首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adoption of the concept that asthma is primarily a disease most frequently associated with elaboration of T-helper 2 (Th2)-type inflammation has led to the widely held concept that its origins, exacerbation, and persistence are allergen driven. Taking aside the asthma that is expressed in non-allergic individuals leaves the great proportion of asthma that is associated with allergy (or atopy) and that often has its onset in early childhood. Evidence is presented that asthma is primarily an epithelial disorder and that its origin as well as its clinical manifestations have more to do with altered epithelial physical and functional barrier properties than being purely linked to allergic pathways. In genetically susceptible individuals, impaired epithelial barrier function renders the airways vulnerable to early life virus infection, and this in turn provides the stimulus to prime immature dendritic cells toward directing a Th2 response and local allergen sensitization. Continued epithelial susceptibility to environmental insults such as viral, allergen, and pollutant exposure and impaired repair responses leads to asthma persistence and provides the mediator and growth factor microenvironment for persistence of inflammation and airway wall remodeling. Increased deposition of matrix in the epithelial lamina reticularis provides evidence for ongoing epithelial barrier dysfunction, while physical distortion of the epithelium consequent upon repeated bronchoconstriction provides additional stimuli for remodeling. This latter response initially serves a protective function but, if exaggerated, may lead to fixed airflow obstruction associated with more severe and chronic disease. Dual pathways in the origins, persistence, and progression of asthma help explain why anti-inflammatory treatments fail to influence the natural history of asthma in childhood and only partially does so in chronic severe disease. Positioning the airway epithelium as fundamental to the origins and persistence of asthma provides a rationale for pursuit of therapeutics that increase the resistance of the airways to environmental insults rather than concentrating all effort on suppressing inflammation.  相似文献   

2.
BACKGROUND: The epithelial layer in the conducting airway provides a primary protective barrier. Repair of this barrier normally occurs rapidly after damage, but is compromised in diseases such as asthma. OBJECTIVE: We have developed a human in vitro model system to test our hypothesis that cell surface glycoconjugate-based interactions are required for the normal repair of damaged epithelium. METHODS: Lectins having narrow carbohydrate specificities were used to identify and block specific carbohydrate moieties on human airway-derived epithelial cells in culture. RESULTS: The lectin wheat germ agglutinin bound to N-acetyl glucosamine and inhibited the repair of epithelial damage while having little effect on cell viability. In contrast, other N-acetyl glucosamine binding lectins had no effect even when bound to the cell surface. The involvement of glycoconjugates was confirmed by pre-incubating the lectin with its specific sugar, preventing the inhibition of repair. CONCLUSION: These results indicate that lectin-binding sites are involved in epithelial repair and may be important in the repetitive cycles of injury and repair seen in asthma. This model system provides an insight into the role of glycoconjugates and will help to determine the function of specific carbohydrate groups in epithelial repair. These may present a target for therapeutic intervention in respiratory and other diseases.  相似文献   

3.
Cell membranes of normal human nasal and tracheal epithelium were characterized by means of freeze-fracture preparations. These investigations illustrated a predictable variability in the distribution of membrane-associated particles on PF-faces of different cell types and in different regions of the same cell. Details of the fine structure and variability of tight junctional complexes in different cell types are presented as are ultrastructural perspectives of cell membrane involvement in ciliogenesis and in mucus secretion. Because ciliogenic profiles and nascent tight junctional complexes were observed more frequently in nasal epithelial cells, these features provided markers of cellular differentiation. Based on the frequent appearance of such indicators, these observations suggested that cell turnover may be more rapid in the region of the nasal turbinates than in the trachea. There was no appreciable evidence of ultrastructural variability between the epithelial cell membranes of similar cell types in the upper and lower respiratory tract.  相似文献   

4.
BACKGROUND: Lesions of trachea cuticles are a pathological histological characteristic of bronchial asthma. Furthermore, collected tracheal cuticles desquamated from the respiratory tract are found in patients' sputum when asthma attacks occur or after the induction of allergen inhalation. From these facts, it is assumed that desquamation of trachea cuticle cells is a pathological symptom of bronchial asthma. However, there has not been any chronological report of desquamation of trachea cuticles through the process of bronchial asthma attacks. OBJECTIVE: For this report, we made an experimental bronchial asthma model using guinea pigs, and conducted chronological examinations of trachea cuticle lesions related to pathological symptoms of bronchial asthma using a transmission electron microscope and a scanning electron microscope. METHODS: The experimental asthma models were made by injection of ovalbumin into the abdominal cavity of guinea pigs. Then the airway responses to inhaled aerosolized ovalbumin were induced. The trachea were enucleated and examined under an optical microscope, a transmission electron microscope (hereafter abbreviated as TEM), and a scanning electron microscope (hereafter abbreviated as SEM) after 1, 2, 4, 8, 12, 24 h and 7 days after the immediate airway responses. RESULTS: Intercellular oedema of ciliated epithelium was observed in the sensitization groups immediately after the immediate airway response. SEM observation revealed increased mucus secretion and shortening of cilium. A slight case of desquamation or deciduation of ciliated epithelium was also beginning to appear. TEM observation revealed a dilation of ciliated epithelium intervals. Infiltration of eosinophilic leucocytes was already detectable beneath the ciliated epithelium. The degree of ciliated epithelium desquamation and infiltration of eosinophilic leucocytes progressed with time. When the late airway response occurred 4 hours later, eosinophilic leucocytes had increased drastically, and ciliate epithelium had desquamated to the extent that basal cells were exposed. Seven days after the immediate airway response, epithelium intercellular oedema had improved, and cilium had been reproduced. CONCLUSION: These results suggest that desquamation of epithelium caused by trachea cuticle lesions appears at an early stage of an asthma attack, owing to the contraction of the trachea, and that the damage is intensified by the infiltration of eosinophilic leucocytes.  相似文献   

5.
Osmotic water permeability (Pf) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane facing the outside. They were capable of surviving hours of experiment involving continuous superfusion of the bathing medium and changes of osmolarity. A new image analysis technique was developed for measuring the spheroid diameters, giving high time and measurement resolutions. The transepithelial Pf, determined by the changes of the apical solution osmolarity, was not influenced by the presence of glucose, Na+, or Na+/glucose-cotransport inhibitors in the bath, but was sensitive to the aquaporin (AQP) inhibitor HgCl2. The measured Pf levels and the values of activation energy were in the range of those seen in AQP-associated water transport. Together, these results indicate the presence of an AQP in the apical membrane of the spheroids. Notably, identical values for Pf were found in CF and non-CF airway preparations, as was the case also for the calculated spontaneous fluid absorption rates.  相似文献   

6.
The conducting airway epithelium of fetal Syrian golden hamsters was studied from gestational day 12 to day 15, during normal and uncontrolled diabetic pregnancies. Diabetes was induced in the pregnant hamsters by injecting streptozotocin at 60 mg/kg body weight, subcutaneously, early on gestational day 10. Cells in S-phase were labelled immunochemically with bromodeoxyuridine (BrdU), and the day on which endocrine cells and ciliated cells first appeared was determined. In control fetuses, the BrdU-labelling indices (LI's) of different anatomical airway levels were significantly different from one gestational day to the next. For example, the LI of the lobar bronchus was significantly different on each gestational day (P less than .0001), and the same was true of the bronchioles. Moreover, the difference between LI's of the lobar bronchus and bronchioles-terminal buds was highly significant on day 12 (P less than .0001), and on day 13 the differences between lobar bronchus and bronchioles, lobar bronchus and terminal buds, and bronchioles and terminal buds were also highly significant (P less than .0001). However, on gestational days 14 and 15, the LI's were reduced and were comparable at different airway levels. The BrdU-labelling indices were very consistent among fetuses of the same age, and the differences between the average LI's for pups of different litters was numerically very small. Hyperglycemia (mild, moderate, severe) did not alter LI's in the fetal airway epithelial cells. Furthermore, although glycogen was not depleted from the airway epithelium of the hyperglycemic fetuses as it was in the controls, the endocrine cells first appeared on gestational days 12, 13, and 14, respectively, in the trachea, lobar bronchus and bronchioles, followed 1 day later by the ciliated cells, in the fetuses of control and diabetic mothers. In our experimental model, induction of diabetes in the pregnant hamsters on gestational day 10 did not appear to alter development or differentiation of the fetal conducting airway epithelium.  相似文献   

7.
The conducting airway epithelium of fetal Syrian golden hamsters was studied from gestational day 12 to day 15, during normal and uncontrolled diabetic pregnancies. Diabetes was induced in the pregnant hamsters by injecting streptozotocin at 60 mg/kg body weight, subcutaneously, early on gestational day 10. Cells in S-phase were labelled immunochemically with bromodeoxyuridine (BrdU), and the day on which endocrine cells and ciliated cells first appeared was determined. In control fetuses, the BrdU-labelling indices (LI's) of different anatomical airway levels were significantly different from one gestational day to the next. For example, the LI of the lobar bronchus was significantly different on each gestational day (P.0001), and the same was true of the bronchioles. Moreover, the difference between LI's of the lobar bronchus and bronchioles-terminal buds was highly significant on day 12 (P <.0001), and on day 13 the differences between lobar bronchus and bronchioles, lobar bronchus and terminal buds, and bronchioles and terminal buds were also highly significant (P .0001). However, on gestational days 14 and 15, the LI's were reduced and were comparable at different airway levels. The BrdU-labelling indices were very consistent among fetuses of the same age, and the differences between the average LI's for pups of different litters was numerically very small. Hyperglycemia (mild, moderate, severe) did not alter LI's in the fetal airway epithelial cells. Furthermore, although glycogen was not depleted from the airway epithelium of the hyperglycemic fetuses as it was in the controls, the endocrine cells first appeared on gestational days 12, 13, and 14, respectively, in the trachea, lobar bronchus and bronchioles, followed 1 day later by the ciliated cells, in the fetuses of control and diabetic mothers. In our experimental model, induction of diabetes in the pregnant hamsters on gestational day 10 did not appear to alter development or diferentiation of the fetal conducting airway epithelium.  相似文献   

8.
Stomatin is a widely distributed 32kD membrane protein of unknown function. In biochemical studies it is associated with cholesterol+sphingomyelin-rich 'rafts' in the cytomembrane. Genetic studies in C. elegans, supported by microscopic studies in mammalian tissue and co-expression studies in oocytes, suggest a functional link with the DEG/ENaC (degenerin/epithelial Na+ channel) superfamily of monovalent ion channels. Since ENaC channels play a prominent role in the physiology of the respiratory epithelium, we have studied the immunolocalization of stomatin in mature and developing human airway epithelium by means of Western blot analysis, immunocytochemistry, and immunoelectron microscopy. Stomatin immunoreactivity (stomatin-IR) was found in the ciliated cells of the conductive airway epithelium in a distinct distribution pattern with the strongest signal along the cilia. Immunogold labelling revealed immunogold particles at the basal bodies, along the cilia, and at the membrane of the microvilli. The presence of stomatin-IR paralleled the stages of ciliogenesis in airway development, and its appearance preceded the elongation of the axoneme and the cilial outgrowth. Due to its presence in the different cellular locations in the ciliated cell, we suggest that stomatin is involved in various cellular functions. From its ultrastructural position, stomatin could be a candidate for a membrane-associated mechanotransducer with a role in the control of ciliary motility. Stomatin as a raft protein might be a microtubule associated protein moving along the outer surface of the microtubules to its terminal site of action in the cilia. Stomatin-IR in microvilli supports the hypothesis of a co-localization with beta- and gamma- ENaC and, in conclusion, their potential functional interaction to control the composition of periciliary mucus electrolytes.  相似文献   

9.
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity?The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter).MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC.We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.  相似文献   

10.
The SARS-CoV ferret model in an infection-challenge study   总被引:1,自引:0,他引:1  
Phase I human clinical studies involving therapeutics for emerging and biodefense pathogens with low incidence, such as the severe acute respiratory syndrome coronavirus (SARS-CoV), requires at a minimum preclinical evaluation of efficacy in two well-characterized and robust animal models. Thus, a ferret SARS-CoV model was evaluated over a period of 58 days following extensive optimization and characterization of the model in order to validate clinical, histopathological, virological and immunological endpoints. Ferrets that were infected intranasally with 10(3) TCID50 SARS-CoV showed higher body temperature (2-6 d.p.i.), sneezing (5-10 d.p.i.), lesions (5-7 d.p.i.) and decreased WBC/lymphocytes (2-5 d.p.i.). SARS-CoV was detected up to 7 d.p.i. in various tissues and excreta, while neutralizing antibody titers rose at 7 d.p.i. and peaked at 14 d.p.i. At 29 d.p.i., one group was challenged with 10(3) TCID50 SARS-CoV, and an anamnestic response in neutralizing antibodies was evident with no detectable virus. This study supports the validity of the ferret model for use in evaluating efficacy of potential therapeutics to treat SARS.  相似文献   

11.
A network of dendritic cells (DC) can be detected in close proximity to the epithelial cells overlying Peyer's patches in the gut. Intestinal DC show distinct phenotypes as compared to DC from the systemic lymph nodes (relatively low MHC and costimulatory molecules and high IL-10 and TGFbeta) and may play a role in maintaining tolerance to enteric antigens. We show that a similar phenotype is induced in the presence of a polarised epithelial cell monolayer in vitro. Monocyte-derived DC were co-cultured with Caco-2 intestinal epithelial monolayers for 24 h. Co-culture resulted in DC with reduced expression of MHC class II, CD86, and CD80, and poor T cell stimulatory capacity. Cytokine profiles showed reduced levels of inflammatory cytokine production, and co-cultured DC were less sensitive to stimulation via Toll-like receptors (TLR2, 4, and 6) as a result of increased levels of autocrine TGFbeta production. However, phenotypic changes in co-cultured DC could not be blocked by removal of apoptotic cells or addition of anti-TGFbeta antibodies, suggesting that other soluble factors are involved in DC modulation. Thus, polarised epithelial cell monolayers create a 'tolerogenic' environment which modulates the activity of DC. These results highlight the regulatory importance of the epithelial microenvironment at mucosal surfaces.  相似文献   

12.
The electrophysiological properties of cultured tracheal cells (CTCs) were examined in a murine (C57BL/6J), ovalbumin (OVA)-induced model of allergic airway disease (AAD) at early (3-day OVA-aerosol) and peak (10-day OVA-aerosol) periods of inflammation. Transepithelial potential difference, short-circuit current (Isc), and resistance (RT) were lower in CTCs from 10-day OVA-aerosol animals compared to CTCs from na?ve mice. In cells cultured for 5 weeks, RT was greater in naive CTCs than in 10-day OVA-aerosol CTCs at all times (P < 0.01). The Isc response to mucosal amiloride (10(-4) mol/L) was increased in CTCs from 10-day OVA-aerosol mice compared to na?ve mice (6.0 +/- 0.37 microA/cm2 versus 1.8 +/- 0.56 microA/cm2; P < 0.001) with intermediate values for CTCs from 3-day OVA-aerosol mice. The cAMP-induced increase in Isc was blunted in 10-day OVA-aerosol animals compared to CTCs from na?ve mice (9 +/- 12% versus 39 +/- 7%; P < 0.01) with intermediate values for CTCs from 3-day OVA-aerosol mice. There was no difference in mannitol flux in na?ve compared to 10-day OVA-aerosol CTCs. Similar results were found using intact tracheas mounted in a perfusion chamber. These data demonstrate changes in airway epithelial cell function in the OVA-induced model of AAD that may contribute to the pathogenesis of airway inflammation.  相似文献   

13.
14.
The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45(-) SP, CD45(+) SP, and non-SP cells were isolated and sorted. CD45(-) SP cells made up 0.12% +/- 0.01% of the total epithelial cell population in normal airway but 4.1% +/- 0.06% of the epithelium in asthmatic airways. All CD45(-) SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45(-) SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45(-) SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and long-term proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

15.
Bronchiolar epithelium is postulated to play a critical role in the orchestration of responses to inhaled allergens, and may contribute to the pathogenesis of asthma. Using a murine model of allergic airway inflammation and hyperresponsiveness, we demonstrate in mice sensitized with ovalbumin (OVA) that following a single challenge with nebulized OVA, a rapid and protracted activation of inhibitor of kappa B kinase (IKK) occurred in lung tissue. IKK activation was followed by nuclear localization of nuclear factor (NF)-kappaB within the bronchiolar epithelium and increased luciferase activity in lungs of mice containing a NF-kappaB-dependent reporter gene. Challenge of sensitized mice with OVA also induced mRNA expression of the chemokines, macrophage inflammatory protein-2 (MIP-2) and eotaxin in lung tissue, which corresponded temporally with the observed influx of neutrophils and eosinophils, respectively, into the airspaces. Using laser capture microdissection and quantitative polymerase chain reaction, we demonstrated that MIP-2 and eotaxin were predominantly expressed in bronchiolar epithelium, in contrast to distal regions of the lungs, which expressed lower or undetectable levels of these mRNAs. These studies strengthen the potential importance of the bronchiolar epithelial cell as a source of production of NF-kappaB-dependent mediators that play a role in asthma.  相似文献   

16.
17.
The airway epithelium plays a critical role in asthma. E-cadherin, located on the basolateral side of the epithelial cells, forms adherent junctions. To investigate the role of E-cadherin on the regulation of permeability of molecules and fluid in asthmatic responses, we observed the dynamics of E-cadherin after an immunochallenge against guinea pigs. Immunohistochemical studies revealed that E-cadherin was expressed on the lateral sides of epithelial cells before the immunochallenge and after immediate airway responses (IAR). However, E-cadherin immunoreactivities decreased from the basolateral region in late airway responses (LAR) 6 h after the challenge. Simultaneously, soluble E-cadherin immunoreactivities were detected in lavage fluid only in LAR, suggesting that E-cadherin is partly cleaved and released into the lumen in LAR. Airway permeability, which was examined by penetration of horseradish peroxidase from the airway side into the epithelium, increased in both IAR and LAR. These results suggest that E-cadherin detachment from the lateral side of the epithelial cells increased airway permeability in LAR but not IAR. We conclude that an antigen challenge causes an opening of adherent junctions as well as increases airway permeability in LAR. This mechanism would participate in airflow limitation during attacks and the increase of airway permeability and hyperresponsiveness in asthmatics.  相似文献   

18.
Epithelial shedding is a characteristic feature of asthmatic airways and has been attributed to eosinophil products. We have examined the interaction of purified intraperitoneal guinea pig eosinophils with or without platelet-activating factor (PAF, 10(-7) M) or lyso-PAF (10(-7) M) with guinea pig tracheal epithelium in vitro. At 0, 4, 14, and 24 h, the percentage of ciliation of the tracheal circumference (CTC) was measured by light microscopy and the ciliary beat frequency (CBF) by photometry. PAF-activated eosinophils (50 x 10(6) cells/ml) disrupted the epithelium, mean CBF and CTC being reduced by 77.8 +/- 5.8% (mean +/- SEM; P less than 0.001 versus control) and 94.2 +/- 1.4% (P less than 0.001) over 24 h, respectively. PAF (10(-7) M) alone had no significant effect. Lyso-PAF with eosinophils (50 x 10(6) cells/ml) also reduced mean CBF and CTC but to a lesser extent. Eosinophils alone also led to a reduction of 36.2 +/- 11.4% in mean CBF and 53.0 +/- 15.5% in CTC, but these changes were not significant. The PAF antagonist, WEB 2086 (10(-6) M), significantly inhibited the mean CBF and CTC reduction due to PAF-activated eosinophils by 61.5 +/- 17.2% (P less than 0.01) and 20.8 +/- 6.5% (P less than 0.05), respectively. In addition, catalase (1,125 U/ml) partially inhibited the mean CBF and CTC reduction induced by PAF-activated eosinophils. Intraperitoneal neutrophils (PMN) (50 x 10(6) cells/ml) also disrupted epithelium but to a lesser extent (24-h reduction: 34.2 +/- 12.7% for mean CBF and 60.2 +/- 13.2% for CTC, respectively). Stimulation with PAF (10(-7) M) had no further effect. Marked exfoliation of the epithelial layer was observed after 14 h of incubation with activated eosinophils. We concluded the PAF-activated eosinophils are capable of grossly disrupting ciliated epithelium and may contribute to epithelial damage observed in asthma.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号