共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoskeleton and integrin-mediated adhesion signaling in human CD34+ hemopoietic progenitor cells 总被引:1,自引:0,他引:1
Significant progress has been made recently in the understanding of cell adhesion signaling. Many components of focal adhesion complexes have been identified in fibroblasts and endothelial cells, showing considerable overlap and complementarity between growth signaling mediated by growth factor receptors and adhesive signaling mediated by cell adhesion receptors such as integrins. These studies showed that the cytoskeleton is essential for the correct intracellular localization of large signaling complexes that regulate the cellular machinery. Although adhesive interactions are essential to maintain steady-state hemopoiesis, the study of the function and role of adhesive interactions in hemopoietic progenitor and stem cells is less advanced. As in fibroblasts, functional overlap between hemopoietic growth factor receptors and cell adhesion receptors has been demonstrated, with the cytoskeleton likely playing a critical role in integrating information provided by soluble factors and cell adhesion molecules constituting the hemopoietic microenvironment. The intention of this article is to give a critical review of the current knowledge about the cytoskeleton and integrin-mediated signaling in hemopoietic progenitor cells. 相似文献
2.
Protein kinase C (PKC) is a family of serine/threonine protein kinases involved in many cellular responses. Although the analysis of PKC activity in many systems has provided crucial insights to its biologic function, the precise role of different isoforms on the differentiation of normal hematopoietic progenitor cells into the various lineages remains to be investigated. The authors have assessed the state of activation and protein expression of PKC isoforms after cytokine stimulation of CD34(+) progenitor cells from human bone marrow. Freshly isolated CD34(+) cells were found to express PKC-alpha, PKC-beta2, and PKC-epsilon, whereas PKC-delta, PKC-gamma, and PKC-zeta were not detected. Treatment with erythropoietin (EPO) or with EPO and stem cell factor (SCF) induced a predominantly erythroid differentiation of CD34(+) cells that was accompanied by the up-regulation of PKC-alpha and PKC-beta2 protein levels (11.8- and 2.5-fold, respectively) compared with cells cultured in medium. Stimulation with EPO also resulted in the nuclear translocation of PKC-alpha and PKC-beta2 isoforms. Notably, none of the PKC isoforms tested were detectable in CD34(+) cells induced to myeloid differentiation by G-CSF and SCF stimulation. The PKC inhibitors staurosporine and calphostin C prevented EPO-induced erythroid differentiation. Down-regulation of the PKC-alpha, PKC-beta2, and PKC-epsilon expression by TPA pretreatment, or the down-regulation of PKC-alpha with a specific ribozyme, also inhibited the EPO-induced erythroid differentiation of CD34(+) cells. No effect was seen with PKC-beta2-specific ribozymes. Taken together, these findings point to a novel role for the PKC-alpha isoform in mediating EPO-induced erythroid differentiation of the CD34(+) progenitor cells from human bone marrow. (Blood. 2000;95:510-518) 相似文献
3.
4.
CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration 总被引:2,自引:0,他引:2 下载免费PDF全文
Hematopoietic progenitor cell trafficking is an important phenomenon throughout life. It is thought to occur in sequential steps, similar to what has been described for mature leukocytes. Molecular actors have been identified for each step of leukocyte migration; recently, CD99 was shown to play a part during transendothelial migration. We explored the expression and role of CD99 on human hematopoietic progenitors. We demonstrate that (1) CD34+ cells express CD99, albeit with various intensities; (2) subsets of CD34+ cells with high or low levels of CD99 expression produce different numbers of erythroid, natural killer (NK), or dendritic cells in the in vitro differentiation assays; (3) the level of CD99 expression is related to the ability to differentiate toward B cells; (4) CD34+ cells that migrate through an endothelial monolayer in response to SDF-1alpha and SCF display the highest level of CD99 expression; (5) binding of a neutralizing antibody to CD99 partially inhibits transendothelial migration of CD34+ progenitors in an in vitro assay; and (6) binding of a neutralizing antibody to CD99 reduces homing of CD34+ progenitors xenotransplanted in NOD-SCID mice. We conclude that expression of CD99 on human CD34+ progenitors has functional significance and that CD99 may be involved in transendothelial migration of progenitors. 相似文献
5.
OBJECTIVE: To identify bipotential precursor cells of erythroid and myeloid development in human bone marrow. MATERIALS AND METHODS: Cells coexpressing CD13 and CD36 (CD13+CD36+) were investigated by analyzing cell-surface marker expression during erythroid development (induced with a combination of cytokines plus erythropoietin), or myeloid development (induced with the same cocktail of cytokines plus granulocyte colony-stimulating factor of bone marrow-derived CD133 cells in liquid cultures. CD13+CD36+ subsets were also isolated on the 14(th) day of cultures and further evaluated for their hematopoietic clonogenic capacity in methylcellulose. RESULTS: Colony-forming analysis of sorted CD13+CD36+ cells of committed erythroid and myeloid lineages demonstrated that these cells were able to generate erythroid, granulocyte, and mixed erythroid-granulocyte colonies. In contrast, CD13+CD36- or CD13-CD36+ cells exclusively committed to granulocyte/monocyte or erythroid colonies, respectively, but failed to form mixed erythroid-granulocyte colonies; no colonies were detected in CD13-CD36- cells with lineage-supporting cytokines. In addition, our data confirmed that erythropoietin induced both erythroid and myeloid commitment, while granulocyte colony-stimulating factor only supported the differentiation of the myeloid lineage. CONCLUSIONS: The present data identify some CD13+CD36+ cells as bipotential precursors of erythroid and myeloid commitment in normal hematopoiesis. They provide a physiological explanation for the cell identification of myeloid and erythroid lineages observed in hematopoietic diseases. This unique fraction of CD13+CD36+ cells may be useful for further studies on regulating erythroid and myeloid differentiation during normal and malignant hematopoiesis. 相似文献
7.
Rosenzweig M; Marks DF; Zhu H; Hempel D; Mansfield KG; Sehgal PK; Kalams S; Scadden DT; Johnson RP 《Blood》1996,87(10):4040-4048
8.
The CD34+90+ cell dose does not predict early engraftment of autologous blood stem cells as well as the total CD34+ cell dose 总被引:1,自引:0,他引:1
Stewart DA Guo D Luider J Auer I Klassen J Morris D Chaudhry A Brown C Russell JA Gluck S 《Bone marrow transplantation》2000,25(4):435-440
CD90 or Thy-1 is an antigen co-expressed with CD34+ on putative immature hematopoietic stem cells. Peak mobilization of CD34+90+ cells into the blood occurs a few days earlier than peak mobilization of total CD34+ cells. Because it is not known which cell type best correlates with engraftment, the optimal timing of apheresis remains unclear. The purpose of the study was to determine if the CD34+90+ cell dose predicts engraftment of autologous blood stem cells independent of the total CD34+ cell dose/kg, the dose of other CD34+ cell subsets (CD34+33-, CD34+38-, CD34+41+), or various clinical factors. Data were analyzed on 125 consecutive patients ranging in age from 19 to 66 years (median 46) who underwent autologous blood stem cell transplantation (ABSCT) for breast cancer (54), lymphoma (59), or other malignancies (12). By univariate analysis, neutrophil (> or = 0.5 x 10(9)/l) and platelet (> or = 20 x 10(9)/l or > or = 100 x 10(9)/l) engraftment correlated better with the total CD34+ cell dose than with the CD34+90+ cell subset. Using Cox proportional hazards models, factors independently associated with both neutrophil engraftment (> or = 0.5 x 10(9)/l) and platelet engraftment (> or = 20 x 10(9)/l and > or = 100 x 10(9)/l) were higher total CD34+ dose/kg and high-dose regimen (melphalan-containing slower than other regimens). In conclusion, the total CD34+ dose/kg was a better predictor of hematopoietic engraftment following ABSCT than the dose of any CD34+ subset, including CD34+90+ cells. Apheresis should continue to be timed according to peak CD34+ levels. 相似文献
9.
10.
11.
Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells 总被引:15,自引:0,他引:15
Nitric oxide (NO) is a reactive molecule with numerous physiologic and pathophysiologic roles affecting the nervous, cardiovascular, and immune systems. In previous work, we have demonstrated that NO inhibits the growth and induces the monocytic differentiation of cells of the HL- 60 cell line. We have also demonstrated that NO inhibits the growth of acute nonlymphocytic leukemia cells freshly isolated from untreated patients and increases monocytic differentiation antigens in some. In the present work, we studied the effect of NO on the growth and differentiation of normal human bone marrow cells in vitro. Mononuclear cells isolated from human bone marrow were cultured in semisolid media and treated with the NO-donating agents sodium nitroprusside (SNP) or S- nitroso-acetyl penicillamine (SNAP) (0.25 to 1 mmol/L). Both agents decreased colony-forming unit-erythroid (CFU-E) and colony-forming unit- granulocyte macrophage (CFU-GM) formation by 34% to 100%. When CD34+ cells were examined, we noted that these cells responded to SNP and SNAP differently than did the mononuclear cells. At a concentration range of 0.25 to 1 mmol/L, SNP inhibited the growth of CFU-E by 30% to 75%. However, at the same concentration range, SNP increased the number of CFU-GM by up to 94%. At concentrations of 0.25 to 1 mmol/L, SNAP inhibited the growth of CFU-E by 33% to 100%. At a concentration of 0.25 mmol/L, SNAP did not affect CFU-GM. At higher concentrations, SNAP inhibited the growth of CFU-GM. Although SNP increased intracellular levels of cGMP in bone marrow cells, increasing cGMP in cells by addition of 8-Br-cGMP (a membrane permeable cGMP analogue) did not reproduce the observed NO effects on bone marrow colonies. These results demonstrate that NO can influence the growth and differentiation of normal human bone marrow cells. NO (generated in the bone marrow microenvironment) may play an important role modulating the growth and differentiation of bone marrow cells in vivo. 相似文献
12.
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage. 相似文献
13.
Numerous studies have shown that interferon-gamma (IFN gamma) inhibits the proliferative effects of colony-stimulating factors (CSFs) on human bone marrow cells. In the present study we investigated the effects of IFN gamma and other described inhibitory factors on the proliferation of highly purified CD34+ human hematopoietic progenitor cells (HPC) in response to recombinant CSFs. While transforming growth factor-beta (TGF beta) and IFN alpha were highly inhibitory, IFN gamma strongly potentiated interleukin-3 (IL-3) and, to a lesser extent, granulocyte-macrophage-CSF (GM-CSF) induced growth of CD34+ HPC. IFN gamma had no significant proliferative effect per se, and did not affect granulocyte-CSF (G-CSF)-dependent cell proliferation. Within 10 days the number of viable cells generated in the presence of IL-3 + IFN gamma was two times higher than in the presence of IL-3 alone. Limiting dilution analysis showed that IFN gamma acts directly on its target cell to increase the frequency of IL-3-responding cells without affecting the average size of the IL-3-dependent clones. Enhanced frequency of IL-3- and GM-CSF-responding cells was also observed in colony assays where the addition of IFN gamma increased by twofold to threefold the number of granulocyte colony-forming units (CFU-G), macrophage CFUs (CFU-M), granulocyte-macrophage CFUs (CFU-GM), and mixed erythroid (E-MIX). In contrast, IFN gamma did not affect the generation of erythroid burst-forming units (BFU-e) in such cultures. In longer-term culture, the combination of IFN gamma and IL-3 did not alter the lineage distribution of the cells when compared with IL-3 alone. However, after 15 days, when mature cells were present in the cultures, IFN gamma displayed cell concentration-related growth-inhibitory effects. Thus, IFN gamma appears to stimulate the early stage of myelopoiesis by enhancing the frequency of growth factor-responding cells but, unlike tumor necrosis factor alpha (TNF alpha), does not alter cell differentiation. 相似文献
14.
The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro 总被引:19,自引:1,他引:19
The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulating factor (G-CSF), CSF-1, granulocyte macrophage (GM) CSF stem cell factor (SCF), and IL-6. FL and SCF were equally effective in stimulating colony formation in combination with IL-3. However, the tri-factor combination of FL + IL-3 + SCF stimulated 2.3-fold and 2.5-fold more colonies than FL + IL-3 and SCF + IL-3, respectively. These additional recruited progenitors appeared to be predominantly located in a primitive (CD71-) subset of the CD34+ progenitors, as 4.5-fold more colonies were formed by CD34+CD71- cells in response to FL + IL-3 + SCF than to FL + IL-3 or SCF + IL-3. Similar findings were observed in serum-containing and serum-deprived cultures. Whereas FL did not enhance burst-forming unit-erythroid (BFU-E) colony formation of CD34+ BM cells in the presence of serum, a low number of BFU-E colonies were formed in response to FL plus erythropoietin (Epo) under serum-deprived conditions. In addition, FL both in serum-containing and serum-deprived cultures stimulated colony formation of more committed myeloid progenitors in CD34+CD71+ BM cells. Thus, FL potently stimulates the growth of primitive and more committed human BM progenitor cells. 相似文献
15.
Robin C Bennaceur-Griscelli A Louache F Vainchenker W Coulombel L 《British journal of haematology》1999,104(4):809-819
In contrast to myeloid and B-lymphoid differentiation, which take place in the marrow environment, development of T cells requires the presence of thymic stromal cells. We demonstrate in this study that human CD34+, CD34+ CD38+ and CD34+ CD38(low) cells from both cord blood and adult bone marrow reproducibly develop into CD4+ CD8+ T cells when introduced into NOD-SCID embryonic thymuses and further cultured in organotypic cultures. Such human/mouse FTOC fetal thymic organ culture) thus represents a reproducible and sensitive system to assess the T-cell potential of human primitive progenitor cells. The frequency of T-cell progenitors among cord-blood-derived CD34+ cells was estimated to be 1/500. Furthermore, the differentiation steps classically observed in human thymus were reproduced in NOD-SCID FTOC initiated with cord blood and human marrow CD34+ cells: immature human CD41(low) CD8- sCD3- TCR alphabeta- CD5+ CD1a+ T cells were mixed with CD4+ CD8+ cells and more mature CD4+ CD8- TCR alphabeta+ cells. However, in FTOC initiated with bone marrow T progenitors, <10% double-positive cells were observed, whereas this proportion increased to 50% when cord blood CD34+ cells were used, and most CD4+ cells were immature T cells. These differences may be explained by a lower frequency of T-cell progenitors in adult samples, but may also suggest differences in the thymic signals required by bone marrow versus cord blood T progenitors. Finally, since cytokine-stimulated CD34+ CD38(low) cells retained their ability to generate T cells, these FTOC assays will be of value to monitor, when combined with other biological assays, the influence of different expansion protocols on the potential of human stem cells. 相似文献
16.
Mona AbdElabry Hasein Fadia Mostafa Attia Mohamed Mohy Eldin Awad Howedya Ahmed Abdelaal Magady Elbarabary 《International journal of diabetes in developing countries.》2011,31(2):113-117
Shortage of donor organs spurs research into alternative means of generating β cells. Stem cells might represent a potential source of tissues for cell therapy protocols, and diabetes is a candidate disease that may benefit from cell replacement protocols. We examined the effect of transplanted human umbilical cord blood CD34+ cells on some detailed parameters in streptozotocin- (STZ) induced diabetic mice. An experimental study was conducted in the departments of clinical pathology, physiology and pathology of Faculty of Medicine, Suez Canal University. Thirty male albino mice 8–12 weeks were included and subdivided into 3 groups, first group served as normal control group, second group as diabetic control after induction of diabetes with STZ and third group treated diabetic mice by injection of positively selected CD34 progenitor cells from human umbilical cord blood (HUCB) with a dose of one million cells/mouse. Blood glucose and serum insulin were measured at specific time interval and immunohistochemical (IHC) analysis and histopathology on pancreas were conduced. Data were analyzed using chi square between groups. Intravenous injection of CD34+ cells caused significant improvement in blood glucose level (277.9?±?102.5 mg/dl in treated group vs 530.3?±?99 mg/dl in untreated group, p?<?0.01). Blood level of mouse insulin was higher in the treated group as compared with untreated diabetic mice (0.77?±?0.2 ng/ml in treated group versus 0.26?±?0.09 in untreated group, p?<?0.001). IHC analysis for detection of human insulin producing cells in pancreas of treated mice revealed that 33.3% positive cellular staining and 55.6% positive sinusoidal staining were detected. In conclusion, Transplantation of HUCB-CD34+ cells appear to be a modality of stem cell therapy in diabetes mellitus. 相似文献
17.
Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction 总被引:4,自引:0,他引:4
Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system. 相似文献
18.
CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells. 总被引:4,自引:0,他引:4
L J Murray E Bruno N Uchida R Hoffman R Nayar E L Yeo A C Schuh D R Sutherland 《Experimental hematology》1999,27(8):1282-1294
CD109 is a monomeric cell surface glycoprotein of 170 kD that is expressed on endothelial cells, activated but not resting T-lymphocytes, activated but not resting platelets, leukemic megakaryoblasts, and a subpopulation of bone marrow CD34+ cells. Observing an apparent association between CD109 expression and the megakaryocyte lineage (MK), we sought to determine whether CD109 was expressed on MK progenitors. In fetal bone marrow (FBM), a rich source of MK progenitors, CD109 is expressed on a mean of 11% of CD34- cells. Fluorescence activated cell sorting (FACS) of FBM CD34+ cells into CD109+ and CD109- fractions revealed that the CD34+CD109+ subset contained virtually all assayable MK progenitors, including the colony-forming unit-MK (CFU-MK) and the more primitive burst-forming unit-MK (BFU-MK). The CD34+CD109+ subset also contained all the assayable burst-forming units-erythroid (BFU-E), 90% of the colony-forming units-granulocyte/macrophage (CFU-GM), and all of the more primitive mixed lineage colony-forming units (CFU-mix). In contrast, phenotypic analysis of the CD34+CD109- cells in FBM, adult bone marrow (ABM) and cytokine-mobilized peripheral blood (MPB) demonstrated that this subset comprises lymphoid-committed progenitors, predominantly of the B-cell lineage. CD109 was expressed on the brightest CD34 cells identifiable not only in FBM, but also in ABM and MPB indicating that the most primitive, candidate hematopoietic stem cells (HSC) might also be contained in the CD109+ subset. In long-term marrow cultures of FBM CD34+ cells, all assayable cobblestone area forming cell (CAFC) activity was contained within the CD109+ cell subset. Further phenotypic analysis of the CD34+CD109+ fraction in ABM indicated that this subset included candidate HSCs that stain poorly with CD38, but express Thy-1 (CD90) and AC133 antigens, and efflux the mitochondrial dye Rhodamine 123 (Rho123). When selected CD34+ cells were sorted for CD109 expression and Rho123 staining, virtually all CAFC activity was found in the CD109+ fraction that stained most poorly with Rho123. CD34+ cells were also sorted into Thy-1 CD109+ and Thy-1 CD109+ fractions and virtually all the CAFC activity was found in the Thy-1+CD109+ subset. In contrast, the Thy-1-CD109+ fraction contained most of the short-term colony-forming cell (CFC) activity. CD109, therefore, is an antigen expressed on a subset of CD34+ cells that includes pluripotent HSCs as well as all classes of MK and myelo-erythroid progenitors. In combination with Thy-1, CD109 can be used to identify and separate myelo-erythroid and all classes of MK progenitors from candidate HSCs. 相似文献
19.
20.
目的探讨骨髓CD34^+细胞向血管内皮细胞转分化的诱导方法。方法采集犬骨髓,经免疫磁珠分离出内皮祖细胞,内皮细胞生长因子(VEGF)诱导分化为内皮细胞并扩增,倒置相差显微镜、免疫细胞化学和摄取DilAc—LDL试验鉴定。将所得细胞种植于人工血管,扫描电镜观察细胞形态,并与MNCs作对比。结果经流式细胞仪测定,分离后的细胞中CD34^+细胞占78.46%±6.37%;CD34^+细胞培养2周后细胞基本铺满培养瓶底面,细胞呈“鹅卵石”状排列,CD34^+和Ⅷ因子免疫细胞化学染色均为阳性。扫描电镜下观察可见内皮细胞平铺于人工血管表面,有伪足伸出并长入血管内表面微孔内。结论通过免疫磁珠方法可分离得到高纯度的骨髓CD34^+细胞,经体外培养VEGF诱导后可定向分化为内皮细胞。 相似文献