首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transient expression of the tumor suppressor gene p53 via adenoviral-mediated gene transfer induces apoptosis in glioma cells expressing mutant p53, while causing cell cycle arrest in cells with wild-type p53. To determine whether a change in p53 status of a wild-type p53-expressing cell line such as U-87 MG would alter its apoptotic resistant phenotype in response to Ad-p53 infection, we generated cell lines U-87-175.4 and U-87-175.13 via retroviral-mediated gene transfer of the p53 (175H) mutant into the U-87 MG parental line. Control cell lines U-87-Lux.6 and U-87-Lux.8 were also generated and express the reporter gene luciferase. Both U-87-175.4 and U-87-175.13, but not control cell lines, exhibited morphology characteristic of apoptosis after Ad-p53 infection. Furthermore, expression of other p53 mutants (248W, 273H) in U-87 MG also sensitized cells to Ad-p53-induced apoptosis. Apoptosis was confirmed by TUNEL and cell cycle analysis. Several p53 response genes were examined in cells infected with Ad-p53, and among these, BCL2, p21WAF1/CIP1, CPP32/caspase 3, and PARP showed differences in expression between U87-175 and U87-Lux cell lines. Taken together, our data demonstrate that the introduction of p53 mutants in U-87 MG promotes an apoptotic response in association with adenoviral-mediated wild-type p53 gene transfer. These results underscore the importance of glioma p53 genotype for predicting tumor response to p53-based gene therapy.  相似文献   

2.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

3.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

4.
Mao Y  Okada S  Chang LS  Muller MT 《Cancer research》2000,60(16):4538-4543
DNA damage is attended by rapid recruitment of endogenous type I topoisomerase (topo I) into covalent cleavage complexes with genomic DNA in vivo. In contrast, endogenous topoisomerase II alpha and beta are not stimulated by DNA damage. We show that topo I and p53 are able to associate at arrested topo I-genomic DNA covalent complexes in vivo, suggesting that p53 directly stimulates topo I activity and damage to the genome of the afflicted cell. Moreover, cells that express wild-type p53 are most proficient at recruiting topo I after DNA damage; however, the p53 dependence is conditional because topo I recruitment after DNA damage can be restored if p53 mutant cells (containing a single mutant allele) are artificially held in G1. In contrast, p53 null mutants do not recruit topo I after DNA damage under any conditions (although camptothecin-dependent topo I/DNA complexes readily form in the nulls). These results show that topo I activation after DNA damage depends on the p53 status of the cell. It also depends upon the cell cycle in a way that is very different from that observed with DNA replication-dependent, camptothecin-mediated DNA breaks. The data suggest a model where p53 activates topo I, which inflicts additional genomic damage after the initial UV damage events. Topoisomerases therefore contribute to the p53 commitment to apoptosis, and topo I might assist in elimination of DNA-damaged cells as part of the cellular proofreading function inherent in the p53 pathway.  相似文献   

5.
The use of vaccinia virus vectors for cancer gene therapy may become a powerful method to achieve efficient anti-tumor effects. We used recombinant vaccinia virus expressing wild-type p53 (rVV-p53) to examine the biological effects of exogenous tumor suppressor p53 in human (U-373MG, U-87MG, LN-Z308) and rat glioma cells (9L, C6) in vitro. All glioma cell lines infected with rVV-p53 exhibited growth inhibition and underwent apoptosis as demonstrated by morphological studies using nuclear staining and flow cytometry. The key role of p53 in cell growth inhibition was confirmed as measured by colony forming efficiency. Growth inhibition and apoptosis were independent of the endogenous p53 status of the glioma cell lines.  相似文献   

6.
Replication-competent oncolytic adenoviruses hold considerable promise for treating malignant gliomas. The toxicity of the clinically tested E1B-55 kDa mutant virus is negligible; however, its full clinical potential is still being evaluated. The purpose of the present study is to compare the antiglioma activity in vitro and in vivo between Delta-24, an E1A mutant adenovirus, and RA55, an E1B-55 kDa mutant adenovirus. We selected human glioma cell lines that were tumorigenic in nude mice and express wild-type p53 (U-87 MG, D54 MG) or mutant p53 (U-251 MG, U-373 MG) protein. Our studies demonstrated that Delta-24 induced a more potent antiglioma effect in vitro than RA55. Moreover, Delta-24 replicated markedly more efficiently than RA55 in both wild-type and mutant p53 scenarios. Importantly, direct intratumoral injection of Delta-24, but not RA55, significantly suppresses tumor growth in intracranial (U-87 MG, U-251 MG) or subcutaneous (D54 MG) animal models. Staining for hexon protein detected replicating adenoviruses in xenografts infected with Delta-24, but not with RA55. Collectively, these data indicate that E1A mutant adenoviruses targeting the Rb pathway are more powerful putative agents for antiglioma therapy than E1B mutant adenoviruses, and suggest that E1A mutant adenoviruses should be tested in the clinical setting for patients with malignant gliomas.  相似文献   

7.
Combined radiation and p53 gene therapy of malignant glioma cells   总被引:6,自引:0,他引:6  
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.  相似文献   

8.
Several apoptosis-related genes have been reported to be involved in chemotherapy-induced apoptosis in cancers. An assessment of the relationship between expression of those genes and the degree of chemotherapy-induced apoptosis may be useful in improving the efficacy of cancer therapy. We transduced Apaf-1 (apoptotic protease-activating factor-1) and caspase-9 into U-373MG glioma cells using adenovirus (Adv) vectors in the presence of etoposide and evaluated the degree of apoptosis. The degree of apoptosis in etoposide-treated U-373MG cells infected with Adv for Apaf-1 (Adv-APAF1) was higher (27%) than that in cells infected with control Adv (14%), that in cells infected with Adv for caspase-9 (Adv-Casp9) was higher (34%) than that in cells infected with Adv-APAF1, and that in cells infected with both Adv-APAF1 and Adv-Casp9 was the highest (41%). Treatment with etoposide increased expression of p53 and decreased expression of Bcl-X(L) in U-373MG cells which harbored mutant p53. These results indicate that the expression of Apaf-1 and caspase-9 may be important determinants in predicting the sensitivity of cancers to chemotherapy. Adv-mediated co-transduction of Apaf-1 and caspase-9 should render cancer cells highly sensitive to chemotherapy.  相似文献   

9.
Several apoptosis-related genes have been reported to be involved in chemotherapy-induced apoptosis in cancers. An assessment of the relationship between expression of those genes and the degree of chemotherapy-induced apoptosis may be useful in improving the efficacy of cancer therapy. We transduced Apaf-1 (apoptotic protease-activating factor-1) and caspase-9 into U-373MG glioma cells using adenovirus (Adv) vectors in the presence of etoposide and evaluated the degree of apoptosis. The degree of apoptosis in etoposide-treated U-373MG cells infected with Adv for Apaf-1 (Adv-APAFl) was higher (27%) than that in cells infected with control Adv (14%), that in cells infected with Adv for caspase-9 (Adv-Casp9) was higher (34%) than that in cells infected with Adv-APAFl, and that in cells infected with both Adv-APAFl and Adv-Casp9 was the highest (41%). Treatment with etoposide increased expression of p53 and decreased expression of Bcl-XL in U-373MG cells which harbored mutant p53. These results indicate that the expression of Apaf-1 and caspase-9 may be important determinants in predicting the sensitivity of cancers to chemotherapy. Adv-mediated co-transduction of Apaf-1 and caspase-9 should render cancer cells highly sensitive to chemotherapy.  相似文献   

10.
We investigated the combined effects of p53 gene transfer and irradiation and its still unclear interaction mechanism in human gliomas. Four human glioma cell lines expressing mutant type p53 (U373 and A172) and wild-type p53 (D54MG and EFC-2) were transfected by adenoviral vectors bearing p53 gene at 50 multiplicity of infection. Two days after transfection, cells were irradiated (3, 6, and 9 Gy). The cytotoxicity was evaluated by clonogenic assay. The quantitative analysis of apoptosis and cell cycle analysis were performed using flow cytometry. Irradiation combined with adenoviral p53 transfection significantly increased cytotoxicity, which was additive in cell lines with wild-type p53 and more than additive in cell lines with mutant p53. The combination of two modalities increased the apoptotic population by 14% in A172 cells and 20% in D54 MG cells, which were the sum of apoptosis from each modality. Adenoviral p53 transfection increased the G1 phase fraction and concomitant decrease of radioresistant S phase fraction in A172 and D54MG cells. Our study demonstrated that p53 gene transfer combined with irradiation increased absolute cytotoxicity in human glioma cells used in this experiment. The interaction mechanism for increased cytotoxicity involved, in part, increased apoptosis and change of cell cycle profile.  相似文献   

11.
It has been reported that U-87MG glioma cells with wild-type p53 are resistant to p53 replacement gene therapy. As some gliomas harbor wild-type p53, it would be important to override the resistance mechanism due to wild-type p53 in glioma gene therapy. In this study, we transduced U-87MG cells or U251 glioma cells harboring mutated p53 with the p53 or p73alpha gene (a homologue of p53, that differently induces some p53-responsive genes) via adenovirus vectors (Advs) at same multiplicities of infection (MOIs) into respective cells (U-87MG: MOI 1000, U251: MOI 100), and evaluated the degree of apoptosis. The results demonstrate that the degree of apoptosis induced by Adv-mediated transduction of p53 in U-87MG cells was lower than that in U251 cells, whereas that induced by Adv-mediated transduction of p73alpha in U-87MG cells was higher than that in U251 cells. Bax expression in U-87MG and U251 cells induced by Adv-mediated transduction of p53 was almost the same as that of p73alpha. On the other hand, Adv-mediated transduction of p73alpha induced caspase-9 at higher levels than that of p53 in both cells. The results indicate that Adv-mediated transduction of p73alpha might be beneficial to overcome the resistance mechanism of glioma cells harboring wild-type p53.  相似文献   

12.
Suicide gene therapy utilizing the herpes simplex thymidine kinase (HSVtk) / ganciclovir (GCV) system has been performed to kill cancer cells. However, the low transduction efficiency of HSVtk gene into cancer cells critically limits its efficacy in cancer treatment in clinical situations. To improve delivery of the HSVtk gene into cancer cells, we transduced U-87MG and U-373MG glioma cells with adenovirus (Adv) vectors with a fiber mutant, F / K20, which has a stretch of 20 lysine residues added at the C-terminus of the fiber, for the HSVtk gene (Adv-TK-F / K20), and compared the cytopathic effect of Adv-TK-F / K20 with that of the Adv for HSVtk with wild-type fiber (Adv-TK). The cytopathic effect of Adv-TK-F / K20 in U-87MG and U-373MG cells was approximately 140 and 40 times, respectively, stronger than that of Adv-TK. At the same multiplicity of infection (MOI) in each cell line, Adv-TK-F / K20 induced a higher degree of apoptosis (U-87MG, 35%; U-373MG, 77%) than Adv-TK (U-87MG, 0.11%; U-373MG, 27%) in U-87MG (MOI 0.03) and U-373MG cells (MOI 0.1). Cleavage of poly(ADP-ribose)polymerase (PARP) was more marked in the cells that were infected with Adv-TK-F / K20 than in cells that were infected with Adv-TK. These results indicate that gene therapy utilizing Adv-TK-F / K20 may be a promising therapeutic modality for the treatment of gliomas.  相似文献   

13.
The p53 tumor-suppressor gene plays a critical role in radiation-induced apoptosis. Several genes, including Bax and Fas, are involved in p53-mediated apoptosis, and their over-expression enhances the degree of radiation-induced apoptosis. Apaf-1 and caspase-9 have been reported to be downstream components of p53-mediated apoptosis, suggesting that these genes play a role in radiation-induced apoptosis. In this study, we transduced U-373MG cells harboring mutant p53 with the Apaf-1 and/or caspase-9 genes via adenoviral (Adv) vectors concomitant with X-ray irradiation and evaluated the degree of apoptosis. The percentage of apoptotic cells in U-373MG cells co-infected with the Adv for Apaf-1 (Adv-APAF-1) and that for caspase-9 (Adv-Casp9) and treated with irradiation (24%) was much higher than that in cells co-infected with Adv-APAF-1 and Adv-Casp9 and not treated with irradiation (0.86%) and that in cells infected with either Adv-APAF-1 or Adv-Casp9 and treated with irradiation (2.0% or 2.6%, respectively). The apoptosis induced by co-transduction of Apaf-1 and caspase-9 and irradiation was repressed in cells that were co-infected with the Adv for Bcl-X(L) but not in cells co-infected with the Adv for Bcl-2. These results indicate that Apaf-1 and caspase-9 play a role in radiation-induced apoptosis in cancer cells harboring mutant p53. Bcl-X(L) may be critically involved in the radioresistance of cancer cells by repressing Apaf-1- and caspase-9-mediated apoptosis. Expression of Apaf-1 and caspase-9 in tumors may be an important determinant of the therapeutic effect of irradiation in cancer treatment.  相似文献   

14.
The p53 tumor suppressor gene is an important target for the gene therapy of cancers, and clinical trials targeting this gene have been conducted. Some cancers, however, are refractory to p53 gene therapy. Therefore, it has been combined with other therapies, including chemotherapy and radiotherapy, to enhance the cytopathic effect of p53 induction. The p33ING1 gene cooperates with p53 to block cell proliferation. In this study, we investigated whether adenovirus (Adv)-mediated coinduction of p33ING1 and p53 enhances apoptosis in glioma cells (U251 and U-373 MG), which showed no genetic alterations but low expression levels of p33ING1. Although the single infection of Adv for p33ING1 (Adv-p33) at a multiplicity of infection (MOI) of 100, or Adv for p53 controlled by myelin basic protein (MBP) promoter (Adv-MBP-p53), a glioma-specific promoter, at a MOI of 50, did not induce apoptosis in U251 and U-373 MG glioma cells; coinfection of Adv-p33 and Adv-MBP-p53 at the same MOIs induced drastically enhanced apoptosis in both cell lines. Apoptosis was not induced in NGF-treated PC-12 cells infected with a high MOI (300) of Adv-p33 nor in those coinfected with Adv-p33 (100) and Adv-MBP-p53 (50). Coinfection of Adv-p33 and Adv-MBP-p53 demonstrated morphological mitochondrial damage during the initial stage of apoptosis, which likely led to apoptotic cell death. Our results indicate that this coinfection approach can be used as a modality for the gene therapy of gliomas, sparing damage to normal tissues.  相似文献   

15.
Stähler F  Roemer K 《Oncogene》1998,17(26):3507-3512
Wild-type (wt) p53 frequently induces apoptosis when expressed in tumor cells whereas mutant p53 acts as an oncoprotein and consequently, stimulates cell proliferation. We report here exceptions to that rule. p53 conformational mutant 175H and DNA contact mutant 273H provoke apoptosis in human p53-deficient Hep3B hepatoma cells with delayed kinetics relative to wt p53. Similarly, c-Myc strongly stimulates apoptosis in these cells. In contrast, viral oncoproteins E1A and E7, and the cellular oncoprotein MDM-2, fail to elicit cytocidal responses. Efficient apoptotic cell death by mutant p53 requires oligomerization as 175H and 273H with deletions between amino acid residues 326 and 347 of the oligomerization domain are nontoxic. Apoptosis by mutant or wt p53 was significantly inhibited by the serine protease inhibitor AEBSF but not by the inactive analog AEBSA. Together, these results suggest that a wt p53-independent control mechanism is operational in Hep3B cells that eliminates cells upon sensing illegitimate proliferation signals originating from certain oncoproteins, including mutant p53 and Myc. We suggest that some tumor cell types lack p53 altogether because they tolerate neither wild-type nor mutant forms of the protein.  相似文献   

16.
Sigal A  Rotter V 《Cancer research》2000,60(24):6788-6793
The p53 guardian of the genome is inactivated in the majority of cancers, mostly through missense mutations that cause single residue changes in the DNA binding core domain of the protein. Not only do such mutations result in the abrogation of wild-type p53 activity, but the expressed p53 mutant proteins also tend to gain oncogenic functions, such as interference with wild-type p53-independent apoptosis. Because p53 mutants are highly expressed in cancer cells and not in normal cells, their reactivation to wild-type p53 function may eliminate the cancer by apoptosis or another p53-dependent mechanism. Several studies that embarked on this quest for reactivation have succeeded in restoring wildtype p53 activity to several p53 mutants. However, mutants with more extensive structural changes in the DNA binding core domain may be refractory to reactivation to the wild-type p53 phenotype. Therefore, understanding the structure and functions of oncogenic p53 mutants may lead to more potent reactivation modalities or to the ability to eliminate mutant p53 gain of function.  相似文献   

17.
18.
PURPOSE: A mutation in the p53 gene is believed to play an important role in the radioresistance of many cancer cell lines. We studied cytotoxic effects of high linear energy transfer (LET) carbon beams on glioma cell lines with either mutant or wild-type p53. METHODS AND MATERIALS: Cell lines U-87 and U-138 expressing wild-type p53 and U-251 and U-373 expressing mutant p53 were used. These cells were irradiated with 290 MeV/u carbon beams generated by the Heavy Ion Medical Accelerator in the National Institute of Radiologic Science or X-rays. A standard colony-forming assay and flow cytometric detection of apoptosis were performed. Cell cycle progression and the expression of p53, p21, and bax proteins were examined. RESULTS: High LET carbon radiation was more cytotoxic than low LET X-ray treatment against glioma cells. The effects of the carbon beams were not dependent on the p53 gene status but were reduced by G(1) arrest, which was independent of p21 expression. The expression of bax remained unchanged in all four cell lines. CONCLUSION: These results indicate that high LET charged particle radiation can induce cell death in glioma cells more effectively than X-rays and that cell death other than p53-dependent apoptosis may participate in the cytotoxicity of heavy charged particles. Thus, it might prove to be an effective alternative radiotherapy for patients with gliomas harboring mutated p53 gene.  相似文献   

19.
Suicide gene therapy utilizing the herpes simplex thymidine kinase (HSVtk)/ganciclovir (GCV) system has been performed to kill cancer cells. However, the low transduction efficiency of HSVtk gene into cancer cells critically limits its efficacy in cancer treatment in clinical situations. To improve delivery of the HSVtk gene into cancer cells, we transduced U-87MG and U-373MG glioma cells with adenovirus (Adv) vectors with a fiber mutant, F/K20, which has a stretch of 20 lysine residues added at the C-terminus of the fiber, for the HSVtk gene (Adv-TK-F/K20), and compared the cytopathic effect of Adv-TK-F/K20 with that of the Adv for HSVtk with wild-type fiber (Adv-TK). The cytopathic effect of Adv-TK-F/K20 in U-87MG and U-373MG cells was approximately 140 and 40 times, respectively, stronger than that of Adv-TK. At the same multiplicity of infection (MOI) in each cell line, Adv-TK-F/K20 induced a higher degree of apoptosis (U-87MG, 35%; U-373MG, 77%) than Adv-TK (U-87MG, 0.11%; U-373MG, 27%) in U-87MG (MOI 0.03) and U-373MG cells (MOI 0.1). Cleavage of poly(ADP-ribose)polymerase (PARP) was more marked in the cells that were infected with Adv-TK-F/K20 than in cells that were infected with Adv-TK. These results indicate that gene therapy utilizing Adv-TK-F/K20 may be a promising therapeutic modality for the treatment of gliomas.  相似文献   

20.
Most gene therapy strategies related to p53 concentrate on the restoration of the activity of mutant p53, as several observations indicate that tumors and cell lines having the mutant gene are resistant to chemotherapy. However, as there is also some evidence to the contrary, we studied the relationship of the p53 status to the cellular response of glioma cells that were exposed to cisplatin. At a concentration of 2.5 microg/ml (which is about half the peak pharmacological blood level reached during chemotherapy), U373MG glioma cells, which had a mutant p53 gene, were more sensitive to the drug as compared to U87MG glioma cells (with normal p53). The U373MG cells responded with apoptosis while U87MG cells responded with a G2-M arrest. In U87MG cells, blocking the p53 response by antisense oligonucleotides also sensitized the cells to 2.5 microg/ml cisplatin, and shifted the cellular response from arrest to caspase 3-mediated apoptosis. A sensitive, p53-independent, mechanism for chemotherapy-induced apoptosis suggests that, in some cases, p53 abrogation by gene therapy or small molecule-based strategies could be a viable therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号