首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Objective

The aim of this study was to create a new template for the anatomical normalization of I-123 FP-CIT SPECT images of Japanese people to evaluate dopamine transporter binding.

Methods

The subjects consisted of 16 normal control subjects (5 females and 11 males; mean age ± SD, 51.6 ± 9.5 years, ranging from 25 to 62 years) and 21 parkinsonian patients (7 females and 14 males; mean age ± SD, 70.7 ± 9.4 years, ranging from 49 to 85 years). All normal control subjects and 21 patients with parkinsonism underwent MRI. A total of 148 MBq of I-123 FP-CIT was intravenously injected as a bolus, and a SPECT scan was started 4 h later. Data were analyzed with the Statistical Parametric Mapping 8 (SPM8) software. At first, I-123 FP-CIT SPECT images were co-registered to MRI images and MRI images were normalized to Montreal Neurological Institute (MNI) space using a gray.nii template. Co-registered I-123 FP-CIT SPECT images were normalized using the predetermined normalization parameters for MRI images. Then, anatomically normalized I-123 FP-CIT SPECT images were divided by background counts individually measured using ROIs set on the cerebral cortices. The I-123 FP-CIT template was created by averaging the normalized SPECT images of the 16 normal control subjects. Thereafter, the averaged MRI images of the 16 normal control subjects were also created.

Results

A visual inspection revealed that there were no apparent differences between the I-123 FP-CIT images subjected to the two methods of anatomical normalization in normal control subjects. However, a group comparison by a paired t test using SPM8 revealed that the I-123 FP-CIT binding was significantly higher in the substriatal and temporal regions in I-123 FP-CIT images directly normalized with the I-123 FP-CIT template than in those normalized by the predetermined parameters with MRI, while it was higher in the bilateral frontal cortical regions in the latter than in the former images.

Conclusion

We successfully created an I-123 FP-CIT template for Japanese people. This template is thought to be useful and reliable for the statistical analysis of I-123 FP-CIT images, although some problems exist in the evaluation of parkinsonian patients. The results of a paired t test using SPM suggest that we should use the same normalization method in statistical image analyses.
  相似文献   

2.

Purpose

Decreased striatal dopamine transporter (DAT) binding on SPECT imaging is a strong biomarker for the diagnosis of dementia with Lewy bodies (DLB). There is still a lot of uncertainty about patients meeting the clinical criteria for probable DLB who have a normal DAT SPECT scan (DLB/S?). The aim of this study was to describe the clinical and imaging follow-up in these patients, and compare them to DLB patients with abnormal baseline scans (DLB/S+).

Methods

DLB patients who underwent DAT imaging ([123I]FP-CIT SPECT) were selected from the Amsterdam Dementia Cohort. All [123I]FP-CIT SPECT scans were evaluated independently by two nuclear medicine physicians and in patients with normal scans follow-up imaging was obtained. We matched DLB/S-? patients for age and disease duration to DLB/S+ patients and compared their clinical characteristics.

Results

Of 67 [123I]FP-CIT SPECT scans, 7 (10.4?%) were rated as normal. In five DLB/S? patients, a second [123I]FP-CIT SPECT was performed (after on average 1.5 years) and these scans were all abnormal. No significant differences in clinical characteristics were found at baseline. DLB/S? patients could be expected to have a better MMSE score after 1 year.

Conclusion

This study was the first to investigate DLB patients with the initial [123I]FP-CIT SPECT scan rated as normal and subsequent scans during disease progression rated as abnormal. We hypothesize that DLB/S? scans could represent a relatively rare DLB subtype with possibly a different severity or spread of alpha-synuclein pathology (“neocortical predominant subtype”). In clinical practice, if an alternative diagnosis is not imminent in a DLB/S? patient, repeating [123I]FP-CIT SPECT should be considered.
  相似文献   

3.

Purpose

Quantitative estimates of dopamine transporter availability, determined with [123I]FP-CIT SPECT, depend on the SPECT equipment, including both hardware and (reconstruction) software, which limits their use in multicentre research and clinical routine. This study tested a dedicated reconstruction algorithm for its ability to reduce camera-specific intersubject variability in [123I]FP-CIT SPECT. The secondary aim was to evaluate binding in whole brain (excluding striatum) as a reference for quantitative analysis.

Methods

Of 73 healthy subjects from the European Normal Control Database of [123I]FP-CIT recruited at six centres, 70 aged between 20 and 82 years were included. SPECT images were reconstructed using the QSPECT software package which provides fully automated detection of the outer contour of the head, camera-specific correction for scatter and septal penetration by transmission-dependent convolution subtraction, iterative OSEM reconstruction including attenuation correction, and camera-specific “to kBq/ml” calibration. LINK and HERMES reconstruction were used for head-to-head comparison. The specific striatal [123I]FP-CIT binding ratio (SBR) was computed using the Southampton method with binding in the whole brain, occipital cortex or cerebellum as the reference. The correlation between SBR and age was used as the primary quality measure.

Results

The fraction of SBR variability explained by age was highest (1) with QSPECT, independently of the reference region, and (2) with whole brain as the reference, independently of the reconstruction algorithm.

Conclusion

QSPECT reconstruction appears to be useful for reduction of camera-specific intersubject variability of [123I]FP-CIT SPECT in multisite and single-site multicamera settings. Whole brain excluding striatal binding as the reference provides more stable quantitative estimates than occipital or cerebellar binding.
  相似文献   

4.

Objective

Dopamine transporter (DAT) imaging with [123I]FP-CIT (DaTSCAN) is a widely used diagnostic tool for Parkinsonism and dementia. Since it was approved by the Japanese Ministry of Health, Labor, and Welfare in 2013, there have been no articles focusing on a Japanese normal population. The aim of this study was to examine the effect of aging and gender on DAT availability in Japanese people.

Methods

SPECT imaging of 30 healthy Japanese controls (17 males, 13 females; range 50–86 years, mean 70 years) was performed. SPECT images were reconstructed using a three-dimensional order subset expectation maximization (OSEM) algorithm with correction of the point spread function and scatter correction, without attenuation correction. The specific binding ratio (SBR) was calculated by DATview software. Statistical analyses were performed using linear regression analysis, analysis of variance, and multiple comparison analysis.

Results

A strong correlation between the SBR and age was observed. The correlation coefficient in males and females were ?0.566 and ?0.502, respectively. The analysis of variance revealed that aging led to a decline of the SBR, and a significant difference (p?=?0.005) was observed among generations. Gender also affected the SBR, and there was a significant difference between males and females (p?=?0.036). The SBR in females was higher than in males. Consequently, the multiple comparison revealed a significant difference between 50s and 70s (p?=?0.015) and 50s and 80s (p?=?0.006).

Conclusions

This is the first [123I]FP-CIT SPECT study on subjects with normal dopamine function in Asian countries. This study provides a database of [123I]FP-CIT SPECT in Japanese healthy controls. Higher DAT availability was found in women than in men. An average age-related decline in DAT availability of 8.9% was found in both genders. The data collected in this study would be helpful for Japanese physicians to make a differential diagnosis in Parkinsonian syndrome.The registration identification number for this study is UMIN000018045.
  相似文献   

5.

Purpose

Even though [123I]FP-CIT SPECT provides high accuracy in detecting nigrostriatal cell loss in neurodegenerative parkinsonian syndromes (PS), some patients with an inconclusive diagnosis remain. We investigated whether the diagnostic accuracy in patients with clinically uncertain PS with previously inconclusive findings can be improved by the use of iterative reconstruction algorithms and an improved semiquantitative evaluation which additionally implemented a correction algorithm for patient age and gamma camera dependency (EARL-BRASS; Hermes Medical Solutions, Sweden).

Methods

We identified 101 patients with inconclusive findings who underwent an [123I]FP-CIT SPECT between 2003 and 2010 as part of the diagnostic process of suspected PS at the University of Munich, and re-evaluated these scans using iterative reconstruction algorithms and the new corrected EARL-BRASS. Clinical follow-up was obtained in 62 out of the 101 patients and constituted the gold standard for the re-evaluation to assess the possible improvement in diagnostic accuracy.

Results

Clinical follow-up confirmed the diagnosis of PS in 11 of the 62 patients. In patients in whom both visual and semiquantitative analysis showed concordant findings (48 patients), a high negative predictive value (93 %), positive predictive value (100 %) and accuracy (94 %) were found, and thus a correct diagnosis was obtained in 45 of the 48 patients. Among the 14 patients with discordant findings, the additional semiquantitative analysis correctly identified all five of nine patients patients without PS by nonpathological semiquantitative findings in visually pathological or inconclusive scans. In contrast, four of the remaining five patients with decreased semiquantitative values but visually normal scans did not show a PS during follow-up.

Conclusion

The age-corrected and camera-corrected mode of evaluation using EARL-BRASS provided a notable improvement in the diagnostic accuracy of [123I]FP-CIT SPECT in PS patients with previously inconclusive findings. The gain in accuracy might be achieved by better discrimination between physiological low striatal [123I]FP-CIT binding due to age-related loss of the dopamine transporter or pathological loss of binding.
  相似文献   

6.

Purpose

Diagnostic I-131 MIBG scintigraphy is an important imaging modality for evaluation of patients with neuroblastoma (NB) especially in centers where I-123 MIBG is not available. Single photon emission computed tomography/computed tomography (SPECT/CT) could potentially improve lesion detection over planar scintigraphy, but studies regarding its usefulness as an add-on to diagnostic I-131 MIBG scintigraphy are limited. This study aimed to determine the usefulness and factors related to usefulness of SPECT/CT in diagnostic I-131 MIBG scintigraphy in NB patients.

Methods

Usefulness of SPECT/CT for lesion detection, lesion localization, resolving suspicious findings, and clarifying the nature of lesions on anatomical imaging were retrospectively reviewed in 86 diagnostic planar I-131 MIBG scintigrams with add-on SPECT/CT.

Results

SPECT/CT detected additional lesions in 23.2%(20/86), helped localize lesions in 21.1%(8/38), resolved suspicious findings in 85.7%(6/7), determined functional status of lesions on anatomical imaging in 94.4%(17/18), and changed diagnosis from a negative to a positive study in 19.5%(8/41). Independent predictors of SPECT/CT being useful included presence of suspicious findings on planar imaging (OR 99.08; 95% C.I. 6.99–1404.41; p?=?0.001), positive findings on planar imaging (OR 4.61; 95% C.I. 1.05, 20.28; p?<?0.001), and presence of structural lesions on anatomical imaging (OR 32.54; 95% C.I. 5.37–196.96; p?<?0.001).

Conclusion

SPECT/CT is a useful add-on to diagnostic planar I-131 MIBG scintigraphy. Predictors of usefulness of SPECT/CT include suspicious or positive findings on planar scintigraphy and the presence of structural lesions on anatomical imaging.
  相似文献   

7.

Purpose

The differences in performance between the cadmium-zinc-telluride (CZT) camera or collimation systems and conventional Anger single-photon emission computed tomography (A-SPECT) remain insufficient from the viewpoint of the user. We evaluated the performance of the D-SPECT (Spectrum Dynamics, Israel) system to provide more information to the cardiologist or radiological technologist about its use in the clinical field.

Materials and Methods

This study evaluated the performance of the D-SPECT system in terms of energy resolution, detector sensitivity, spatial resolution, modulation transfer function (MTF), and collimator resolution in comparison with that of A-SPECT (Bright-View, Philips, Japan). Energy resolution and detector sensitivity were measured for Tc-99m, I-123, and Tl-201. The SPECT images produced by both systems were evaluated visually using the anthropomorphic torso phantom.

Results

The energy resolution of D-SPECT with Tc-99m and I-123 was approximately two times higher than that of A-SPECT. The detector sensitivity of D-SPECT was higher than that of A-SPECT (Tc-99m: 4.2 times, I-123: 2.2 times, and Tl-201: 5.9 times). The mean spatial resolution of D-SPECT was two times higher than that of A-SPECT. The MTF of D-SPECT was superior to that of the A-SPECT system for all frequencies. The collimator resolution of D-SPECT was lower than that of A-SPECT; however, the D-SPECT images clearly indicated better spatial resolution than the A-SPECT images.

Conclusion

The energy resolution, detector sensitivity, spatial resolution, and MTF of D-SPECT were superior to those of A-SPECT. Although the collimator resolution was lower than that of A-SPECT, the D-SPECT images were clearly of better quality.
  相似文献   

8.

Purpose

This work aimed to assess the potential of a set of features extracted from [123I]FP-CIT SPECT brain images to be used in the computer-aided “in vivo” confirmation of dopaminergic degeneration and therefore to assist clinical decision to diagnose Parkinson’s disease.

Methods

Seven features were computed from each brain hemisphere: five standard features related to uptake ratios on the striatum and two features related to the estimated volume and length of the striatal region with normal uptake. The features were tested on a dataset of 652 [123I]FP-CIT SPECT brain images from the Parkinson’s Progression Markers Initiative. The discrimination capacities of each feature individually and groups of features were assessed using three different machine learning techniques: support vector machines (SVM), k-nearest neighbors and logistic regression.

Results

Cross-validation results based on SVM have shown that, individually, the features that generated the highest accuracies were the length of the striatal region (96.5%), the putaminal binding potential (95.4%) and the striatal binding potential (93.9%) with no statistically significant differences among them. The highest classification accuracy was obtained using all features simultaneously (accuracy 97.9%, sensitivity 98% and specificity 97.6%). Generally, slightly better results were obtained using the SVM with no statistically significant difference to the other classifiers for most of the features.

Conclusions

The length of the striatal region uptake is clinically useful and highly valuable to confirm dopaminergic degeneration “in vivo” as an aid to the diagnosis of Parkinson’s disease. It compares fairly well to the standard uptake ratio-based features, reaching, at least, similar accuracies and is easier to obtain automatically. Thus, we propose its day to day clinical use, jointly with the uptake ratio-based features, in the computer-aided diagnosis of dopaminergic degeneration in Parkinson’s disease.
  相似文献   

9.

Purpose

For the quantitative assessment of dopamine transporter (DAT) using [123I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson’s disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization.

Methods

We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images.

Results

The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups.

Conclusion

CT-guided anatomic standardization using the DARTEL algorithm is promising for the quantitative assessment of DaTscan images.
  相似文献   

10.

Objective

The purpose of the present study was to determine how accurately relative cerebral blood flow (RCBF) and relative cerebrovascular reactivity (RCVR) to acetazolamide assessed using brain perfusion single-photon emission computed tomography (SPECT) detected misery perfusion identified on positron emission tomography (PET) in adult patients with ischemic moyamoya disease (MMD).

Methods

Oxygen extraction fraction (OEF), RCBF, and RCVR were assessed using 15O gas PET and N-isopropyl-p-[123I]-iodoamphetamine SPECT without and with acetazolamide challenge, respectively, in 45 patients. Regions of interest (ROIs) were automatically placed in the five middle cerebral artery (MCA) territories in the symptomatic cerebral hemisphere and in the ipsilateral cerebellar hemisphere using a three-dimensional stereotaxic ROI template. For RCBF and RCVR to acetazolamide, the ratio of the MCA ROI to cerebellar ROI was calculated. Of the five MCA ROIs in the symptomatic cerebral hemisphere in each patient, the ROI with the highest and lowest OEF value (two ROIs per patient) was selected for analyses.

Results

A significant square or linear correlation was observed between the OEF and RCBF (correlation coefficient, 0.780) or RCVR (correlation coefficient, ??0.345), respectively. The area under the receiver operating characteristic curve for detecting misery perfusion (OEF?>?51.3%) was significantly greater for the RCBF than for the RCVR (difference between areas, 0.221; p?<?0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the RCBF for detecting misery perfusion were 100, 91, 67, and 100%, respectively. The specificity and positive-predictive value did not differ between the combination of the RCBF and RCVR and the CBF ratio alone.

Conclusions

RCBF assessed using brain perfusion SPECT detects misery perfusion with high sensitivity, a high negative-predictive value, and a low positive-predictive value in adult patients with ischemic MMD. The accuracy of RCVR to acetazolamide assessed using brain perfusion SPECT is lower than that of RCBF.
  相似文献   

11.

Background

Stress-only single-photon emission computed tomography myocardial perfusion imaging (SO SPECT MPI) is associated with similarly benign prognosis as stress-rest SPECT MPI. However, previous studies have used attenuation correction rather than prone imaging to increase the rate of SO studies.

Objectives

To assess the prognosis of SO SPECT MPI performed with prone imaging.

Methods

We performed a retrospective cohort analysis of all patients who underwent a Tc-99m gated SPECT MPI over a 58-month period.

Results

Two thousand four hundred and sixty five patients were followed up. Of them, 1114 (45.2%) patients had a SO supine test, 388 (15.7%) underwent a SO supine and prone test, and the remaining 963 (39.1%) patients underwent a full stress-rest SPECT MPI. There was a similar annual mortality rate between the SO supine/prone group (1.3%), the SO supine (1.5%), and the stress-rest (1.5%) group (P = 0.47). Patients in the stress-rest group were significantly more likely to suffer from myocardial infarction (MI) as compared to the other two groups with an annual rate of 0.7% as compared to 0.4% (P = 0.049).

Conclusions

Normal supine-prone SO SPECT MPI is associated with a similarly benign prognosis as stress-rest SPECT MPI. The adjunction of prone imaging to the stress supine significantly increases the rate of SO SPECT MPI
  相似文献   

12.

Purpose

Avascular necrosis (AVN) of the femoral head is a major complication after internal fixation of a femoral neck fracture and determines the functional prognosis. We investigated postoperative bone single-photon emission computed tomography/computed tomography (SPECT/CT) for assessing the risk of femoral head AVN.

Methods

We retrospectively reviewed 53 consecutive patients who underwent bone SPECT/CT within 2 weeks of internal fixation of a femoral neck fracture and follow-up serial hip radiographs over at least 12 months.

Results

Nine patients developed femoral head AVN. In 15 patients who showed normal uptake on immediate postoperative SPECT/CT, no AVN occurred, whereas 9 of 38 patients who showed cold defects of the femoral head later developed AVN. The negative predictive value of immediate postoperative SPECT/CT for AVN was 100 %, whereas the positive predictive value was 24 %. Among 38 patients with cold defects, 1 developed AVN 3 months postoperatively. A follow-up bone SPECT/CT was performed in the other 37 patients at 2–10 months postoperatively. The follow-up bone SPECT/CT revealed completely normalized femoral head uptake in 27, partially normalized uptake in 8, and persistent cold defects in 2 patients. AVN developed in 3.7 % (1/27), 62.5 % (5/8), and 100 % (2/2) of each group, respectively.

Conclusions

According to the time point of imaging, radiotracer uptake patterns of the femoral head on postoperative bone SPECT/CT indicate the risk of AVN after internal fixation of femoral neck fractures differently. Postoperative bone SPECT/CT may help orthopedic surgeons determine the appropriate follow-up of these patients.
  相似文献   

13.

Aim

The aim of this study was to compare the accuracy of 123I-MIBG SPECT/CT with that of 18F-DOPA PET/CT for staging extra-adrenal paragangliomas (PGLs) using both functional and anatomical images (i.e., combined cross-sectional imaging) as the reference standards.

Methods

Three men and seven women (age range 26–73 years) with anatomical and/or histologically proven disease were included in this study. Three patients had either metastatic head-and-neck paragangliomas (HNPGLs) or multifocal PGL, and seven patients had nonmetastatic disease. Comparative evaluation included morphological imaging with CT, functional imaging with 18F-DOPA PET, and 123I-MIBG imaging including SPECT/CT. Imaging results were analyzed on a per-patient and per-lesion basis.

Results

On a per-patient basis, 18F-DOPA PET’s detection rate for both nonmetastatic and metastatic/multifocal disease was 100%, whereas that of planar 123I-MIBG imaging alone was 10.0% and that of 123I-MIBG SPECT/CT was 20.0%. Overall, on a per-lesion basis, 18F-DOPA PET showed a sensitivity of 69.2% (McNemar p?<?0.001) compared with anatomical imaging. Sensitivity of planar 123I-MIBG scintigraphy was 5.6%, and that of SPECT/CT was 11.1% (McNemar p?<?0.0001). Overall, 18F-DOPA PET identified 18 lesions, and anatomical imaging identified 26 lesions; planar 123IMIBG imaging identified only 1 lesion, and SPECT/CT, 2 lesions.

Conclusion

18F-DOPA PET is more sensitive than is 123I-MIBG imaging, including SPECT/CT, for staging HNPGL. Combined functional and anatomical imaging (PET/CT) is indicated to exclude metastatic disease in extra-adrenal PGL.
  相似文献   

14.

Purpose

Parkinson’s disease (PD) is caused by a selective degeneration of dopamine neurons. The relationship between dopamine transporter (DAT) density and gray matter volume has been unclear. Here we investigated the voxelwise correlation between gray matter volume and DAT binding measured by 123I-N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single-photon emission computed tomography (SPECT; DaTscan? imaging) in PD.

Materials and methods

Thirty-one male patients with PD were examined with MRI and DaTscan. To measure nigrostriatal dopaminergic degeneration in PD, the specific binding ratio (SBR) of the striatum was obtained by DaTscan. Voxel-based morphometry (VBM) of 3D T1-weighted images was used to evaluate the relationships between the regional gray matter volume and the SBR in the striatum.

Results

There were significant positive correlations between the SBR and the gray matter volume in the right pulvinar and posterior middle temporal gyrus and a trend level in the left pulvinar, all of which are associated with the second visual pathway.

Conclusion

The nigrostriatal dopaminergic degeneration might affect the secondary visual pathway, leading to visual dysfunctions in PD.
  相似文献   

15.

Background

The aim of this study was to determine the impact of respiratory motion correction on SPECT MPI and on defect detection using a phantom assembly.

Methods

SPECT/CT data were acquired using an anthropomorphic phantom with inflatable lungs and with an ECG beating and moving cardiac compartment. The heart motion followed the respiratory pattern in the cranio-caudal direction to simulate normal or deep breathing. Small or large transmural defects were inserted into the myocardial wall of the left ventricle. SPECT/CT images were acquired for each of the four respiratory phases, from exhale to inhale. A respiratory motion correction was applied using an image-based method with transformation parameters derived from the SPECT data by a non-rigid registration algorithm. A report on defect detection from two physicians and a quantitative analysis on MPI data were performed before and after applying motion correction.

Results

Respiratory motion correction eliminated artifacts present in the images, resulting in a uniform uptake and reduction of motion blurring, especially in the inferior and anterior regions of the LV myocardial walls. The physicians’ report after motion correction showed that images were corrected for motion.

Conclusions

A combination of motion correction with attenuation correction reduces artifacts in SPECT MPI. AC-SPECT images with and without motion correction should be simultaneously inspected to report on small defects.
  相似文献   

16.

Purpose

To develop a method for automated detection of highly integrated sites in SPECT images using bone information obtained from CT images in bone scintigraphy.

Methods

Bone regions on CT images were first extracted, and bones were identified by segmenting multiple regions. Next, regions corresponding to the bone regions on SPECT images were extracted based on the bone regions on CT images. Subsequently, increased uptake regions were extracted from the SPECT image using thresholding and three-dimensional labeling. Last, the ratio of increased uptake regions to all bone regions was calculated and expressed as a quantitative index. To verify the efficacy of this method, a basic assessment was performed using phantom and clinical data.

Results

The results of this analytical method using phantoms created by changing the radioactive concentrations indicated that regions of increased uptake were detected regardless of the radioactive concentration. Assessments using clinical data indicated that detection sensitivity for increased uptake regions was 71% and that the correlation between manual measurements and automated measurements was significant (correlation coefficient 0.868).

Conclusion

These results suggested that automated detection of increased uptake regions on SPECT images using bone information obtained from CT images would be possible.
  相似文献   

17.

Objective

Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV).

Methods

The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned.

Results

Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image.

Conclusion

We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.
  相似文献   

18.

Objective

Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings.

Methods

The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB.

Results

The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p?<?0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction.

Conclusion

The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.
  相似文献   

19.

Objective

Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing.

Methods

Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.

Results

The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128?×?128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included.

Conclusions

GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
  相似文献   

20.

Purpose

We investigated whether hilar radioaerosol deposition affects the clearance rate of technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA) from peripheral alveolar regions.

Materials and methods

A total of 38 patients underwent 99mTc-DTPA inhalation lung scintigraphy. Six region of interest (ROI) patterns were adopted: ROI 1 was outlined around the entire hemithorax, and ROIs 2–6 were outlined around the hemithorax but excluded square ROIs of different size in the hilar region. Half-times (T½) were calculated with time-activity curves using onecompartment and two-compartment analyses. The T½ of ROIs 1–5 were plotted against the T½ of ROI 6, and regression lines were obtained with the least-squares method. The absolute values of the differences between surveyed values and regression line were calculated. The Wilcoxon test for trend and a single linear regression model were used to determine statistical significance.

Results

There were significant reductions in the absolute values of the differences between surveyed values and regression line from ROIs 1–5 by one-component analysis and the fast component of two-compartment analysis (P < 0.001).

Conclusion

Our results suggest that the deposition of radioaerosol in the hilar region affects the clearance rate of 99mTc-DTPA from the alveoli in damaged lungs. The hilar region should be excluded from ROIs when alveolar epithelial permeability is evaluated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号