首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, precise, accurate and economic simultaneous UV spectrophotometric method has been developed for the estimation of amlodipine besylate, valsartan and hydrochlorothiazide in combination in bulk mixture and tablet. The estimation was based upon measurement of absorbance at absorbance maxima of 359 nm, 317 nm and 250 nm for amlodipine besylate, hydrochlorothiazide and valsartan in methanol, respectively in bulk mixture and tablet. The Beer Lambert''s law obeyed in the concentration range 5-25 μg/ml, 10-50 μg/ml and 5-25 μg/ml for amlodipine besylate, hydrochlorothiazide and valsartan, respectively. The estimation of bulk mixture and tablet was carried out by simultaneous equation, Q-analysis and area under curve method for estimation of amlodipine besylate and hydrochlorothiazide and standard curve method for estimation of valsartan. The results were found to be in the range of 99.6±1.52% to 102±0.51%. Method was validated with respect to specificity, linearity, range, accuracy, precision, LOD, LOQ, robustness, ruggedness and can be applied for routine analysis of tablet dosage forms.  相似文献   

2.
A simple, specific and accurate reverse phase liquid chromatographic method was developed for the simultaneous determination of losartan potassium and ramipril in table dosage forms. A hypersil ODS C18, 4.6×250 mm, 5 μm column in isocratic mode, with mobile phase acetonitrile:methanol:10 mM tetra butyl ammonium hydrogen sulphate in water in the ratio of 30:30:40% v/v/v was used. The flow rate was 1.0 ml/min and effluent was monitored at 210 nm. The retention times of losartan potassium and ramipril were 4.7 and 3.3 min, respectively. The linearity range for losartan potassium and ramipril were in the range of 0.04-100 μg/ml and 0.2-300 μg/ml, respectively. The proposed method was also validated and successfully applied to the estimation of losartan potassium and ramipril in combined tablet formulations.  相似文献   

3.
In the present work, four different spectrophotometric methods for simultaneous estimation of losartan potassium, amlodipine besilate and hydrochlorothiazide in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, classical least squares (CLS), multiple linear regression (MLR), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix, with measurements in the range of 230.5-350.4 nm (Δλ = 0.1 nm) in their zero order spectra. The linearity range was found to be 8-40, 1-5 and 3-15 μg mL-1 for losartan potassium, amlodipine besilate and hydrochlorothiazide, respectively. The validity of the proposed methods was successfully assessed for analyses of drugs in the various prepared physical mixtures and in tablet formulations.  相似文献   

4.
A sensitive, accurate, precise and validated ion-pairing reverse-phase liquid chromatographic method for the quantitative determination of atenolol and indapamide in bulk and tablet dosage form was developed. The proposed ion-pairing reverse-phase high performance liquid chromatography method utilises C18 column with 5 μm, 150×4.6 mm i.d. column and mobile phase consisting of 0.1% w/v solution of octane sulphonic acid, sodium salt and methanol (55:45 v/v), (pH 2.8) and ultraviolet detection at 235 nm. A linearity range of 1-250 μg/ml and 1-25 μg/ml for atenolol and indapamide, respectively, was obtained. The mean recoveries are 100.48 and 99.82% for atenolol and indapamide, respectively. The method was validated as per International Conference on Harmonization guidelines.  相似文献   

5.
A simple, precise, accurate, rapid and reproducible reverse phase high performance liquid chromatographic procedure was developed for simultaneous determination of nitazoxanide and ofloxacin in tablet dosage form at a single wavelength. The mobile phase used was a combination of acetonitrile:0.25M potassium dihydrogen phosphate buffer (80:20) with 0.5%v/v of triethylamine and the pH was adjusted to 2.5 by adding orthophosphoric acid. The detection of the combined dosage form was carried out at 320 nm and flow rate was set to 1ml/min. Linearity was obtained in the concentration range of 5 to 25 μg/ml of nitazoxanide and ofloxacin with correlation coefficients of 0.9987 and 0.9995, respectively. The results of the analysis were validated statistically and recovery studies confirmed the accuracy of the proposed method.  相似文献   

6.
A reverse phase high performance liquid chromatography method was developed for simultaneous estimation of nitazoxanide and ofloxacin in tablet formulation. The separation and quantification was achieved by Hiq Sil C18V Size 4.6 mm Ø *250 mm column in isocratic mode, with mobile phase consisting of acetonitrile-methanol-0.4 M citric acid, (60:30:10, v/v/v). Citric acid used to stabilize nitazoxanide and ofloxacin in mobile phase. The mobile phase was pumped at a rate of 0.6 ml/min and the detection was carried out at 304 nm. The retention time of ofloxacin and nitazoxanide was found to be 3.122 and 5.902 min, respectively. The method was validated for linearity, accuracy, and precision. Linearity for ofloxacin and nitazoxanide were in the range 2-36 μg/ml and 5-90 μg/ml, respectively. The developed method was found to be accurate, precise and selective for simultaneous estimation of ofloxacin and nitazoxanide in tablets.  相似文献   

7.
A simple, reproducible and efficient reverse phase high performance liquid chromatographic method was developed for simultaneous determination of valsartan and hydrochlorothiazide in tablets. A column having 200 × 4.6 mm i.d. in isocratic mode with mobile phase containing methanol:acetonitrile:water:isopropylalcohol (22:18:68:2; adjusted to pH 8.0 using triethylamine; v/v) was used. The flow rate was 1.0 ml/min and effluent was monitored at 270 nm. The retention time (min) and linearity range (μg/ml) for valsartan and hydrochlorothiazide were (3.42, 8.43) and (5-150, 78-234), respectively. The developed method was found to be accurate, precise and selective for simultaneous determination of valsartan and hydrochlorothiazide in tablets.  相似文献   

8.
A reverse phase high performance liquid chromatographic method was developed for the simultaneous estimation of atorvastatin calcium and fenofibrate in tablet formulation. The separation was achieved by Luna C18 column and methanol:acetate buffer pH 3.7 (82:18 v/v) as mobile phase, at a flow rate of 1.5 ml/min. Detection was carried out at 248 nm. Retention time of atorvastatin calcium and fenofibrate was found to be 3.02+0.1 and 9.05+0.2 min, respectively. The method has been validated for linearity, accuracy and precision. Linearity for atorvastatin calcium and Fenofibrate were in the range of 1-5 μg/ml and 16-80 μg/ml, respectively. The mean recoveries obtained for Atorvastatin calcium and fenofibrate were 101.76% and 100.06%, respectively. Developed method was found to be accurate, precise, selective and rapid for simultaneous estimation of atorvastatin calcium and fenofibrate in tablets.  相似文献   

9.
A high performance reverse phase liquid chromatographic procedure is developed for simultaneous estimation of metformin hydrochloride and pioglitazone hydrochloride in combined tablet dosage form. The mobile phase used was a combination of acetonitrile:water:acetic acid (60:40:0.3) and the pH was adjusted to 5.5 by adding triethylamine. The detection of the combined dosage form was carried out at 230 nm and a flow rate employed was 1 ml/min. Linearity was obtained in the concentration range of 0.015 to 0.120 μg/ml of pioglitazone hydrochloride and 0.5 to 4.0 μg/ml of metformin hydrochloride with a correlation coefficient of 0.9992 and 0.9975. The results of the analysis were validated statistically and recovery studies confirmed the accuracy and precision of the proposed method.  相似文献   

10.
A fast, robust and stability indicating RP-HPLC method was developed for simultaneous determination of bisoprolol fumarate and amlodipine besylate in tablets. The mobile phase was mixture of 25 mM ammonium acetate adjusted to pH 5.0 and methanol (65: 35) at 0.8 ml/min. The stationary phase was Luna C18-2 column (3 μ, 50×4.6 mm ID). UV detection was performed at 230 nm. Retention time was 1.45 min and 3.91 min for bisoprolol and amlodipine, respectively. Linearity was established in the range of 8–33 μg/ml. Mean recovery was 99.1% and 98.6% for bisoprolol fumarate and amlodipine besylate, respectively.  相似文献   

11.
A stability-indicating reverse phase high performance liquid chromatography method was developed and validated for cefixime and linezolid. The wavelength selected for quantitation was 276 nm. The method has been validated for linearity, accuracy, precision, robustness, limit of detection and limit of quantitation. Linearity was observed in the concentration range of 2-12 μg/ml for cefixime and 6-36 μg/ml for linezolid. For RP-HPLC, the separation was achieved by Phenomenex Luna C18 (250×4.6 mm) 5 μm column using phosphate buffer (pH 7):methanol (60:40 v/v) as mobile phase with flow rate 1 ml/min. The retention time of cefixime and linezolid were found to be 3.127 min and 11.986 min, respectively. During force degradation, drug product was exposed to hydrolysis (acid and base hydrolysis), H2O2, thermal degradation and photo degradation. The % degradation was found to be 10 to 20% for both cefixime and linezolid in the given condition. The method specifically estimates both the drugs in presence of all the degradants generated during forced degradation study. The developed methods were simple, specific and economic, which can be used for simultaneous estimation of cefixime and linezolid in tablet dosage form.  相似文献   

12.
A rapid and sensitive reverse phase high performance liquid chromatographic method is depicted for the qualitative and quantitative assay of letrozole in pharmaceutical dosage forms. Letrozole was chromatographed on a reverse phase C18 column with a mobile phase consisting of acetonitrile and phosphate buffer (pH 7.8) in the ratio of 70:30 v/v. The mobile phase was pumped at a flow rate of 1 ml/min. Acenaphthene was used as an internal standard and the eluents were monitored at 232 nm. The retention time of the drug was 3.385 min. With this method, linearity was observed in the range of 10-100 μg/ml. The LOD and LOQ were found to be 0.51 μg/ml and 1.52 μg/ml, respectively. The method was found to be applicable for analysis of drug in tablets. The results of the analysis were validated statistically.  相似文献   

13.
Two simple, accurate and reproducible spectrophotometric methods; Q analysis and first order derivative method have been described for the simultaneous estimation of drotaverine hydrochloride and paracetamol in combined tablet dosage form. Absorption maxima of drotaverine hydrochloride and paracetamol in distilled water were found to be 303.5 nm and 243.5 nm respectively. Beer''s law was obeyed in the concentration range 5-50 μg/ml for drotaverine and 5-60 μg/ml for paracetamol. In Q analysis method, two wavelengths were selected at isobestic point (277 nm) and λmax of paracetamol (243.5 nm). In first order derivative method, zero crossing point for drotaverine hydrochloride and paracetamol were selected at 303.5 nm and 243.5 nm, respectively. The results of two methods were validated statistically and recovery studies were found to be satisfactory.  相似文献   

14.
A rapid high performance liquid chromatographic method has been developed and validated for the estimation of ramipril and telmisartan simultaneously in combined dosage form. A Genesis C18 column having dimensions of 4.6×250 mm and particle size of 5 μm in isocratic mode, with mobile phase containing a mixture of 0.01 M potassium dihydrogen phosphate buffer (adjusted to pH 3.4 using orthophosphoric acid): methanol:acetonitrile (15:15:70 v/v/v) was used. The mobile phase was pumped at a flow rate of 1.0 ml/min and the eluents were monitored at 210 nm. The selected chromatographic conditions were found to effectively separate ramipril (Rt: 3.68 min) and telmisartan (Rt: 4.98 min) having a resolution of 3.84. The method was validated in terms of linearity, accuracy, precision, specificity, limit of detection and limit of quantitation. Linearity for ramipril and telmisartan were found in the range of 3.5-6.5 μg/ml and 28.0-52.0 μg/ml, respectively. The percentage recoveries for ramipril and telmisartan ranged from 99.09-101.64% and 99.45-100.99%, respectively. The limit of detection and the limit of quantitation for ramipril was found to be 0.5 μg/ml and 1.5 μg/ml respectively and for telmisartan was found to be 1.5 μg/ml and 3.0 μg/ml, respectively. The method was found to be robust and can be successfully used to determine the drug content of marketed formulations.  相似文献   

15.
A method for the simultaneous determination of losartan potassium and hydrochlorothiazide in tablets is described. The procedure, based on the use of reversed-phase high-performance liquid chromatography, is linear in the concentration range 3.0-7.0 microg ml(-1) for losartan and 0.5-2.0 microg ml(-1) for hydrochlorothiazide, is simple and rapid and allows accurate and precise results. The limit of detection was 0.08 microg ml(-1) for losartan and 0.05 microg ml(-1) for hydrochlorothiazide.  相似文献   

16.
An isocratic reversed-phase liquid chromatograpic assay method was developed for the quantitative determination of amlodipine besylate (AML) and indapamide (IND) in combined dosage form. A Brownlee C-18, 5 μm column with a mobile phase containing 0.02 M potassium dihydrogen phosphate–methanol (30+70, v/v) total pH-adjusted to 3 using o-phosphoric acid was used. The flow rate was 1.0 mL min−1 and effluents were monitored at 242 nm. The retention times of amlodipine besylate and indapamide were 5.9 min and 3.6 min, respectively. The proposed method was validated with respect to linearity, accuracy, precision, and robustness. The method was successfully applied to the estimation of amlodipine besylate and indapamide in combined tablet dosage forms.  相似文献   

17.
First-derivative ultraviolet spectrophotometry and high-performance liquid chromatography (HPLC) were used to determine valsartan and hydrochlorothiazide simultaneously in combined pharmaceutical dosage forms. The derivative procedure was based on the linear relationship between the drug concentration and the first derivative amplitudes at 270.6 and 335 nm for valsartan and hydrochlorothiazide, respectively. The calibration graphs were linear in the range of 12.0–36.1 μg ml−1 for valsartan and 4.0–12.1 μg ml−1 for hydrochlorothiazide. Furthermore, a high- performance liquid chromatographic procedure with ultraviolet detection at 225 nm was developed for a comparison method. For the HPLC procedure, a reversed phase column with a mobile phase of 0.02 M phosphate buffer (pH 3.2)-acetonitrile (55: 45; v/v), was used to separate for valsartan and hydrochlorothiazide. The plot of peak area ratio of each drug to the internal standard versus the respective concentrations of valsartan and hydrochlorothiazide were found to be linear in the range of 0.06–1.8 and 0.07–0.5 μg ml−1, respectively. The proposed methods were successfully applied to the determination of these drugs in laboratory-prepared mixtures and commercial tablets.  相似文献   

18.
A simple, specific, accurate and stability indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of atorvastatin calcium and amlodipine besylate in tablet dosage forms. A phenomenex Gemini C-18, 5 μm column having 250×4.6 mm i.d. in isocratic mode, with mobile phase containing 0.02 M potassium dihydrogen phosphate:acetonitrile:methanol (30:10:60, v/v/v) adjusted to pH 4 using ortho phosphoric acid was used. The flow rate was 1.0 ml/min and effluents were monitored at 240 nm. The retention times of atorvastatin calcium and amlodipine besylate were 11.6 min and 4.5 min, respectively. The calibration curves were linear in the concentration range of 0.08-20 μg/ml for atorvastatin calcium and 0.1-20 μg/ml for amlodipine besylate. Atorvastatin calcium and amlodipine besylate stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and dry heat degradation. The degraded product peaks were well resolved from the pure drug peak with significant difference in their retention time values. The proposed method was validated and successfully applied to the estimation of atorvastatin calcium and amlodipine besylate in combined tablet dosage forms.  相似文献   

19.
A simple reverse phase liquid chromatographic method has been developed and subsequently validated for simultaneous determination of salbutamol sulphate and bromhexine hydrochloride. The separation was carried out using a mobile phase consisting of acetonitrile, methanol and phosphate buffer, pH 4 in the ratio 60:20:20 v/v. The column used was SS Wakosil-II C-18 with a flow rate of 1 ml/min and UV detection at 224 nm. The described method was linear over a concentration range of 10-110 μg/ml and 20-140 μg/ml for the assay of salbutamol sulphate and bromhexine hydrochloride, respectively. The mean recovery was found to be 95-105% for salbutamol sulphate and 96.2-102.1% for bromhexine hydrochloride when determined at five different levels.  相似文献   

20.
Ultra violet spectrophotometric estimation of the raltegravir potassium, an integrase inhibitor antiretroviral agent was estimated by Ultra violet absorption maxima method at λmax of 328 nm and UV area under curve method in the wave length range of 323-333 nm. The Beer''s law obeyed in the concentration range of 3-55 μg/ml and correlation coefficients were found to be more than 0.996 for both methods. The results of the analysis were 100.58±0.99 and 99.69±0.59 by absorption maxima and area under curve method respectively. Both the methods were validated as per ICH guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号