首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemistry was combined with a recent modification of Timm's method to evaluate semiquantitatively the mossy fiber innervation of dendrites and somata of parvalbumin-containing neurons of the hilus of the dentate gyrus and the CA3 area of Ammon's horn. Using this electron microscopic double staining technique, it was found that (1) the overwhelming majority (95%) of terminals forming asymmetric synapses with parvalbumin-positive dendrites in the dentate hilus, and the strata pyramidale and lucidum of the CA3 area of Ammon's horn, originated from granule cells; (2) two-thirds of the asymmetric axosomatic terminals of parvalbumin-positive neurons contained zinc; and (3) no zinc-containing axon terminals formed synapses with somata or main dendritic shafts of the granule cells.  相似文献   

2.
Synaptic contacts on the granule cell somata as well as on their axon initial segments in the dentate gyrus of one juvenile 5-week-old rat and one adult 12-week-old rat were analyzed in an electron microscopic serial-sectioning study. In the dentate gyrus of the juvenile rat, somata of 17 granule cells were nearly completely reconstructed from a series of 183 serial sections, and the axon initial segments of 15 of these granule cells were traced in various lengths. On the other hand, in the dentate gyrus of the adult rat, somata of 31 granule cells were almost completely reconstructed from a series of 238 serial sections, and the axon initial segments of 23 of these granule cells were traced in various lengths. Both symmetrical and asymmetrical synapses were observed on the somata, whereas almost all synapses on the axon initial segments were of symmetrical type and asymmetrical synapses on the axon initial segments were rather exceptional. Although we confirmed two conclusions from previous random-section studies to some extent, that is, the superficial-to-deep gradient of synaptic densities on granule cell somata and the presence of a substantial number of asymmetrical synapses on granule cell somata (about 23% of total somatic synapses), the present serial-sectioning study clearly revealed that granule cells vary greatly with regard to the number of synapses on their somata (15–186 in a 5-week-old rat and 9–144 in a 12-week-old rat) and axon initial segments. The granule cells also differed in the proportion of somatic asymmetrical synapses to total synapses they received (0–44% in a 5-week-old rat and 0–60% in a 12-week-old rat). The results of the present study indicated that, when a relatively small number of granule cells are analyzed, one should take the heterogeneity of synaptic contacts on granule cells in number and type into consideration.  相似文献   

3.
Solid pieces of embryonic hippocampal tissue were implanted in a cavity formed by aspiration of the fimbria-fornix and the overlying cingulate cortex in adult rats. Six to 8 months after the transplantation, chronic recording electrodes were implanted into the graft and the host hippocampi for the recording of electroencephalogram and unit activity in the freely moving animal. Irregularly occurring sharp waves or electroencephalogram spikes and concurrent synchronous discharge of large groups of neurons dominated the electrical activity of the grafts, in contrast to the situation in normal animals. Light microscopy and GABA immunocytochemistry in the grafts revealed that the three major cell types of the hippocampal formation, i.e. pyramidal neurons, dentate granule cells and GABA-immunoreactive interneurons were present in the hippocampal grafts. At the ultrastructural level, however, significant alterations in connectivity were observed. The most striking finding was the absence or sparse occurrence of synapses on the axon initial segments of pyramidal neurons. The axon initial segments are normally densely covered by GABAergic synapses derived from a specialized type of interneuron, the chandelier or axo-axonic cell. On the other hand, numerous GABA-immunoreactive terminals were found in synaptic contact with somata of pyramidal neurons, suggesting that other types of GABAergic interneurons and their efferent connections may have developed in a normal manner. The cell bodies of pyramidal neurons received, in addition, several asymmetric synapses from GABA-negative terminals. These presumably excitatory synapses are not present on the somata of pyramidal cells in the normally developing hippocampus. We hypothesize that the somatic excitatory synapses originate, at least in part, from the axon collaterals of the neighbouring pyramidal cells in the graft. We suggest that the hyperexcitability of the neuronal circuitry within the graft is due to reduced inhibition (lack of axo-axonic synapses) coupled with increased collateral excitation of the pyramidal neurons.  相似文献   

4.
A portentous reorganization of the dentate gyrus occurs characteristically in senescent rats. This reorganization includes atrophy of dendrites, hypertrophy of astrocytes and a 27% loss of axodendritic synapses in the molecular layer of the dentate gyrus.A coincident loss of axosomatic synapses is now reported. These synapses on granule cell somata were counted in electron micrographs of representative coronal sections through the dentate gyri of five 3-month-old and five 25-month-old Fischer-344 male rats. A 15% decrease in the number of axosomatic synapses per 100 μm length of granule cell plasma membrane and a 22% decrease in the amount of neuronal surface covered by synapses were found in the senescent, as compared with the young adult, animals. These differences were statistically significant.As synapses on granule cell somata are inhibitory terminals of GABAergic interneurons it is suggested that their loss in senescence may be compensatory for the loss of axodendritic synapses, which are excitatory. By means of a compensatory loss of synapses it may be possible for the aging animal to maintain a reasonably adaptive level of function in spite of ongoing changes in the level of granule cell excitation resulting from the reorganization of the dentate gyrus in senescence.  相似文献   

5.
Summary Recent studies have indicated that hippocampal basket cells in both the dentate gyrus and Ammon's horn develop their somal and dendritic features during the first two postnatal weeks in rats. Their axon terminals form exclusively symmetric synapses that are found as early as 5 postnatal days in both regions. The present study used Golgi-electron microscopic material from 10 and 16 day old rats to demonstrate that the axon terminals of basket cells form synapses not only with somata, dendrites, and dendritic spines as reported for adult material but also with axon initial segments. However, the terminals forming synapses with axon initial segments and dendritic spines represent only a minor portion of the total number of basket cell terminals. Quantitative results indicate that 36–62% of the total number of these terminals form axosomatic synapses and 32–50% form axodendritic synapses depending on the analyzed cell. These data indicate that hippocampal basket cells have an axonal distribution similar to that found for cortical basket cells.  相似文献   

6.
Summary After lesions were placed in the hippocampal commissures, degenerating terminals could be localized above, inside and beneath the granule cell layer of the contralateral dentate gyrus. The terminals formed asymmetric synapses with spines, dendritic shafts and somata of granule cells. Degenerating terminals also formed synapses with dendrites and somata of basket cells identified by the Golgi-electron microscope technique. These basket cells were located either at the hilar border of the granule cell layer or in the molecular layer and each formed an axonal plexus around the somata and proximal dendrites of granule cells. These observations provide an anatomical basis for the recently described feed-forward inhibition in this brain region.  相似文献   

7.
To know the structural feature of individual nerve cells and of the network they form is essentially important for understanding how the brain works. We have recently shown that a certain subpopulation of hippocampal GABAergic neurons that contain a calcium-binding protein parvalbumin form the dual network connected by both chemical synapses and gap junctions. The mutual chemical synaptic contacts are formed between their axon terminals and somata whereas gap junctions are located between their dendrites. In this article, we demonstrate that the dual network of parvalbumin-containing GABAergic interneurons is not restricted to the hippocampus but found also in the neocortex and, therefore, appears to be a fundamental structure of the cerebral cortex, possibly having some relevance to the synchronized activities observed broadly in various cortical areas.  相似文献   

8.
In vivo intracellular recording and labeling in kainate-induced epileptic rats was used to address questions about granule cell axon reorganization in temporal lobe epilepsy. Individually labeled granule cells were reconstructed three dimensionally and in their entirety. Compared with controls, granule cells in epileptic rats had longer average axon length per cell; the difference was significant in all strata of the dentate gyrus including the hilus. In epileptic rats, at least one-third of the granule cells extended an aberrant axon collateral into the molecular layer. Axon projections into the molecular layer had an average summed length of 1 mm per cell and spanned 600 microm of the septotemporal axis of the hippocampus-a distance within the normal span of granule cell axon collaterals. These findings in vivo confirm results from previous in vitro studies. Surprisingly, 12% of the granule cells in epileptic rats, and none in controls, extended a basal dendrite into the hilus, providing another route for recurrent excitation. Consistent with recurrent excitation, many granule cells (56%) in epileptic rats displayed a long-latency depolarization superimposed on a normal inhibitory postsynaptic potential. These findings demonstrate changes, occurring at the single-cell level after an epileptogenic hippocampal injury, that could result in novel, local, recurrent circuits.  相似文献   

9.
Immunocytochemical results indicate that GAD-positive neurons are found in the molecular and granule cell layers of the dentate gyrus as well as in the hilar region. GAD-positive cells in the molecular and granule cell layers are identified as various types of local circuit neurons. Most of the GAD-positive puncta found throughout the molecular layer and within the granule cell layer are interpreted as axon terminals of these neurons, including five types of basket cells. This interpretation is based on data that indicate the axons of basket cells form synapses with the somata and proximal dendrites of granule cells. The results in the hilus show that 60% of the hilar neurons are GAD-positive. Since previous studies have indicated that 80% of hilar neurons give rise to both associational and commissural pathways, many GABAergic neurons in the hilus are probably projection neurons. This finding is consistent with recent physiological data which suggest that commissural pathway stimulation directly inhibits granule cells. Therefore, GABAergic cells in the dentate gyrus appear to be both projection and local circuit neurons.  相似文献   

10.
Summary Light and electron microscopic preparations were used to analyze the postnatal development of the basket cells of the rat dentate gyrus. The basket cells, located at the hilar border, were recognized in 2-day-old rats in Golgi preparations, where they displayed immature dendrites and a small axon arbor in the granule cell layer. At 5 days, the basket cells were found to have a large perikaryal cytoplasm, a round nucleus, an axon that forms symmetric synapses with granule cells, and dendrites and somata that are contacted by other axon terminals. The 10-day basket cells display more mature features, such as Nissl bodies and well-developed Golgi complexes. The basket cells from 16-day-old rats are mature in terms of their ultrastructural features, in that the nuclei are highly indented and display intranuclear rods or sheets, the perikaryal cytoplasm is packed with organelles, and the axon has developed an extensive arborization with the somata and dendrites of granule cells at the border with the molecular layer. This arborization will continue to expand as more granule cells are generated and added to the hilar border. These data correlate well with the immunocytochemical and biochemical development of GABAergic neurons in the dentate gyrus. Furthermore, the maturation of the structure of basket cells appears to precede the appearance of adult-like electrical activity in the hippocampus.  相似文献   

11.
The cellular localization of the vesicular glutamate transporter 1, VGLUT1, was studied in the rat cerebral cortex with immunocytochemical techniques. VGLUT1 immunoreactivity (ir) was localized to punctate structures dispersed in the neuropil of all cortical layers as well as around the profile of somata and proximal dendritic segments of virtually all pyramidal neurons. Using a correlative light and electron microscopic method, we found that VGLUT1 ir is expressed in axon terminals forming synapses exclusively with dendritic shafts and spines. Perisomatic VGLUT1-positive terminals never formed synapses with the pyramidal cell bodies to which they were in apposition, but formed asymmetric synapses with adjacent neuropilar dendritic elements. The high probability of a close spatial relationship between glutamatergic and GABAergic terminals in perisomatic regions suggests that spilled-out glutamate may act on inhibitory axon terminals innervating the soma of cortical pyramidal neurons.  相似文献   

12.
This study analyzed the response of intrinsic substance P-immunoreactive fibers in the monkey dentate gyrus to disruption of the supramammillo-hippocampal projection. This projection normally forms a thin plexus of large, substance P-immunoreac tive terminals in the innermost portion of the dentate molecular layer and establishes exclusively asymmetric synapses with dendritic shafts and spines of dentate neurons. Conversely, substance P-containing terminals have never been observed in synaptic contact with granule cell bodies. Ten days after ipsilateral fimbria-fornix transection, the prominent band of large immunostained axons in the inner molecular layer of the ipsilateral fascia dentata disappeared. Four and five weeks following transection, however, some small, substance P-containing terminals were observed in the innermost portion of the dentate molecular layer and the granule cell layer. These terminals established exclusively symmetric synapses with the somata and proximal dendritic shafts of granule cells. These results suggest that, following transection of the hypothalamo-hippocampal fiber tract, presumptive intrinsic substance P-containing axons are capable of sprouting into the granule cell layer and the former termination field of the hypothalamic fibers. The symmetric synapses established with granule cell bodies and their proximal dendrites might indicate a shift from an extrinsic excitation to an intrinsic inhibition of granule cells following disruption of substance P-containing hypothalamic afferents.  相似文献   

13.
Summary Glutamate decarboxylase (GAD)-positive and Golgi impregnated local circuit neurons of the hippocampal formation of five day old rats were examined in light and electron microscopic preparations. The ultrastructural features of these neurons were similar in both the dentate gyrus and CA1 area of Ammon's horn. Somata displayed a perikaryal cytoplasm rich in organelles but lacked organized Nissl bodies. Most nuclei showed intranuclear infoldings of varying degrees but no intranuclear sheets or rods were found. Somata and dendrites were contacted by relatively immature axon terminals that formed mainly symmetric synapses. The axons of local circuit neurons in both the dentate gyrus and Ammon's horn formed symmetric synapses with somata and dendrites of the principal neurons in these regions. Thus, both GAD-positive and Golgi-impregnated terminals of local circuit neurons were observed to form synapses with pyramidal and granule cells. These terminals were usually small and contained relatively few pleomorphic synaptic vesicles. The results show that a circuitry for inhibition is established in the 5 day old dentate gyrus and Ammon's horn, even though the local circuit neurons lack some of the typical adult ultrastructural features at this age.  相似文献   

14.
The hippocampal formation of newborn mice was explanted and maintained in Maximow culture assemblies for up to 35 days. At the time of explantation, only the suprapyramidal limb of the dentate gyrus was cytoarchitectonically distinct, and electron microscopy of newborn hippocampus revealed no definitive synapses. Histogenesis, as indicated by the development of the infrapyramidal limb of the dentate gyrus, and synaptogenesis, as indicated by the in vitro formation of mossy fiber synapses on the dendrites of hippocampal pyramidal neurons were studied by light and electron microscopy. At 12 days and thereafter in culture, mossy fiber terminals were found in synapsis with dendritic spines probably belonging to pyramidal cells of the hippocampal zone CA4. Near dentate granule cell somata a few axosomatic and many axospinous and axodendritic synapses were found. The data indicate that granule cells of the developing dentate gyrus are capable of differentiation in vitro into a structure essentially equivalent to that developed in vivo. The granule cells may become arranged into a recognizable granule cell layer, and develop dendritic processes which receive synapses virtually identical to those found in the intact organ. The differentiation of these features proceeds in the absence of the extrinsic afferents from the septum or from the contralateral hippocampal formation.  相似文献   

15.
The distribution, size, dendritic morphology and synaptic connections of calbindin-, calretinin- and substance P receptor-positive interneurons and pathways have been examined in control and epileptic human dentate gyrus. In the epileptic dentate gyrus, calbindin-containing interneurons are preserved, but their dendrites become elongated and spiny, and several cell bodies appear hypertrophic. The relative laminar distribution of calretinin-containing cells did not change, but their number was considerably reduced. The calretinin-positive axonal bundle at the top of the granule cell layer originating from the supramammillary nucleus expanded, forming a dense network in the entire width of the stratum moleculare. Substance P receptor-immunopositive cells were partially lost in epileptic samples, and in addition, the laminar distribution and dendritic morphology of the surviving cells differed considerably from the controls. In the control human dentate gyrus, the majority of substance P receptor-positive cells can be seen in the hilus, while most are present in the stratum moleculare in the epileptic tissue. Their synaptic input is also changed. The extent of individual pathological abnormalities correlates with each other in most cases. Our data suggest, that although a large proportion of inhibitory interneurons are preserved in the epileptic human dentate gyrus, their distribution, morphology and synaptic connections differ from controls. These functional alterations of inhibitory circuits in the dentate gyrus are likely to be compensatory changes with a role to balance the enhanced excitatory input in the region.  相似文献   

16.
Simultaneous intracellular recordings were made in the dentate gyrus of rat hippocampal slices, from pairs of the following cell types: granule cells, interneurons located in the granule cell layer, hilar interneurons, and spiny hilar "mossy cells". Granule cells were found to have strong excitatory effects on mossy cells and interneurons. Interneurons inhibited granule cells as well as other interneurons. No synaptic connections from mossy cells onto other cell types were found, within the confines of the slice, using intracellular recording methods. However, at the ultrastructural level, axon terminals of horseradish peroxidase-filled mossy cells were found making synaptic contacts in the hilus on dendrites of interneurons. These studies provide the first step towards determining the functional interactions of the various cell types in the fascia dentata.  相似文献   

17.
Here, we report ultrastructural alterations in the synaptic circuitry of the human amygdala related to neuronal cell densities in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). The neuronal cell densities quantified in the basolateral complex of amygdala were significantly reduced only in the lateral nucleus (LA) of TLE patients as compared to autopsy or non-Ammon’s horn sclerosis (AHS) controls (Nissl staining, immunostaining against the neuronal marker NeuN). For this reason, we focussed on the LA to perform a more detailed quantitative ultrastructural analysis, which revealed an inverse correlation between the number of axo-somatic inhibitory synaptic profiles at the somata of glutamic acid decarboxylase (GAD)-negative projection neurons and the extent of perisomatic fibrillary gliosis. In contrast, the density of GAD-immunoreactive interneurons positively correlated with the number of axo-somatic inhibitory synaptic profiles. The fibrillary material in perisomatic glial cell processes was preferentially labeled by the astroglial marker S100B. In addition, a qualitative study of the dendrites of GAD- and parvalbumin (PARV)-containing interneurons showed that they were often contacted by asymmetrical excitatory synapses. Our results are in line with anatomical data from rodents and cats, which show that amygdalar interneurons form axo-somatic inhibitory synapses on GAD-negative projection neurons, whereas the interneurons themselves receive excitatory input from recurrent collaterals of projection neurons and from cortico- and thalamo-amygdalar afferents. The structural reorganization patterns observed in the GABAergic circuitry are compatible with a reduced feedback or feed forward inhibition of amygdalar projection neurons in human TLE.  相似文献   

18.
This study analyzed the response of intrinsic substance P-immunoreactive fibers in the monkey dentate gyrus to disruption of the supramammillohippocampal projection. This projection normally forms a thin plexus of large, substance P-immunoreactive terminals in the innermost portion of the dentate molecular layer and establishes exclusively asymmetric synapses with dendritic shafts and spines of dentate neurons. Conversely, substance P-containing terminals have never been observed in synaptic contact with granule cell bodies. Ten days after ipsilateral fimbria-fornix transection, the prominent band of large immunostained axons in the inner molecular layer of the ipsilateral fascia dentata disappeared. Four and five weeks following transection, however, some small, substance P-containing terminals were observed in the innermost portion of the dentate molecular layer and the granule cell layer. These terminals established exclusively symmetric synapses with the somata and proximal dendritic shafts of granule cells. These results suggest that, following transection of the hypothalamo-hippocampal fiber tract, presumptive intrinsic substance P-containing axons are capable of sprouting into the granule cell layer and the former termination field of the hypothalamic fibers. The symmetric synapses established with granule cell bodies and their proximal dendrites might indicate a shift from an extrinsic excitation to an intrinsic inhibition of granule cells following disruption of substance P-containing hypothalamic afferents.  相似文献   

19.
Summary Previous immunocytochemical studies have shown a heterogeneous distribution of parvalbumin (PA) and calbindin (CB) in the rat hippocampal formation. The results of the present study showed a heterogeneous distribution of PA and CB in primate Ammon's horn. The density and intensity of immunoreactivity for both of these calcium-binding proteins was greatest in CA2 as compared to CA1 and CA3. CB-immunoreactivity was localized to the cell bodies, dendrites, and axon initial segments of pyramidal cells whereas PA-immunostaining was found in the axon terminals, dendrites and cell bodies of interneurons that have features similar to GABAergic inhibitory neurons. Based on previous studies that have shown a protective role of calcium-binding proteins in neurons exposed to hyperstimulation, these results suggest that the resistance of CA2 pyramidal cells in temporal lobe epilepsy is due to the high concentration of CB and PA in this region of Ammon's horn.  相似文献   

20.
Jeub M  Lie A  Blümcke I  Elger CE  Beck H 《Neuroscience》1999,94(2):465-471
The endogenous kappa receptor selective opioid peptide dynorphin has been shown to inhibit glutamate receptor-mediated neurotransmission and voltage-dependent Ca2+ channels. It is thought that dynorphin can be released from hippocampal dentate granule cells in an activity-dependent manner. Since actions of dynorphin may be important in limiting excitability in human epilepsy, we have investigated its effects on voltage-dependent Ca2+ channels in dentate granule cells isolated from hippocampi removed during epilepsy surgery. One group of patients showed classical Ammon's horn sclerosis characterized by segmental neuronal cell loss and astrogliosis. Prominent dynorphin-immunoreactive axon terminals were present in the inner molecular layer of the dentate gyrus, indicating pronounced recurrent mossy fiber sprouting. A second group displayed lesions in the temporal lobe that did not involve the hippocampus proper. All except one of these specimens showed a normal pattern of dynorphin immunoreactivity confined to dentate granule cell somata and their mossy fiber terminals in the hilus and CA3 region. In patients without mossy fiber sprouting the application of the kappa receptor selective opioid agonist dynorphin A ([D-Arg6]1-13, 1 microM) caused a reversible and dose-dependent depression of voltage-dependent Ca2+ channels in most granule cells. These effects could be antagonized by the non-selective opioid antagonist naloxone (1 microM). In contrast, significantly less dentate granule cells displayed inhibition of Ca2+ channels by dynorphin A in patients with mossy fiber sprouting (Chi-square test, P < 0.0005). The lack of dynorphin A effects in patients showing mossy fiber sprouting compares well to the loss of kappa receptors on granule cells in Ammon's horn sclerosis but not lesion-associated epilepsy. Our data suggest that a protective mechanism exerted by dynorphin release and activation of kappa receptors may be lost in hippocampi with recurrent mossy fiber sprouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号