable gene transfer into various adult stem cells including human CD34(+) hematopoietic stem cells (HSCs), myoblasts and mesenchymal stem cells (MSCs). This has been confirmed with PB, yielding stable gene transfer in human CD34(+) HSCs. Recently, PB transposons were used to deliver the genes encoding the reprogramming factors into somatic cells making it an attractive technology for generating iPS cells. Subsequent de novo expression of the PB transposase resulted in traceless excision of the reprogramming cassette. This prevented inadvertent re-expression of the reprogramming factors obviating some of the concerns associated with the use of integrating vectors. Transposons have also been used as a novel non-viral paradigm to coax differentiation of iPS cells into their desired target cells by forced expression of specific differentiation factors. This review focuses on the emerging potential of transposons for gene transfer into stem cells and its implications for gene therapy and regenerative medicine.  相似文献   

19.
Gene therapy has emerged as a promising strategy for the repair and regeneration of damaged musculoskeletal tissues. Application of this paradigm to bone healing has shown enhanced efficacy in preclinical animal studies compared to conventional bone grafting approaches. This review discusses current and emerging virus-based genetic engineering strategies for the delivery of therapeutic molecules which promote skeletal regeneration. Viral gene delivery vectors are discussed in the context of bone repair in order to illustrate the challenges and applications of these methods with tissue-specific examples. Moreover the concepts discussed can be broadly applied to promote healing in a wide range of tissues. We also present important considerations involved in the application of these gene therapy techniques to a variety of osteogenic (e.g. bone marrow-derived cells) and non-osteogenic (e.g. fibroblasts and skeletal myoblasts) cell types. Criteria for the selection of regenerative molecules with soluble versus intracellular modes of action and emerging combinatorial approaches are also discussed. Overall, gene transfer technologies have the potential to overcome limitations associated with existing bone grafting approaches and may enable investigators to design therapies which more closely mimic the complex spatial and temporal cascade of proteins involved in endogenous bone development and repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号