首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of epithelial sodium channels by prostasin in Xenopus oocytes   总被引:3,自引:0,他引:3  
Prostasin, a novel serine protease, was purified from seminal fluid, and its cDNA sequence was determined. Expression of prostasin was detected in human tissues, including prostate, kidney, and lung, as well as bodily fluids, including seminal fluid and urine. However, its physiologic role in the human body is not known. Recently, a novel regulatory mechanism by which serine proteases activate epithelial sodium channel in the Xenopus oocyte was identified. Therefore, it was hypothesized that prostasin could activate sodium currents, and a rat prostasin cDNA clone was isolated to investigate its physiologic function. Rat prostasin mRNA is expressed predominantly in kidney, and lower levels of expression were detected in prostate, lung, colon, stomach, and skin. These all are epithelial tissues in which the epithelial sodium channel (ENaC) is expressed. Coexpression of rat prostasin and rat ENaC in Xenopus oocytes increased the amiloride-sensitive sodium current by twofold. Preincubation of oocytes that expressed prostasin with aprotinin did not result in an increase in sodium current, compared with the control. The removal of aprotinin from the bath solution resulted in a twofold increase of the current only in oocytes that expressed prostasin, which indicates that protease activity of prostasin is required for the ENaC activation. Expression of rat prostasin had no effect on the potassium current when expressed with rat renal outer medulla K channel, which shows specificity of prostasin action for ENAC: These results indicate that prostasin acts as an extracellular regulator of ENAC:  相似文献   

2.
3.
BACKGROUND: Actions of volatile anesthetics on ligand-gated ion channels, such as gamma-aminobutyric acid type A receptors, have been studied extensively. However, actions on other types of channels, such as K+ channels, are poorly understood. The authors previously showed that a Ca2+-activated K+ channel, IK, is sensitive to halothane, whereas SK1, another Ca2+-activated K+ channel, is insensitive. To explore how halothane acts on Ca2+-activated K+ channels, chimeras between IK and SK1 were constructed, and halothane sensitivity was analyzed. METHODS: IK, SK1, and chimera channels were expressed in Xenopus laevis oocytes. Currents of expressed channels were measured in the presence of 10 microm Ca2+ by excised patch clamp analysis. Time constants of inhibition by halothane were compared between inside-out and outside-out patch configurations. RESULTS: Currents from chimera channels possessing the pore domain derived from IK were inhibited by halothane, whereas those possessing the SK1 pore domain were insensitive. Time constants of inhibition by halothane were significantly smaller in the outside-out patches than in the inside-out patches of both wild-type IK and a chimera with pore domain of IK. CONCLUSIONS: It is suggested that halothane interacts with the extracellular part of the ionic pore of IK. Whether this type of interaction is involved in the mechanism of anesthetic actions on ligand-gated ion channels warrants further investigation.  相似文献   

4.
Large concentrations of meperidine inhibit N-methyl-D-aspartate-(NMDA) receptor channels by channel block mechanisms. Extracellular pH regulates the activity and drug sensitivity of NMDA-receptor channels. We examined the influence of extracellular pH on sensitivity to meperidine of epsilon/zeta heteromeric NMDA-receptor channels expressed in Xenopus oocytes. Inhibition of epsilon1/zeta1, epsilon2/zeta1, epsilon3/zeta1, and epsilon4/zeta1 channels by meperidine was dependent on pH, with more inhibition at acidic pH and less inhibition at alkaline pH. The degree of voltage-dependence of meperidine block was only slightly affected by changes in pH, whereas affinity for meperidine was greatly reduced at alkaline pH. Furthermore, interaction of meperidine with Mg(2+) block was reduced at alkaline pH. Because the percentage of the protonated form of meperidine is only slightly affected by pH, changes in properties of the meperidine binding site may be involved in mechanisms of alteration of meperidine potency by pH. Implications: At acidic pH the potency of meperidine for N-methyl-D-aspartate-receptor channels was increased. Any antinociceptive and neuroprotective benefit from the N-methyl-D-aspartate-receptor antagonist property of meperidine may be pH dependent.  相似文献   

5.
Background: Actions of volatile anesthetics on ligand-gated ion channels, such as [gamma]-aminobutyric acid type A receptors, have been studied extensively. However, actions on other types of channels, such as K+ channels, are poorly understood. The authors previously showed that a Ca2+-activated K+ channel, IK, is sensitive to halothane, whereas SK1, another Ca2+-activated K+ channel, is insensitive. To explore how halothane acts on Ca2+-activated K+ channels, chimeras between IK and SK1 were constructed, and halothane sensitivity was analyzed.

Methods: IK, SK1, and chimera channels were expressed in Xenopus laevis oocytes. Currents of expressed channels were measured in the presence of 10 [mu]m Ca2+ by excised patch clamp analysis. Time constants of inhibition by halothane were compared between inside-out and outside-out patch configurations.

Results: Currents from chimera channels possessing the pore domain derived from IK were inhibited by halothane, whereas those possessing the SK1 pore domain were insensitive. Time constants of inhibition by halothane were significantly smaller in the outside-out patches than in the inside-out patches of both wild-type IK and a chimera with pore domain of IK.  相似文献   


6.
Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome   总被引:1,自引:0,他引:1  
Type 5 Bartter syndrome has been recently defined as a Bartter syndrome due to the most activating mutations of the calcium-sensing receptor (CaSR). It has been attributed to the inhibition exerted by CaSR activity on sodium transport in the thick ascending limb of the loop of Henle (TALH). Two monozygotic twin sisters (T1 and T2) with autosomal dominant hypocalcemia (ADH) due to a nonconservative activating CaSR mutation in the extracellular domain (K29E) were studied. They developed a Bartter-like syndrome characterized by a mild phenotype: hypokalemia occurred only at the age of 22 years; it was corrected with small doses of oral potassium in one twin, while the other twin needed no potassium supplements to maintain borderline levels of plasma potassium; alkalosis was absent; plasma renin and aldosterone production were not markedly activated. Furthermore, the natriuretic response to furosemide, a inhibitor of sodium reabsorption in the TALH, was conserved in both twins. The K29E mutation was previously reported as one of the most activating mutations of the CaSR gene leading to a very marked increase in CaSR sensitivity to calcium ions. These findings confirm that Bartter syndrome is typically associated with ADH provided that the underlying mutation of CaSR is able to produce a conspicuous gain of function. However, the phenotype of type 5 Bartter syndrome may manifest with variable severity, not directly related with the in vitro potency of the CaSR activating mutation.  相似文献   

7.
The ability of intracellular and extracellular Mg(2+) to block secretory K(+) currents through ROMK channels under physiologic conditions is incompletely understood. We expressed ROMK2 channels in Xenopus oocytes and measured unitary currents in the inside-out and cell-attached modes of the patch-clamp technique. With 110 mM K(+) on both sides of the membrane, 0.2 to 5 mM Mg(2+) on the cytoplasmic side reduced outward currents, but not inward currents, at V(m) > 0. With 11 or 1.1 mM extracellular K(+) ([K(+)](o)), ≥0.2 mM Mg(2+) blocked outward currents in the physiologic V(m) range (0 to -60 mV). With decreasing [K(+)](o), the apparent dissociation constant of the blocker decreased, but the voltage dependence of block did not significantly change. Whole-cell recordings from principal cells of rat cortical collecting ducts revealed similar inhibitory effects of intracellular Mg(2+). Mg(2+) added to the extracellular solution also reduced single-channel currents with an affinity that increased as [K(+)](o) decreased. In conclusion, physiologic concentrations of intracellular and extracellular Mg(2+) can influence secretory K(+) currents through ROMK channels. These effects could play a role in the modulation of K(+) transport under conditions of K(+) and/or Mg(2+) depletion.  相似文献   

8.
9.
Background: Volatile anesthetic agents can activate the S channel, a baseline potassium (K sup +) channel, of the marine mollusk Aplysia. To investigate whether cloned ion channels with electrophysiologic properties similar to the S channel (potassium selectivity, outward rectification, and activation independent of voltage) also are modulated by volatile anesthetic agents, the authors expressed the cloned yeast ion channel TOK1 (tandem pore domain, outwardly rectifying K sup + channel) in Xenopus oocytes and studied its sensitivity to volatile agents.

Methods: Standard two-electrode voltage and patch clamp recording methods were used to study TOK1 channels expressed in Xenopus oocytes.

Results: Studies with two-electrode voltage clamp at room temperature showed that halothane, isoflurane, and desflurane increased TOK1 outward currents by 48-65% in barium Frog Ringer's perfusate. The concentrations at which 50% potentiation occurred (EC50 values) were in the range of 768-814 micro meter (0.016-0.044 atm) and had a rank order of potency in atm in which halothane > isoflurane > desflurane. The potentiation of TOK1 by volatile anesthetic agents was rapid and reversible (onset and offset, 1-20 s). In contrast, the non-anesthetic 1,2-dichlorohexafluorocyclobutane did not potentiate TOK1 currents in concentrations up to five times the MAC value predicted by the Meyer-Overton hypothesis based on oil/gas partition coefficients. Single TOK1 channel currents were recorded from excised outside-out patches. The single channel open probability increased as much as twofold in the presence of isoflurane and rapidly returned to the baseline values on washout. Volatile anesthetic agents did not alter the TOK1 single channel current-voltage (I-V) relationship, however, suggesting that the site of action does not affect the permeation pathway of the channel.  相似文献   


10.
Small conductance calcium-activated potassium channels (SK) mediate spike frequency adaptation and underlie the slow afterhyperpolarization in central neurons. We tested the actions of several anesthetics on the SK2 subtype of recombinant SK channels, cloned from rat brain and functionally expressed in a mammalian cell line. Butanol, ethanol, ketamine, lidocaine, and methohexital blocked recombinant SK2 channel currents, measured in the whole-cell patch clamp recording mode. The block was reversible, dose-dependent, and of variable efficacy. The inhaled anesthetics chloroform, desflurane, enflurane, halothane, isoflurane, and sevoflurane produced little or no block when applied at 1 minimum alveolar anesthetic concentration; varying degrees of modulation were observed at very large concentrations (10 minimum alveolar concentration). The extent of block by inhaled anesthetics did not appear to depend on concentration or membrane voltage. IMPLICATIONS: We describe differential effects of anesthetics on cloned small conductance calcium-activated potassium channels from brain that may play a role in generating the effects or side effects of anesthetics.  相似文献   

11.
PURPOSE: Sustained contraction of human corporeal smooth muscle depends on continuous transmembrane calcium flux through voltage gated calcium channels. K channels modulate corporeal smooth muscle membrane potential and, thus, ultimately affect transmembrane calcium flux. Therefore, we characterized relaxation responses elicited by the K channel modulators pinacidil and levcromakalim on isolated human corporeal tissue strips. We also evaluated the possibility that there may be alterations in adenosine triphosphate sensitive K channel pharmacology/function related to the presence of diabetes mellitus. MATERIALS AND METHODS: A total of 215 isolated human corporeal tissue strips obtained from 57 male patients with organic erectile dysfunction were investigated. Cumulative concentration-response curves were constructed at half log increments for steady state relaxation responses elicited by pinacidil and levcromakalim on equivalently phenylephrine pre-contracted (to approximately 75% of maximum) isolated corporeal tissue strips. Potassium currents were measured using the cell attached whole cell patch clamp technique on freshly isolated corporeal smooth muscle cells. RESULTS: A concentration dependent, glibenclamide sensitive relaxation response of phenylephrine pre-contracted corporeal tissue strips was observed for pinacidil and levcromakalim. Consistent with such observations, electrophysiological recordings on freshly isolated myocytes revealed that pinacidil (10 microM.) and levcromakalim (10 microM.) induced whole cell potassium currents that were blocked by glibenclamide (10 microM.). In addition, statistical analysis revealed that phenylephrine pre-contracted corporeal tissue strips from patients without diabetes were more sensitive to relaxation by both compounds than corporeal tissue strips excised from those with diabetes. Furthermore, relaxation responses elicited by pinacidil and levcromakalim were not affected by charybdotoxin or 4-aminopyridine but were completely reversed by KCl or tetraethylammonium chloride. CONCLUSIONS: These data indicate that the adenosine triphosphate sensitive K channel subtype is likely to have an important role in the relaxation of isolated corporeal tissue strips and, moreover, they are the molecular target for the K channel modulators/openers levcromakalim and pinacidil. Such observations are consistent with the supposition that alterations in the structure/function/activity of these potassium channels may underlie at least some aspects of observed diabetes related differences in tissue sensitivity to K channel modulators.  相似文献   

12.
Li J  Correa AM 《Anesthesiology》2002,97(4):921-930
BACKGROUND: (human ether-a-gogo related gene) encodes the cardiac rapidly activating delayed rectifier potassium currents (I(kr)), which play an important role in cardiac action potential repolarization. General anesthetics, like halothane, can prolong Q-T interval, suggesting that they act on myocellular repolarization, possibly involving HERG channels. Evidence for direct modulation of HERG channels by halothane is still lacking. To gain insight on HERG channel modulation by halothane the authors recorded macroscopic currents expressed in Xenopus oocytes and conducted non-stationary noise analysis to evaluate single channel parameters modified by the anesthetic. METHODS: Macroscopic currents were recorded in 120 mM K(+) internal-5 mM K(+) external solutions with the cut open oocyte technique. Macropatch recordings for non-stationary noise analysis of HERG tail currents were made in symmetrical 120 mM K(+) solutions. Pulse protocols designed for HERG current recording were elicited from a holding potential of -80 mV. Halothane was delivered via gravity-fed perfusion. RESULTS: Halothane (0.7%, 1.5%, and 3%) decreased macroscopic currents in a concentration-dependent manner (average reduction by 14%, 22%, and 35% in the range of -40 mV to 40 mV) irrespective of potential. HERG currents had slower activation and accelerated deactivation and inactivation. Non-stationary noise analysis revealed that halothane, 1.5%, decreased channel P(o) by 27%, whereas single-channel current amplitudes and number of channels in the patch remained unchanged. CONCLUSIONS: Halothane inhibits HERG currents expressed in oocytes in a concentration-dependent manner. It slowed down activation and accelerated deactivation and inactivation of HERG channels. The authors' results demonstrate that halothane decreased HERG currents by modulating kinetic properties of HERG channels, decreasing their open probability. Partial block of I(kr) currents could contribute to delayed myocellular repolarization and altered cardiac electrophysiology.  相似文献   

13.
目的 探讨大鼠低亲和力钠依赖二羧酸转运蛋白(SDCT1)对枸橼酸及草酸的转运特点。方法克隆出大鼠SDCT1全长cDNA基因。应用爪蟾卵母细胞异源性表达SDCT1,并使用双电极电压钳法记录通道电流。通过改变灌流液中枸橼酸、草酸的浓度,以及两种底物转运时钠离子的浓度及pH值,对其特性进行了研究。结果SDCT1对枸橼酸及草酸的转运均为底物浓度及钠离子依赖。pH值变化显著影响2者的转运。但低pH对草酸的转运影响要远大于枸橼酸。结论在临床实践中,虽然升高尿液pH值可以抑制枸橼酸的重吸收,发挥其抑制钙盐沉积的功能。但过度地碱化尿液也会使草酸的重吸收受到抑制,使草酸大量存留在尿中而导致结行。保持适当的尿酸碱度是必要的。  相似文献   

14.
15.
BACKGROUND: Aluminum (Al3+) has diverse biological effects mediated through activation of a putative extracellular cation-sensing receptor. A recently identified calcium-sensing receptor (CaSR), which has been identified in target tissues for Al3+, may transduce some of the biological effects of Al3+. METHODS: To test this possibility, we transfected human embryonic kidney 293 (HEK 293) cells with a cDNA encoding the rat CaSR and evaluated CaSR expression by Western blot analysis and function by measurement of intracellular calcium ([Ca2+]i) levels and inositol monophosphate (IP1) generation following stimulation with Al3+ and a panel of CaSR agonists. RESULTS: The CaSR protein was detected by immunoblot analysis in cells transfected with the CaSR cDNA but not in nontransfected HEK 293 cells. In addition, [Ca2+]i levels and IP1 generation were enhanced in a dose-dependent fashion by additions of the CaSR agonists calcium (Ca2+), magnesium (Mg2+), gadolinium (Gd3+), and neomycin only in cells transfected with CaSR. To determine if Al3+ activated CaSR, we stimulated cells transfected with rat CaSR with 10 microM to 1 mM concentrations of Al3+. Concentrations of Al3+ in the range of 10 microM to 100 microM had no effect on [Ca2+]i levels or IP1 generation. In contrast, 1 mM Al3+ induced small but significant increases in both parameters. Whereas Gd3+ antagonized calcium-mediated activation of CaSR, pretreatment with Al3+ failed to block subsequent activation of rat CaSR by Ca2+, suggesting a distinct mechanism of Al3+ action. CONCLUSION: Al3+ is not a potent agonist for CaSR. Because Al3+ affects a variety of target tissues at micromolar concentrations, it seems unlikely that CaSR mediates these cellular actions of Al3+.  相似文献   

16.
AIMS: The calcium-sensing receptor (CaSR) regulates the extracellular calcium level, mainly by controlling parathyroid hormon secretion and renal calcium reabsorption. In gain-of-function CaSR mutations, the genetic abnormalities increase CaSR activity leading to the development of such clinical manifestations as hypercalciuric hypocalcemia and hypoparathyroidism. We report a Japanese case of CaSR gain-of-function mutation and represent a therapeutic intervention based on the functional characteristics of CaSR in renal tubule. METHODS AND RESULTS (CASE): DNA sequence analysis revealed a heterozygous G to T mutation identified in a 12-year-old Japanese girl presenting with sporadic onset of hypercalciuric hypocalcemia and hypoparathyroidism. The mutation is located in the N-terminal extracellular domain of the CaSR gene, one of the most important parts for the three-dimensional construction of the receptor, resulting in the substitution of phenylalanine for cysteine at amino acid 131 (C131F) in exon 3. Based on the diagnosis of the gain-of-function mutation in the CaSR, oral hydrochlorothiazide administration and supplemental hydration were started in addition to calcium supplementation. The combination therapy of thiazide and supplemental hydration markedly reduced both renal calcium excretion and urinary calcium concentration from 0.4-0.7 to less than 0.1 mg/mg (urinary calcium/creatinine ratio) and from 10-15 to 3-5 mg/dl (urinary calcium concentration), respectively. This therapy stopped the progression of renal calcification during the follow-up period. CONCLUSION: Supplemental hydration should be considered essential for the following reasons: (1) calcium supplementation activates the CaSR in the kidney and suppresses renal urinary concentrating ability, (2) the thiazide has a diuretic effect, (3) as calcium supplementation increases renal calcium excretion, the supplemental hydration decreases urinary calcium concentration by increasing urinary volume, thereby diminishing the risk of intratubular crystallization of calcium ion.  相似文献   

17.
The computational power of the neocortex arises from interactions of multiple neurons, which display a wide range of electrical properties. The gene expression profiles underlying this phenotypic diversity are unknown. To explore this relationship, we combined whole-cell electrical recordings with single-cell multiplex RT-PCR of rat (p13-16) neocortical neurons to obtain cDNA libraries of 26 ion channels (including voltage activated potassium channels, Kv1.1/2/4/6, Kvbeta1/2, Kv2.1/2, Kv3.1/2/3/4, Kv4.2/3; sodium/potassium permeable hyperpolarization activated channels, HCN1/2/3/4; the calcium activated potassium channel, SK2; voltage activated calcium channels, Caalpha1A/B/G/I, Cabeta1/3/4), three calcium binding proteins (calbindin, parvalbumin and calretinin) and GAPDH. We found a previously unreported clustering of ion channel genes around the three calcium-binding proteins. We further determined that cells similar in their expression patterns were also similar in their electrical properties. Subsequent regression modeling with statistical resampling yielded a set of coefficients that reliably predicted electrical properties from the expression profile of individual neurons. This is the first report of a consistent relationship between the co-expression of a large profile of ion channel and calcium binding protein genes and the electrical phenotype of individual neocortical neurons.  相似文献   

18.
Background: The aim of this study was to investigate the effects of two imidazoline-derived intravenous anesthetics, etomidate and midazolam, on vascular adenosine triphosphate-sensitive potassium (KATP) channel activity.

Methods: In isolated rat aorta, isometric tension was recorded to examine the anesthetic effects on vasodilator response to levcromakalim, a selective KATP channel opener. Using the patch clamp method, the anesthetic effects were also examined on the currents through (1) native vascular KATP channels, (2) recombinant KATP channels with different combinations of various types of inwardly rectifying potassium channel (Kir6.0 family: Kir6.1, 6.2) and sulfonylurea receptor (SUR1, 2A, 2B) subunits, (3) SUR-deficient channels derived from a truncated isoform of Kir6.2 subunit (Kir6.2[DELTA]C36 channels), and (4) mutant Kir6.2[DELTA]C36 channels with reduced sensitivity to adenosine triphosphate (Kir6.2[DELTA]C36-K185Q channels).

Results: Etomidate (>= 10-6 m), but not midazolam (up to 10-6 m), inhibited the levcromakalim-induced vasodilation, which was sensitive to glibenclamide (IC50: 7.21 x 10-8 m; maximum inhibitory concentration: 1.22 x 10-4 m). Etomidate (>= 3 x 10-6 m), but not midazolam (up to 10-4 m), inhibited the native KATP channel activity in both cell-attached and inside-out configurations with IC50 values of 1.68 x 10-5 m and 1.52 x 10-5 m, respectively. Etomidate (10-5 m) also inhibited the activity of various types of recombinant SUR/Kir6.0KATP channels, Kir6.2[DELTA]C36 channels, and Kir6.2[DELTA]C36-K185Q channels with equivalent potency.  相似文献   


19.
The inward rectifying potassium channels of the ROMK family are present in the distal nephron of the kidney. These channels have two membrane spanning portions, between which lies a hydrophobic domain thought to confer the majority of the conductive properties of the channel. The N- and C-termini are both intracellular. In this paper we have examined the contribution of the N- and C-termini to the pore by examining the interaction of Cs+ with the channels. ROMK1 has an additional 19 amino acids on its N-terminus in comparison to ROMK2. The C-terminus of ROMK2 was extended by addition of a streptavidin tag (sfROMK2). Currents were measured following expression in Xenopus oocytes using two-electrode voltage clamp. ROMK1, ROMK2 and sfROMK2 exhibited concentration- and voltage-dependent block of inward currents by extracellular Cs+. The Hill coefficients were not significantly different from one. The mean Kd values at 0 mV were 100.6 +/- 10.6, 63.1 +/- 3.9 and 40.6 +/- 9.4, respectively (p < 0.05). The electric distances (delta) were 0.94 +/- 0.06, 1.0 +/- 0.05 and 1.37 +/- 0.06 respectively. The delta of sfROMK2 was greater than either ROMK1 or ROMK2 (p < 0.001). ROMK1, ROMK2 and sfROMK2 are sensitive to extracellular Cs+. Block was both concentration- and voltage-dependent. sfROMK2 is most Cs+-sensitive. ROMK1 contains an additional N-terminal 19 amino acids. Thus the pore properties of these two isoforms are subtly different, and influenced by the N-terminus. The lower Kd in sfROMK2 suggests that the streptavidin tag, and perhaps the C-terminus, also affect the pore.  相似文献   

20.
SeSAME/EAST syndrome is a channelopathy consisting of a hypokalemic, hypomagnesemic, metabolic alkalosis associated with seizures, sensorineural deafness, ataxia, and developmental abnormalities. This disease links to autosomal recessive mutations in KCNJ10, which encodes the Kir4.1 potassium channel, but the functional consequences of these mutations are not well understood. In Xenopus oocytes, all of the disease-associated mutant channels (R65P, R65P/R199X, G77R, C140R, T164I, and A167V/R297C) had decreased K(+) current (0 to 23% of wild-type levels). Immunofluorescence demonstrated decreased surface expression of G77R, C140R, and A167V expressed in HEK293 cells. When we coexpressed mutant and wild-type subunits to mimic the heterozygous state, R199X, C140R, and G77R currents decreased to 55, 40, and 20% of wild-type levels, respectively, suggesting that carriers of these mutations may present with an abnormal phenotype. Because Kir4.1 subunits can form heteromeric channels with Kir5.1, we coexpressed the aforementioned mutants with Kir5.1 and found that currents were reduced at least as much as observed when we expressed mutants alone. Reduction of pH(i) from approximately 7.4 to 6.8 significantly decreased currents of all mutants except R199X but did not affect wild-type channels. In conclusion, perturbed pH gating may underlie the loss of channel function for the disease-associated mutant Kir4.1 channels and may have important physiologic consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号