首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Breast cancer metastasis to bone causes resorption of the mineralized matrix by osteoclasts.Macrophage colony stimulating factor (M-CSF)and receptor activator of the NF-kappaB ligand (RANKL) are produced by stromal cells and are essential for osteoclast formation. The human breast cancer cell line, MDA-MB-231, reliably forms bone metastases in a murine model and stimulates osteoclast formation in culture. We hypothesized that MDA-MB-231 stimulates osteoclast formation through secretion of M-CSF and/or RANKL. MATERIALS AND METHODS: We cocultured MDA-MB-231 and a bone marrow derived cell line, UAMS-33, and evaluated the expression of M-CSF and RANKL mRNA. Osteoclast formation was assessed using these cells added to hematopoietic cell cultures. RESULTS: MDA-MB-231 exhibited constitutive expression of M-CSF mRNA. As expected, addition of recombinant M-CSF (30 ng/ml) and RANKL (30 ng/ml) to hematopoietic osteoclast precursors supported osteoclast formation, while the addition of soluble RANKL alone or MDA-231 without added RANKL did not. Notably, coculture of MDA-231 with hematopoietic cells and added soluble RANKL stimulated significant osteoclast formation, indicating that MDA-231 served as an effective source for M-CSF. MDA-231 did not express RANKL. However, when cocultured with the murine bone marrow stromal cell line UAMS-33, RANKL expression was significantly increased in the latter cells. MDA-231 also stimulated osteoclast formation in coculture with UAMS-33 and hematopoietic cells. CONCLUSIONS: We conclude that MDA-MB-231 increases osteoclast formation by secreting adequate amounts of M-CSF protein and enhancing the expression of RANKL by stromal support cells. The ability to stimulate osteoclasts may explain the ability to metastasize to bone.  相似文献   

2.
Osteoclast formation in bone is supported by osteoblasts expressing receptor activator of NF-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) expression. Numerous osteotropic factors regulate expression levels of RANKL and the RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts, thereby affecting osteoclast differentiation. However, not only in RANKL widely expressed in soft tissues, but osteoclasts have been noted in extraskeletal lesions. We found that cultured skin fibroblastic cells express RANKL, M-CSF, and OPG messenger (mRNA). Stimulation by 1 alpha,25 dihydroxyvitamin D3 [1,25(OH)2D3] plus dexamethasone (Dex) augmented RANKL and diminished OPG mRNA expression in fibroblastic cells and caused the formation of numerous osteoclasts in cocultures of skin fibroblastic cells with hemopoietic cells or monocytes. The osteoclasts thus formed expressed tartrate-resistant acid phosphatase (TRAP) and calcitonin (CT) receptors and formed resorption pits in cortical bone. Osteoclast formation also was stimulated (in the presence of Dex) by prostaglandin E2 (PGE2), interleukin-11 (IL-11), IL-1, tumor necrosis factor-alpha (TNF-alpha), and parathyroid hormone-related protein (PTHrP), factors which also stimulate osteoclast formation supported by osteoblasts. In addition, granulocyte-macrophage-CSF (GM-CSF), transforming growth factor-beta (TGF-beta), and OPG inhibited osteoclast formation in skin fibroblastic cell-hemopoietic cell cocultures; CT reduced only osteoclast nuclearity. Fibroblastic stromal cells from other tissues (lung, respiratory diaphragm, spleen, and tumor) also supported osteoclast formation. Thus, RANKL-positive fibroblastic cells in extraskeletal tissues can support osteoclastogenesis if osteolytic factors and osteoclast precursors are present. Such mesenchymally derived cells may play a role in pathological osteolysis and may be involved in osteoclast formation in extraskeletal tissues.  相似文献   

3.
HA activates CD44 to stimulate RANKL expression in bone marrow stromal cells. HA stimulation of RANKL is blocked by anti-CD44 antibody and is absent in cells from CD44(-/-) mice. CD44(-/-) mice exhibit thicker cortical bone and a smaller medullary cavity, but indices of bone resorption are not affected. INTRODUCTION: Hyaluronan (HA), the major nonprotein glycosaminoglycan component of the extracellular matrix in mammalian bone marrow, functions in part through its receptor, CD44, to stimulate a series of intracellular signaling events that lead to cell migration, adhesion, and activation. To determine whether HA activation of CD44 influences RANKL and osteoprotegerin (OPG) expression and whether CD44 is functionally important in bone metabolism, we studied whole bone and bone marrow stromal cells (BMSCs) from wildtype and CD44(-/-) mice. MATERIALS AND METHODS: BMSCs from wildtype and CD44(-/-) mice at 7 weeks of age were cultured and treated with either HA or anti-CD44 antibody. The levels of mRNA of RANKL, OPG, CD44, alkaline phosphatase (ALP), osteocalcin (OC), and alphaI collagen (COLL) were determined by quantitative real-time RT-PCR. Levels of RANKL and CD44 protein were measured by immunoblotting, and expression of CD44 in whole bone was determined by immunohistochemical staining. Double immunofluorescence staining and confocal microscopy were used to study colocalization of Cbfa1, CD44, and HA. Tibias were imaged using muCT, and cancellous and cortical parameters were measured. Osteoblast and osteoclast surface in the distal femoral metaphysis and osteoclast on the endocortical surface at the tibio-fibular junction were measured using quantitative histomorphometry. Differences were analyzed using ANOVA and the Newman-Keuls test. RESULTS: Addition of HA dose-dependently increased RANKL mRNA (3.6-fold) and protein (3-fold) levels in BMSCs. Stimulation of RANKL by HA could be blocked with anti-CD44 antibody. Treatment of cells with HA or anti-CD44 antibody had no significant effect on OPG mRNA levels. Both CD44 and HA localized on the plasma membrane in cells expressing Cbfa1. HA localization on the cell membrane disappeared when cells were preincubated with anti-CD44 antibody. Compared with control mice, cortical bone of CD44(-/-) was thicker, and medullary area was smaller at both 7 and 17 weeks, but at 7 weeks, indices of bone resorption were normal. At 17 weeks of age, tibial mass of CD44(-/-) mice was higher than control mice. CD44(-/-) animals expressed less RANKL in whole bone (-30%) and in BMSCs (-50%). Cells from CD44(-/-) animals failed to respond to either HA or CD44 antibody treatment. CONCLUSIONS: HA can increase RANKL expression in BMSCs through CD44.  相似文献   

4.
Osteoclasts from a patient affected by osteopetrosis were examined in vivo and in vitro. Iliac crest biopsy revealed an osteosclerotic pattern, with prominent numbers of osteoclasts noted for hypernuclearity and incomplete adherence to the bone surface. A population comprising tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated and mononuclear cells, and alkaline phosphatase-positive stromal fibroblasts was obtained in vitro from bone marrow. Mononuclear TRAP-positive precursors spontaneously fused in culture to form giant osteoclast-like cells. These cells expressed the osteoclast marker MMP-9 and calcitonin receptor, and lacked the macrophage marker, Fc receptor. Expression and distribution of c-src, c-fms, and CD68, and response to steroid hormones relevant to osteoclast differentiation and function were apparently normal, whereas cell retraction in response to calcitonin was impaired. TRAP-positive multinucleated cells did not form osteoclast-specific adhesion structures (clear zone, podosomes, or actin rings). Bone resorption rate was severely reduced in vitro. Focal adhesions and stress fibers were observed en lieu of podosomes and actin rings. Adhesion structures contained low levels of immunoreactive vitronectin receptor, most of this integrin being retained in cytoplasmic vesicles. These data provide the first characterization of abnormal differentiation and function of human osteopetrotic osteoclast-like cells.  相似文献   

5.
Parathyroid hormone-related protein (PTHrP) is not required for osteoclastogenesis during embryonic development; however, after birth it has been shown to regulate osteoclast formation during tooth eruption. Our study explores the hypothesis that PTHrP also may regulate osteoclast differentiation in the regenerating skeletal tissues of deer antlers, bones capable of complete regeneration. Osteoclast-like multinucleated cells (MNCs) formed spontaneously in micromass cultures derived from antler cartilage and these cells had the phenotypic characteristics of osteoclasts. PTHrP and receptor activator of NF-kappaB ligand (RANKL) stimulated antler osteoclast formation although the effect of RANKL was less marked than that of PTHrP. The addition of osteoprotegerin (OPG) only partially decreased (by approximately 65%) the number of osteoclasts in PTHrP-treated cultures. To determine whether PTHrP also potentially could have direct effects on antler osteoclasts, we studied, by confocal microscopy, the expression of the type I PTH/PTHrP receptor (PTH1R) in MNCs cultured on glass and found the receptor protein to have a nuclear localization. In situ hybridization showed that antler MNCs also expressed PTH1R and PTHrP messenger RNAs (mRNAs). PTHrP was immunolocalized in MNCs cultured on glass but was undetectable in cells resorbing a dentine substrate. In tissue sections of antler cartilage, PTHrP and PTH1R were expressed in vitronectin receptor-positive (VNR+) osteoclast-like cells localized in the perivascular stroma. Thus, these data show that PTHrP plays a role in the regulation of osteoclast differentiation in regenerating skeletal tissues and that PTHrP can have effects on osteoclastogenesis that are independent of RANKL synthesis. Ours is the first study to describe the expression of the type I PTH/PTHrP receptor in mammalian osteoclasts at a protein and mRNA level, which indicates that PTHrP also may have a direct effect on osteoclasts. This also is the first study to show a nuclear localization of the PTHIR in cells of the osteoclast lineage, although the functional significance of this observation has yet to be established.  相似文献   

6.
Osteoclasts are thought to belong to a macrophage lineage. However, the nature of common precursors of osteoclasts and macrophages remains to be investigated. We have characterized the differentiation potential of mouse bone marrow macrophages into mature osteoclasts. Monocyte macrophage-colony-stimulating factor (M-CSF) stimulated the proliferation of bone marrow macrophages in a dose-dependent manner and these M-CSF-dependent bone marrow macrophage (MDBM) cells efficiently differentiated into the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the presence of soluble RANKL (sRANKL) and M-CSF in the in vitro culture. The macrophage-like cell line TMC16 was established from tsA58 (temperature-sensitive SV40 large T-antigen) transgenic mice in the same manner to the preparation of MDBM cells and also differentiated into mature osteoclasts. During this differentiation in vitro, the morphology of the cells changed from spindle to round and smaller (termed pOC) on day 2 and to multinuclear (termed multinucleated cells [MNCs]) on day 4. The surface expression of macrophage marker CD14 was down-regulated and that of CD43 was up-regulated on pOC, analyzed by flow cytometry. RNA analysis revealed that osteoclast marker genes such as calcitonin receptor (CTR), carbonic anhydrase II (CAII), cathepsin K (cath K), MMP9, and TRAP were strongly expressed in MNCs and weakly in pOC whereas MDBM cells did not express these genes. However, the osteopontin (OPN) gene was strongly expressed in MDBM cells and this expression became weakened after differentiation into pOC. The TMC16 cell line weakly expressed cath K, TRAP, and OPN, suggesting that the TMC16 cell line is immortalized at a stage slightly differentiated from MDBM cells. Furthermore, cell sorting analysis revealed that osteoclast early progenitors in bone marrow cells are preferentially present in the Mac-1- F4/80dull population, which differentiated into MDBM cells (the osteoclast progenitor) expressing Mac-1+ F4/80int, suggesting that M-CSF plays roles of a differentiation factor as well as a growth factor for osteoclast early progenitors. These results showed the transition of morphology, surface markers, and gene expression from the early to mature stage in osteoclast differentiation. We propose three differentiation stages in the osteoclast lineage: the pro-osteoclast (spindle-shaped macrophage cells), the pre-osteoclast (small round mononucleated TRAP-positive cells), and the mature osteoclast (multinucleated TRAP-positive cells) stage.  相似文献   

7.
Parathyroid hormone-related peptide (PTHrP) induces pathological bone resorption in an endocrine manner, resulting in hypercalcemia of malignancy. However, the histopathological aspect of the action of PTHrP secreted by tumor cells on bone resorption has not well been documented. Therefore, we studied cell–cell interactions between bone cells, stromal cells, and PTHrP-secreting tumor cells (EC-GI-10) morphologically. Tumor cells injected subcutaneously into the parietal region formed a tumor mass, invading the bone marrow. The tumor mass was surrounded by a membrane structure consisting of stromal cells. These stromal cells were positive for alkaline phosphatase (ALPase). Tartrate-resistant acid phosphatase (TRAPase)-positive osteoclasts were localized close to the ALPase-positive cells, and numerous osteoclasts were observed on the neighboring bone surfaces. PTHrP, vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-9 were detected in the tumor cells. Using RT-PCR, expression of interleukin (IL)-1, IL-1, and PTHrP, which are strong bone resorption factors, was detected in the tumor cells. Some ALPase-positive cells localizing on the neighboring bone surfaces and endothelial cells revealed PTH/PTHrP receptor immunoreactivity. Ultrastructurally, numerous blood vessels were observed between the tumor nests and the stromal cells. The nests were surrounded by a basement membrane, but it was discontinuous, therefore permitting direct contact between the tumor cells and the stromal cells. These results indicate that PTHrP secreted by tumor cells appears to stimulate osteoclast differentiation and bone resorption in a paracrine manner through PTH/PTHrP receptor-immunopositive cells. IL-1, IL-1, VEGF, and MMP-9 may also be involved in facilitating osteoclast formation and the subsequent bone resorption.  相似文献   

8.
Although osteopontin (OPN) is recognized generally as a secreted protein, an intracellular form of osteopontin (iOPN), associated with the CD44 complex, has been identified in migrating fibroblastic cells. Because both OPN and CD44 are expressed at high levels in osteoclasts, we have used double immunofluorescence analysis and confocal microscopy to determine whether colocalization of these proteins has functional significance in the formation and activity of osteoclasts. Analysis of rat bone marrow-derived osteoclasts revealed strong surface staining for CD44 and beta1- and beta3-integrins, whereas little or no staining for OPN or bone sialoprotein (BSP) was observed in nonpermeabilized cells. In permeabilized perfusion osteoclasts and multinucleated osteoclasts, staining for OPN and CD44 was prominent in cell processes, including filopodia and pseudopodia. Confocal microscopy revealed a high degree of colocalization of OPN with CD44 in motile osteoclasts. In cells treated with cycloheximide (CHX), perinuclear staining for OPN and BSP was lost, but iOPN staining was retained within cell processes. In osteoclasts generated from the OPN-null and CD44-null mice, cell spreading and protrusion of pseudopodia were reduced and cell fusion was impaired. Moreover, osteoclast motility and resorptive activity were significantly compromised. Although the area resorbed by OPN-null osteoclasts could be rescued partially by exogenous OPN, the resorption depth was not affected. These studies have identified an intracellular form of OPN, colocalizing with CD44 in cell processes, that appears to function in the formation and activity of osteoclasts.  相似文献   

9.
The multifunctional adhesion molecule CD44 is a major cell-surface receptor for hyaluronic acid (HUA). Recent data suggest that it may also bind the ubiquitous bone-matrix protein, osteopontin (OPN). Because OPN has been shown to be a potentially important protein in bone remodelling, we investigated the hypothesis that OPN interactions with the CD44 receptor on bone cells participate in the regulation of the healing of fractures. We examined the spatial and temporal patterns of expression of OPN and CD44 in healing fractures of rat femora by in situ hybridisation and immunohistochemistry. We also localised HUA in the fracture callus using biotinylated HUA-binding protein. OPN was expressed in remodelling areas of the hard callus and was found in osteocytes, osteoclasts and osteoprogenitor cells, but not in cuboidal osteoblasts which were otherwise shown to express osteocalcin. The OPN signal in osteocytes was not uniformly distributed, but was restricted to specific regions near sites where OPN mRNA-positive osteoclasts were attached to bone surfaces. In the remodelling callus, intense immunostaining for CD44 was detected in osteocyte lacunae, along canaliculi, and on the basolateral plasma membrane of osteoclasts, but not in the cuboidal osteoblasts. HUA staining was detected in fibrous tissues but little was observed in areas of hard callus where bone remodelling was progressing. Our findings suggest that OPN, rather than HUA, is the major ligand for CD44 on bone cells in the remodelling phase of healing of fractures. They also raise the possibility that such interactions may be involved in the communication of osteocytes with each other and with osteoclasts on bone surfaces. The interactions between CD44 and OPN may have important clinical implications in the repair of skeletal tissues.  相似文献   

10.
Giant cell tumor of bone (GCT) presents with numerous osteoclast-like multinucleated giant cells that are principally responsible for the extensive bone resorption by the tumor. Although the precise etiology of GCT remains uncertain, the accumulation of giant cells is partially due to the high expression of the receptor activator of nuclear factor-κB ligand (RANKL) from the neoplastic stromal cells. Here, we have investigated whether parathyroid hormone-related protein (PTHrP) plays a role in the pathogenesis of GCT. Immunohistochemistry results revealed PTHrP expression in the stromal cells of the tumor, and that its receptor, the parathyroid hormone type 1 receptor (PTH1R), is expressed by both the stromal cells and giant cells. PCR and Western blot analyses confirmed the expression of PTHrP and PTH1R by isolated stromal cells from five patients presenting with GCT. Treatment of GCT stromal cells with varying concentrations of PTHrP (1-34) significantly increased both RANKL gene expression and the number of multinucleated cells formed from RAW 264.7 cells in co-culture experiments, whereas inhibition of PTHrP with a neutralizing antibody decreased RANKL gene expression. These results suggest that PTHrP is expressed within GCT by the stromal cells and can contribute to the abundant RANKL expression and giant cell formation within the tumor.  相似文献   

11.
12.
13.
目的探讨低分子量褐藻糖胶(LMWF)对小鼠单核细胞RAW264.7诱导成熟破骨细胞凋亡的影响。方法通过100ng/m L RANKL诱导RAW264.7细胞株分化为破骨细胞,经TRAP特异性染色和骨吸收陷窝对诱导后的细胞进行鉴定。鉴定成功后,用100 ng/m L RANKL诱导RAW264.7细胞株5 d后,使用含有LMWF的培养基继续培养3 d,通过对TRAP阳性细胞计数和分析骨吸收面积来观察低分子量褐藻糖胶对破骨细胞的抑制和骨吸收功能情况;采用流式细胞术检测LMWF对破骨细胞凋亡的影响,capsase-3活性测试试剂盒检测LMWF对capsase-3活性进行测定;RT-PCR检测LMWF对成熟破骨细胞BAX与BCL-2基因表达的影响。结果单纯采用100 ng/m L的RANKL可成功诱导成熟的、有功能的破骨细胞。LMWF可以明显抑制RANKL诱导成熟破骨细胞的形成以及成熟破骨细胞的骨吸收功能;流式细胞术显示LMWF可增加成熟破骨细胞的早期凋亡率;并且能升高capsase-3的活性;PCR显示LMWF可明显下调破骨细胞凋亡相关的BCL-2和上调BAX基因mRNA表达,降低BCL-2/BAX的比值。结论低分子量褐藻糖胶可抑制破骨细胞的活性与骨吸收能力,促进破骨细胞凋亡,其主要机制是通过下调BCL-2和上调BAX mRNA基因表达实现的。  相似文献   

14.
The cellular mechanism through which osseous breast cancer metastases induce the focal destruction of bone (tumor osteolysis) is unknown. An athymic mouse model designed for the study of tumor osteolysis was developed and the influence of two human breast cancer tumors on bone was studied. Tumor-induced osteolysis occurred between 7 and 10 weeks after inoculation of mouse femora with MDA-MB-231 or MDA-MB-435s breast cancer cells. An increase in osteoclast number and an increase in osteoclast size (area) were detected when tumor-bearing and sham-injected limbs were compared. In vitro analysis of the influence of the tumor-conditioned medium on osteoclast-mediated bone resorption revealed that this conditioned medium stimulated the resorption by increasing both the number of osteoclasts bound to bone and the number of bone resorption pits formed per osteoclast. In addition, in vitro analysis of the influence of breast cancer tumor cells on osteoclast formation or survival, or both, demonstrated that breast cancer cells induced a dramatic increase in the number of osteoclasts detected in culture. Taken in total, these findings suggest that human breast cancer tumors induce osteolysis by enhancing osteoclast adherence to bone, stimulating osteoclast-mediated bone resorption, and either prolonging the survival of osteoclasts or increasing osteoclast formation.  相似文献   

15.
目的 观察高转换型肾性骨病中骨保护素及其配体 (OPG,RANKL)的表达,并与骨形态计量学指标进行相关分析。 方法 选择10例慢性肾衰尿毒症患者和3例正常人进行髂骨活检术,获得骨组织标本。采用免疫组化方法检测OPG和RANKL蛋白质的表达。采用全自动图像分析系统进行骨组织形态计量学测定。结果 10例慢性肾衰尿毒症患者经骨病理学检查证实均为高转换型骨病,以破骨细胞活化形成骨吸收陷窝伴或不伴骨矿化不全为特点。免疫组化显示尿毒症患者骨组织中以RANKL阳性表达为主。与正常对照相比,RANKL阳性表达细胞数目显著增加,OPG阳性表达细胞数目显著减少。尿毒症患者RANKL的阳性表达细胞数目与骨吸收面积和破骨细胞数目呈显著正相关。结论 高转换型肾性骨病中,PTH的溶骨作用可能是通过OPG/RANKL/RANK系统介导的。  相似文献   

16.
刘起昆  鲍兴  李浩  蔡卓  李觅  杨彩虹 《骨科》2019,10(4):284-292
目的 研究STAT3信号通路及其下游相关分子在地诺单抗治疗骨巨细胞瘤过程中的表达变化及其意义。方法 收集我院2013年1月至2018年12月手术治疗的31例骨巨细胞瘤病人,其中28例未经地诺单抗治疗(对照组),3例经地诺单抗治疗(研究组)。通过苏木素-伊红(hematoxylin and eosin, HE)染色检测骨巨细胞瘤组织经地诺单抗治疗前后的病理学变化;通过免疫组化法检测研究组和对照组的骨巨细胞瘤组织中RANKL、STAT3及其下游分子Bcl-2、Cyclin D1分子的表达差异;通过TUNEL法检测上述两组石蜡切片组织中肿瘤细胞的凋亡情况。结果 HE染色结果:对照组中骨巨细胞瘤组织主要由肿瘤基质细胞和多核破骨样巨细胞组成;研究组中破骨样巨细胞消失,残留部分细长形肿瘤基质细胞,大量网状纤维组织及编织骨形成并替代肿瘤组织;免疫组化检测结果:RANKL主要表达于肿瘤基质细胞;STAT3主要表达于多核破骨细胞胞浆和肿瘤基质细胞胞膜;Bcl-2主要表达于多核破骨样巨细胞胞浆、散在分布于细胞核;Cyclin D1表达于多核破骨样巨细胞的细胞核中。RANKL、STAT3、Bcl-2和Cyclin D1在对照组肿瘤组织中的阳性表达率分别为70%、53%、77%、73%;研究组肿瘤组织中多核破骨样巨细胞消失,残留的肿瘤基质细胞中RANKL表达量明显减少,未见STAT3、Bcl-2、Cyclin D1分子表达;TUNEL法凋亡结果:对照组中仅有少量的肿瘤细胞凋亡,研究组中可见残留的肿瘤细胞明显凋亡。结论 地诺单抗可能通过抑制STAT3 信号通路抑制多核破骨样巨细胞的形成及促进肿瘤基质细胞凋亡。  相似文献   

17.
The mechanisms by which primary tumors of the bone cause bone destruction have not been elucidated. Unlike most other lytic bone tumors, osteoclastomas, otherwise known as giant cell tumors (GCT), contain osteoclast-like cells within the tumor stroma. A new member of the TNF-ligand superfamily member, osteoclast differentiation factor (ODF/OPGL/RANKL/TRANCE), was recently identified. ODF was shown to directly stimulate osteoclastogenesis, in the presence of M-CSF. In this study, the expression of ODF was examined in a number of tumor samples associated with bone lysis in vivo. In addition, we investigated expression of the ODF receptor on osteoclast precursors, RANK, as well as the ODF inhibitor osteoprotegerin (OPG), and another TNF-ligand superfamily member, TRAIL, previously shown to abrogate the inhibitory effects of OPG. We report here the novel finding that GCT stromal cells contain abundant ODF mRNA, whereas the giant cell population exclusively expresses RANK mRNA. These results are consistent with the osteoclast-mediated bone destruction by these tumors. We also report the expression of OPG and TRAIL mRNA in GCT samples. A comparison with other lytic and nonlytic tumors of bone showed that GCT express more ODF and TRAIL mRNA relative to OPG mRNA. In addition, GCT were found to express a number of cytokines previously reported to play central roles in osteoclastogenesis, namely, IL-1, -6, -11, -17, as well as TNF-alpha. Importantly, GCT were also found to express high levels of M-CSF mRNA, a cytokine shown to be an essential cofactor of ODF, and a survival factor for mature and developing osteoclasts. Furthermore, expression of these molecules by stromal cells isolated from GCT continued in vitro. Thus GCT constitutively express all of the signals that are currently understood to be necessary for the differentiation of osteoclasts from precursor cells.  相似文献   

18.
Recent studies have demonstrated that osteoclasts, the primary cells responsible for bone resorption, are mainly involved in bone and joint destruction in rheumatoid arthritis(RA) patients. Recent progress in bone cell biology has revealed the molecular mechanism of osteoclast differentiation and bone resorption by mature osteoclasts. We highlight here the potential role of the receptor activator of nuclear factor κB ligand(RANKL)-RANK pathways in bone destruction in RA and review recent clinical trials treating RA by targeting RANKL.  相似文献   

19.
Tumor-stroma interactions are of primary importance in determining the pathogenesis of metastasis. Here, we describe the application of sensitive competitive polymerase chain reaction (PCR) techniques for detection and quantitation of human breast cancer cells (MDA-MB-231) in an in vivo mouse model of experimental metastasis. Human-specific oligonucleotide primers in competitive PCR reactions were used to quantify the amount of MDA-MB-231 cells per tissue per organ. Using this species-specific (semi)quantitative PCR approach, gene expression patterns of (human) tumor cells or (mouse) stromal cells in metastatic lesions in the skeleton or soft tissues were investigated and compared. In all metastatic lesions, MDA-MB-231 cells express angiogenic factors (vascular endothelial growth factors [VEGFs]; VEGF-A, -B, and -C) and bone-acting cytokines (parathyroid hormone-related protein [PTHrP] and macrophage colony-stimulating factor [M-CSF]). In these metastases, PECAM-1-positive blood vessels and stromal cells of mouse origin are detected. The latter express angiogenic factors and markers of sprouting vessels (VEGF receptors flt-1/flk - 1/flk-4 and CD31/PECAM-1). Strikingly, steady-state messenger RNA (mRNA) levels of VEGF-A and -B and the major bone resorption stimulators PTHrP and M-CSF by tumor cells were elevated significantly in bone versus soft tissues (p < or = 0.05, p < or = 0.0001, p < or = 0.001, and p < or = 0.05, respectively), indicating tissue-specific expression of these tumor progression factors. In conclusion, MDA-MB-231 breast cancer cells express a variety of factors in vivo that have been implicated in metastatic bone disease and that correlate with poor survival of patients with breast cancer. We hypothesize that the observed up-regulated expression of angiogenic and bone-resorbing factors by the breast cancer cells in the skeleton underlie the clinically observed osteotropism of breast cancer cells and pathogenesis of osteolytic bone metastases. The application of the species-specific competitive PCR-based assay in vivo can provide new information concerning the involvement of gene families in tumor progression and metastatic disease and greatly facilitates the study of tumor-stroma interactions in cancer invasion and metastasis.  相似文献   

20.
目的 探讨人乳腺癌细胞转移到人骨的乳腺癌骨转移小鼠模型中骨髓肿瘤干细胞表型CD44和CD24的表达及其意义.方法 50只SCID小鼠随机分成实验组和对照组,其中实验组鼠背部植入人骨后随机均分3亚组:A组(MDA-MB-231干细胞亚群1×105个/只)、B组(同A组细胞1×106个/只)和C组(MDA-MB-231亲代细胞1×106个/只);对照组设为D组(阳性对照,未植入人骨,同C组细胞直接注射)、E组(阴性对照,植入人骨,生理盐水注射).各组8周后取人骨、鼠骨等行常规HE染色及CK、CD44、CD24、CXCR4、OPN免疫组织化学标记.Real-time PCR检测CD44、CXCR4、OPN的mRNA水平.结果 B组骨转移率最高(77.8%,P<0.05).B组中人骨转移灶CD44、CXCR4、OPN抗原表达高于C、D组骨中的表达(均有P<0.05);CD24抗原则在A、B组人骨转移灶中低表达与C、D组骨中的高表达无统计学意义(P>0.05).B组CD44mRNA表达水平是C组的15.2倍、D组的21.1倍;B组CXCR4mRNA表达水平是C组8.4倍、D组28.4倍;B组OPN-mRNA表达水平是C组4.8倍、D组11.6倍;而B组CD24的mRNA表达显著低于C、D组(均为30%).结论 利用MDA-MB-231肿瘤干细胞亚群(CD44+/CD24-)可制备高转移率的"人源性"乳腺癌骨转移模型,其机制可能与CD44高表达有关.骨转移相关基因CXCR4、OPN转录上调可能参与其过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号